New Record of Fox Squirrel (Sciurus Niger)

Total Page:16

File Type:pdf, Size:1020Kb

New Record of Fox Squirrel (Sciurus Niger) New Record of Fox Squirrel in New Jersey from a HistoricalArchaeologic al Site NEW RECORD OF FOX a body mass ranging from 507 to 1,361 g, (1.12-3 lbs), compared to the gray squirrel SQUIRREL (SCIURUS body mass range of 300 to 710 g (0.66-1.57 NIGER) IN NEW JERSEY lb) (Koprowski 1994a,b). The average weight FROM A HISTORICAL of the fox squirrel is almost twice that of the gray squirrel. Consequently, the bones of ARCHAEOLOGICAL SITE fox squirrel are also larger than those of gray squirrel. Bone size, however, may not always be a reliable way to differentiate the skeletal T. CREGG MADRIGAL remains o{ the two species, due to potential size variation within both species due to geography, change over time, or sex and age of individual specimens. Due to a genetic Archaeological Society of New Jersey condition, fox squirrel bones fluoresce (glow pink) under ultraviolet (UV) light (Dooley and Moncrief 2012; Parris et al. 1995). Gray squirrel bones do not, providing a possible HE EASTERN GRAY squirrel, Sciurus alternative method of distinguishing the two carolinensis Grn.elin 1788, is com­ species. This fluorescencehas been observed monly found in suburbs, parks, and in paleontological specimens at least 7,000 forests throughout New Jersey. The years old (Dooley and Moncrief2012), but larger,T but otherwise similar in appearance, taphonomic changes in bones may remove fox squirrel, Sciurus nigerLinnaeus 1758, is this fluorescencein some situations. not found in New Jersey, and there has been t uncerainty about whether it ever was pres­ There is, fortunately, another osteological ent in the state, and if so, where it was found characteristic that can be used to separate the and when it became extirpated.Although the two species: the maxilla (upper jaw) of the fox squirrel is more abundant in other parts gray squirrel retains a vestigial, peg-like third of the eastern and central United States, it is premolar tooth that is not found in the fox not present in New England, much of eastern squirrelmaxilla (e.g., Burt 1972: 101; Ko­ New York, and easternPennsylvania (Ko­ prowski 1994a, 1994b; Parris et al. 1995:63), prowski 1994a). Currently,the nearest mod­ providing unambiguous criteria fordistin ­ ern populations of fox squirrel are found in guishing the two species. central Pennsylvania, where it is rare; and in Delaware and Maryland. The latter subspe­ Early reviews of New Jersey's native fauna cies, the Delmarva fox squirrel (Sciurus niger ( e.g., Nelson 1890) reported several different cinereus), was listed as an endangered species species of tree squirrel in the state. However, in 1967. Federal, state, and private conser­ the majority of these alleged species probably vation efforts since thattime have led to an represent within-species variation in the fur increase in the population such that in 2015, color of gray squirrel. A review ofthe litera­ the Delmarva fox squirrel was removed from ture by Parris and colleagues (Parris et al. the list of Endangered Species. 1995:63) indicates that there are no reliable historic records of fox squirrel in New Jersey. The fox squirrel is usually at least 20% Given the paucity of relevant historic records, greater in size than the gray squirrel and has evidence for fox squirrel in New Jersey must 25 Bulletin of the Archaeological Society of New Jersey Volume 67, 2012 Site N A 0 10 20 30 40 --===---===:=J Miles Figure 1. Map ofNew Jersey showing location ofLambert /Douglas Site and Tide Creek I Site. 26 New Record ofFox Squirrel in New Jersey from a Historical Archaeological Site come from zooarchaeological or paleontologi­ including the incisor, the fourth premolar, and cal data. Reliable evidence for the presence of the alveoli for the first and second molars, fox squirrel in New Jersey was first reported and a portion of the right maxilla, including by Parris and colleagues (1995), who identi­ the fourth premolar and alveoli for the incisor fied fox squirrel paired left and right maxillae and first and second molars. The left and right from a single individual at the Tide Creek I maxillae articulate and are counted as a single archaeological site (280c90) in Ocean County specimen. Significantly, there is neither a third (Figure 1) . The Tide Creek I Site is thought to premolar nor an alveolus for such a tooth, date to AD 1690-1720. In this paper, addition­ which are found only in gray squirrels, and al fox squirrel specimens from the Lambert/ not in fox squirrels (Koprowski 1994a, 1994b; Douglas archaeological site in Mercer County Parris eta!. 1995 :63). are reported. Faunal remains from archaeolog­ ical sites can provide new data on the history UV light testing was not conducted for the of fox squirrel in New Jersey and contribute bones from the Lambert/Douglas Site, but the to a better understanding of the historical dis­ positively identified fox squirrel maxilla from tribution of this species. the Tide Creek I Site did not fluoresce under UV light (Parris et al. 1995:63). An addi­ tional 12 bones were attributed to fox squir­ Results rel based on their overall large size, which The Lambert/Douglas Site is located in the matched bones of modern fox squirrels in the City of Trenton, Mercer County, New Jersey collections of the New York State Museum. (Figure 1), near the Delaware River (Hunter Elements present at the Lambert/Douglas Research, Inc. 2005, 2011). A total of 14,631 Site include three mandibles, one innominate vertebrate animal bones or bone fragments (pelvis) and several leg bones: five humeri, were studied from the Lambert/Douglas site two tibiae, and a femur. Based on the number (Madrigal2000, 2011). Most specimens are of humeri identified, a minimum of four indi­ from the basement of a house thought to have viduals are represented at the site. been constructed about A.D. 1701 and de­ stroyed around A.D. 1790. The faunal remains A single mandible was identified as gray are thought to represent primarily food and squirrel based on overall size and morphol­ butchery waste discarded by the occupants ogy. Eighty-one other bones are identified of the site. The most common domesticated conservatively only as tree squirrel (Genus animals at the site are pig, cow, sheep or goat, Sciurus; i.e. either fox squirrel or gray squir­ and chicken. Several wild species that were rel), although all of these are comparable in likely procured for food are also present at size to gray squirrel. At least nine individuals the site, including, in additions to squirrel, are represented by these bones. sturgeon and passenger pigeon. Some of the animal bones are presumably the result of An indication of the size difference between natural deaths, in particular those of the rat the two species is witnessed in Figure 3, (Rattus sp.), the most abundant wild mammal which shows a left humerus identified as fox at the site. squirrel and a right humerus identified as tree squirrel but most likely from a gray squirrel, One set of paired maxillae was positively both found in the same context at the site. The identified as fox squirrel (Figure 2). This distal breadth (Bd) of the fox squirrel humer­ specimen consists of most of the left maxilla, us is 13.70 mm, compared to 11.35 mm for 27 Figure 2. Paired left and right maxillae offox squirrel (Sciurus niger) from Lambert/Douglas Site. 'ti c .ci (!) 0 2 4 ~ 6 l tl tl l ll llltlllllttilltlllllllliil l lll lll lillllillll l llllllll l ll l lll ll ll Figure 3. Top: Left humerus offox squirrel (Sciurus niger). Bottom: Partial right humerus ofprobable gray squirrel (Sciurus carolinensis). New Record ofFox Squirrel in New Jersey from a Historical Archaeological Site the other humerus. ment. The context of the find also suggests that this large rodent was still present in New The fox squirrel paired maxillae was recov­ Jersey until near the beginning of the nine­ ered from general eighteenth century base­ teenth century. Furthermore, it may have been ment fill (Trench A, EU 99, Context 25). Ten fairly abundant: at least four individuals are other fox squirrel bones were also identi- present, compared to a minimum of nine other fied from this context. A single fox squirrel squirrels from the site. humerus was found in the later eighteenth century basement floor (Context 38) deposit The fox squirrel and gray squirrel have differ­ and a tibia was recovered from a less diagnos­ ent but overlapping diets and habitat prefer­ tic context (Context 2). The majority of tree ences. Fox squirrels spend more time on the squirrel bones were found in the same general ground than gray squirrels, are slower mov­ eighteenth century basement fill context as the ing, and are considered less graceful in trees. fox squirrel maxilla. The fox squirrel also prefers smaller forest patches (less than 40 ha) with an open under­ story, while the gray squirrel prefers larger Discussion and Conclusion forest patches with a dense understory (Ko­ The Tide Creek I Site is located in the Silver­ prowski 1994a, b). Both species, however, can ton section of the Township ofToms River be found in the same area; the modem range (Parris eta!. [1995] reported this site as of the Delmarva fox squirrel, for example, being located in the Township of Dover; the overlaps with that of the gray squirrel. Township changed its name to Toms River in 2006), Ocean County. As its name implies, the The precise population of each of the two spe­ site is located near Tide Creek, which empties cies prior to European settlement is unknown. into Barnegat Bay, on the Outer Coastal Plain Just west ofNew Jersey, "When the early ofNew Jersey.
Recommended publications
  • Building a Predictive Model of Delmarva Fox Squirrel (Sciurus Niger Cinereus) Occurrence Using Infrared Photomonitors
    Building a Predictive Model of Delmarva Fox Squirrel (Sciurus niger cinereus) Occurrence Using Infrared Photomonitors Charisa M. Morris Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science In Fisheries and Wildlife Science Dean F. Stauffer, Chair James D. Fraser Marcella J. Kelly September 11, 2006 Blacksburg, Virginia Keywords: Delmarva fox squirrel, Sciurus niger cinereus, Delmarva peninsula, habitat model, logistic regression, AIC, endangered species Copyright 2006, Charisa M. Morris ii Building a Predictive Model of Delmarva Fox Squirrel (Sciurus niger cinereus) Occurrence Using Infrared Photomonitors Charisa M. Morris ABSTRACT Habitat modeling can assist in managing potentially widespread but poorly known biological resources such as the federally endangered Delmarva fox squirrel (DFS; Sciurus niger cinereus). The ability to predict or identify suitable habitat is a necessary component of this species’ recovery. Habitat identification is also an important consideration when evaluating impacts of land development on this species distribution, which is limited to the Delmarva Peninsula. The goal of this study was to build a predictive model of DFS occurrence that can be used towards the effective management of this species. I developed 5 a′ priori global models to predict DFS occurrence based on literature review, past models, and professional experience. I used infrared photomonitors to document habitat use of Delmarva fox squirrels at 27 of 86 sites in the southern Maryland portion of the Delmarva Peninsula. All data were collected on the U.S. Fish and Wildlife Service Chesapeake Marshlands National Wildlife Refuge in Dorchester County, Maryland.
    [Show full text]
  • Risk Analysis of the Fox Squirrel Sciurus Niger
    ELGIUM B NATIVE ORGANISMS IN ORGANISMS NATIVE - OF NON OF Risk analysis of the fox squirrel Sciurus niger Updated version, May 2015 ISK ANALYSIS REPORT REPORT ANALYSIS ISK R Risk analysis report of non-native organisms in Belgium Risk analysis of the fox squirrel Sciurus niger Evelyne Baiwy(1), Vinciane Schockert(1) & Etienne Branquart(2) (1) Unité de Recherches zoogéographiques, Université de Liège, B-4000 Liège (2) Cellule interdépartementale sur les Espèces invasives, Service Public de Wallonie Adopted in date of: 11th March 2013, updated in May 2015 Reviewed by : Sandro Bertolino (University of Turin) & Céline Prévot (DEMNA) Produced by: Unité de Recherches zoogéographiques, Université de Liège, B-4000 Liège Commissioned by: Service Public de Wallonie Contact person: [email protected] & [email protected] This report should be cited as: “Baiwy, E.,Schockert, V. & Branquart, E. (2015) Risk analysis of the Fox squirrel, Sciurus niger, Risk analysis report of non-native organisms in Belgium. Cellule interdépartementale sur les Espèces invasives (CiEi), DGO3, SPW / Editions, updated version, 34 pages”. Contents Acknowledgements ................................................................................................................................ 1 Rationale and scope of the Belgian risk analysis scheme ..................................................................... 2 Executive summary ................................................................................................................................
    [Show full text]
  • Reintroductions of the Endangered Delmarva Fox Squirrel in Maryland
    Article Title 265 Reintroductions of the Endangered Delmarva Fox Squirrel in Maryland Glenn D. Therres, Maryland Department of Natural Resources, 580 Taylor Avenue E-1, Annapolis, MD 21401 Guy W. Willey, Sr., Maryland Department of Natural Resources, P.O. Box 68, Wye Mills, MD 21679 Abstract: Reintroductions of Delmarva fox squirrels (Sciurus niger cinereus) to suitable habitat have been a recovery tool used for this endangered species. In Maryland, we at- tempted reintroductions at 11 sites beginning in 1978. The last reintroduction was com- pleted in 1992. At each site, 8–42 individuals were released during spring or fall over a 1–3 year period. Attempts were made to release an equal number of males and females. Monitoring at reintroduction sites by live-trapping has documented recruitment and es- tablishment of populations at 9 sites. Criteria used for determining population estab- lishment follows that of the Delmarva Fox Squirrel Recovery Plan (U.S. Fish and Wildlife Service 1993). Because 7 of these populations were established with Ͻ24 indi- viduals, supplemental releases of Delmarva fox squirrels were conducted to bolster ge- netic diversity. This paper summarizes the history of Delmarva fox squirrel reintroduc- tions in Maryland, provides the results of recent live-trapping efforts at the sites, and discusses success of these efforts. Proc. Annu. Conf. Southeast. Fish and Wildl. Agencies 56:265–274 The Delmarva fox squirrel (Sciurus niger cinereus) was listed as an endangered species by the U.S. Fish and Wildlife Service in 1967. At the time of listing, endem- ic populations occurred in only 4 counties in eastern Maryland, representing Ͻ10% of the species former range (Taylor 1976).
    [Show full text]
  • Delaware's Wildlife Species of Greatest Conservation Need
    CHAPTER 1 DELAWARE’S WILDLIFE SPECIES OF GREATEST CONSERVATION NEED CHAPTER 1: Delaware’s Wildlife Species of Greatest Conservation Need Contents Introduction ................................................................................................................................................... 7 Regional Context ........................................................................................................................................... 7 Delaware’s Animal Biodiversity .................................................................................................................... 10 State of Knowledge of Delaware’s Species ................................................................................................... 10 Delaware’s Wildlife and SGCN - presented by Taxonomic Group .................................................................. 11 Delaware’s 2015 SGCN Status Rank Tier Definitions................................................................................. 12 TIER 1 .................................................................................................................................................... 13 TIER 2 .................................................................................................................................................... 13 TIER 3 .................................................................................................................................................... 13 Mammals ....................................................................................................................................................
    [Show full text]
  • HISTORICAL and PRESENT RANGE of the DELMARVA FOX SQUIRREL
    DELMARVA PENINSULA FOX SQUIRREL RECOVERY PLAN September 1979 TABLE OF CONTENTS Page Number I. INTRODUCTION ABSTRACT 1 FORMER STATUS 2 HISTORICAL AND PRESENT RANGE, FIGURE 1 3 DEIJ.IAR\1A PENINSUIA FOX SQUIRREL CURRENT STATUS 2 REroVERY PIAN REASONS FOR DECLINE 2 LIFE HISTORY AND POPULATION DYNAMICS 4 HABITAT REQUIREMENTS 5 MORTALITY FACTORS 6 Prepared by: REFERENCES 7 '111e Delmarva Fox Squirrel Recovery Team I I. MANAGEMENT NARRATIVE RECOVERY PLAN OBJECTIVE 9 STEP DOWN PLAN SCHEMATIC lla Tean Members STEP DOWN PLAN NARRATIVE 12 III. ACTION IMPLEMENTATION AND ESTIMATED COSTS Bernard F. Hal.la, Team leader Maryland Deparbrent of Natural Resources SCHEDULE OF ESTIMATEO COSTS, TABLE I 22 Vagan Flyger, Member U'liversity of Maryland PRIORITY SCHEDULE, TABLE II 24 William H. Julian, Ment>er * U. S. Fish and Wildlife Service LEAD AGENCY AND COOPERATORS, TABLE Ill 25 IV. APPENDIX Gary J. Taylor, Member Maryland Department of Natural Resources LIST OF REVIEWERS OF DRAFT RECOVERY PLAN 27 Nelson Swink, Consultant U.S. Fish and Wildlife Service Qiy Willey, MeJTt>er U.S. Fish and Wildlife Service * Replaced by Mr. Qiy Willey, Septen'ber 1979. /I- b~-1'1 ~ Date I. INTRODUCTION ABSTRACT This Recovery Plan is concerned with maintaining existing Delmarva Pen­ insula fox squirrel (Sciurus niger cinereus) populations and with restoration of the squirrel to its former known range which extended from central New Jersey and the southeastern corner of Pennsylvania southward through Delaware, the eastern shore counties of Maryland and the two eastern shore counties of Virginia (that land area of Maryland and Virginia east of the Chesapeake Bay).
    [Show full text]
  • Chapter 4. Virginia's Mid-Atlantic Coastal Plain
    Chapter 4. Virginia’s Mid-Atlantic Coastal Plain Figure 4.1. The Mid-Atlantic Coastal Plain ecoregion. 4.1. Introduction 4.1.1. Description The Mid-Atlantic Coastal Plain (Coastal Plain, Figure 4.1) corresponds to what other classification systems call the Coastal Plain (Table 4.1). The terrain is mostly flat. This province is bounded by the Southern Appalachian Piedmont to the west and the Chesapeake Bay and Atlantic Ocean to the east. The soils of the Coastal Plain are predominantly deep, moist Aquults and Aqualfs (McNab and Avers 1994). Rainfall in the region averages 110cm per year, and the average temperature ranges from 13 to 14°C (McNab and Avers 1994). The growing season generally lasts between 185 and 259 days (shortest in the northern portion, longest in the City of Virginia Beach, Woodward and Hoffman 1991). Forest cover is mostly loblolly pine- hardwood (McNab and Avers 1994), except the southernmost portion, which is mainly southeastern evergreen (longleaf and loblolly pine, Woodward and Hoffman 1991). Most streams are small to intermediate in size and have very low flow rates (McNab and Avers 1994). Table 4.1. Names for the Mid-Atlantic Coastal Plain as used in other ecoregional schemes and planning efforts. The following at least roughly correspond to the same area as Mid-Atlantic Coastal Plain as used in this document. Planning Effort/Regional Scheme Name of Ecoregion Reference NABCI Bird Conservation Regions (BCR) 27, NABCI 2000 Southeastern Coastal Plain, and 30, New England/Mid-Atlantic Coast 1 PIF Mid-Atlantic Coastal Plain Watts 1999 (Physigraphic Region 44) 2 4-1 VIRGINIA’S COMPREHENSIVE WILDLIFE CONSERVATION STRATEGY Chapter 4 — The Mid-Atlantic Coastal Plain Planning Effort/Regional Scheme Name of Ecoregion Reference United States Shorebird Planning Region 29, Southern Coastal Brown et al.
    [Show full text]
  • Of Habitat Suitability for the Delmarva
    Abstract.-Discriminant function analysis corn par- Habitat Structure, Forest ina 36 occu~iedand 18 unoccu~iedsites revealed Composition and Landscape thGt structural variables discriminked between sample groups better than compositional variables, Dimensions as Com~onents and the latter discriminated better than landscape variables. These results are encouraging that habitat of Habitat suitability for the structure will provide a reliable basis for a predictive classification model of habitat suitability. Such a Delmarva Fox model would be useful both for pre-screeningthe biological suitability of potential release sites and for planning, implementing and monitoring prescriptive Raymond D. Dueser,' James 1. Dooley, JL,~ habitat management. and Gary J. Taylor" The Delmarva fox squirrel (Sciurus of habitat requirements will be essen- Methods niger cinereus) was placed on the fed- tial for both initiatives (Dueser and eral endangered species list in 1967 Terwilliger 1988). Data Base (32 FR 4001; US. Department of Inte- Habitat requirements might be rior 1970). Remnant populations expressed through any of three sepa- During a 12-mo search for remnant were restricted to four counties in rate but related components of habi- populations of the Delmarva fox eastern Maryland (Taylor and Flyger tat suitability: forest habitat struc- squirrel on the Maryland Eastern 19731, representing less than 10% of ture, forest tree species composition, Shore, Taylor (1976) located 36 "fox the historic range of the subspecies and surrounding landscape struc- squirrel present" (Present) sites with on the Delmarva Peninsula. Forest ture. Both habitat structure and for- extant populations and 18 "fox squir- clearing and habitat fragmentation est composition have been shown to rel absent" (Absent) sites.
    [Show full text]
  • Augmentation of the Western Gray Squirrel Population, Fort Lewis, Washington
    STATE OF WASHINGTON October 2007 Implementation Plan for Augmentation of the Western Gray Squirrel Population, Fort Lewis, Washington By W. Matthew Vander Haegen, Sara C. Gregory and Mary J. Linders Washington Department of Fish and Wildlife Wildlife Program Cover photos by Matt Vander Haegen Recommended Citation: Vander Haegen, W. M., S. C. Gregory, and M. J. Linders. 2007. Implementation Plan for Augmentation of the Western Gray Squirrel Population, Fort Lewis, Washington. Washington Department of Fish and Wildlife, Olympia. 34pp. Implementation Plan for Augmentation of the Western Gray Squirrel Population, Fort Lewis, Washington By W. Matthew Vander Haegen, Sara C. Gregory, and Mary J. Linders Washington Department of Fish and Wildlife Wildlife Program 600 Capitol Way North Olympia, WA 98501 October 2007 Table of Contents ACKNOWLEDGEMENTS ............................................................................................................ 3 EXECUTIVE SUMMARY............................................................................................................. 4 INTRODUCTION........................................................................................................................... 6 Current Status.................................................................................................................. 6 Translocation as a Tool................................................................................................... 6 Attempted Reintroductions of Sciurids..........................................................................
    [Show full text]
  • Measuring the Success of the Endangered Species Act: Recovery Trends in the Northeastern United States
    MEASURING THE OF THE ENDANGEREDSuccess SPECIES ACT Recovery Trends in the Northeastern United States Measuring the Success of the Endangered Species Act: Recovery Trends in the Northeastern United States A Report by the Center for Biological Diversity © February 2006 Author: Kieran Suckling, Policy Director: [email protected], 520.623.5252 ext. 305 Research Assistants Stephanie Jentsch, M.S. Esa Crumb Rhiwena Slack and our acknowledgements to the many federal, state, university and NGO scientists who provided population census data. The Center for Biological Diversity is a nonprofit conservation organization with more than 18,000 members dedicated to the protection of endangered species and their habitat through science, policy, education and law. CENTER FOR BIOLOGICAL DIVERSITY P.O. Box 710 Tucson, AZ 85710-0710 520.623.5252 www.biologicaldiversity.org Cover photo: American peregrine falcon Photo by Craig Koppie Cover design: Julie Miller Table of Contents Executive Summary…………………………………………………………….. 1 Methods………………………………………………………………………….. 2 Results and Discussion………………….………………………………………. 5 Photos and Population Trend Graphs…………………………...……………. 9 Highlighted Species..……………………………………………………...…… 32 humpback whale, bald eagle, American peregrine falcon, Atlantic piping plover, shortnose sturgeon, Atlantic green sea turtle, Karner blue butterfly, American burying beetle, seabeach amaranth, dwarf cinquefoil Species Lists by State………………………………………………………….. 43 Technical Species Accounts………………………………………………….... 49 Measuring the Success of the Endangered Species Act Executive Summary The Endangered Species Act is America’s foremost biodiversity conservation law. Its purpose is to prevent the extinction of America’s most imperiled plants and animals, increase their numbers, and effect their full recovery and removal from the endangered list. Currently 1,312 species in the United States are entrusted to its protection.
    [Show full text]
  • List of Rare, Threatened, and Endangered Animals of Maryland
    List of Rare, Threatened, and Endangered Animals of Maryland December 2016 Maryland Wildlife and Heritage Service Natural Heritage Program Larry Hogan, Governor Mark Belton, Secretary Wildlife & Heritage Service Natural Heritage Program Tawes State Office Building, E-1 580 Taylor Avenue Annapolis, MD 21401 410-260-8540 Fax 410-260-8596 dnr.maryland.gov Additional Telephone Contact Information: Toll free in Maryland: 877-620-8DNR ext. 8540 OR Individual unit/program toll-free number Out of state call: 410-260-8540 Text Telephone (TTY) users call via the Maryland Relay The facilities and services of the Maryland Department of Natural Resources are available to all without regard to race, color, religion, sex, sexual orientation, age, national origin or physical or mental disability. This document is available in alternative format upon request from a qualified individual with disability. Cover photo: A mating pair of the Appalachian Jewelwing (Calopteryx angustipennis), a rare damselfly in Maryland. (Photo credit, James McCann) ACKNOWLEDGMENTS The Maryland Department of Natural Resources would like to express sincere appreciation to the many scientists and naturalists who willingly share information and provide their expertise to further our mission of conserving Maryland’s natural heritage. Publication of this list is made possible by taxpayer donations to Maryland’s Chesapeake Bay and Endangered Species Fund. Suggested citation: Maryland Natural Heritage Program. 2016. List of Rare, Threatened, and Endangered Animals of Maryland. Maryland Department of Natural Resources, 580 Taylor Avenue, Annapolis, MD 21401. 03-1272016-633. INTRODUCTION The following list comprises 514 native Maryland animals that are among the least understood, the rarest, and the most in need of conservation efforts.
    [Show full text]
  • The Endangered Species Act: Protecting Delaware’S Natural Heritage
    The Endangered Species Act: Protecting Delaware’s Natural Heritage By Ryan Richards and Kyle Cornish January 9, 2018 The ESA effectively counters America’s extinction crisis Today, 1 in 5 animal and plant species in the United States is threatened with extinc- tion.1 Worldwide, the rate of species extinction is 100 to 1,000 times higher than at any other time in history.2 Experts have warned that unless we immediately act to change this troubling trajectory, we would face a sixth mass extinction.3 The Endangered Species Act (ESA) has been one of the most effective tools used to pro- tect America’s perilously declining wildlife. The bedrock conservation law has prevented the extinction of 99 percent of the species under its protection. Scientists estimate that without the ESA, at least 227 threatened species—including the iconic bald eagle, Florida manatee, and California condor—would be extinct.4 Lawmakers had the foresight to craft the ESA as a flexible tool that encourages federal agencies to work with states, businesses, and private landowners to find local solutions. Proactive solutions—such as the 2015 sage-grouse conservation effort—have saved species from being listed as endangered, and scientific advancements have aided species recovery and habitat conservation.5 The ESA provides a framework for smart, science- based development, so that we can be effective stewards of America’s natural heritage. Critics’ rhetoric does not match reality While critics claim the ESA is a drag on development, a review of the data does not support that assertion.6 Section 7 consultations—the requests made to the U.S.
    [Show full text]
  • Delmarva Peninsula Fox Squirrel 5-Year Review: Summary and Evaluation
    U.S. Fish & Wildlife Service Delmarva Peninsula Fox Squirrel (Sciurus niger cinereus) 5-Year Review: Summary and Evaluation Chesapeake Bay Field Office Annapolis, Maryland Summer 2007 5-YEAR REVIEW Delmarva Peninsula Fox Squirrel (Sciurus niger cinereus) TABLE OF CONTENTS 1.0 General Information.......................................................................................................... 1 1.1 Reviewers................................................................................................................ 1 1.2 Methodology Used to Complete the Review.......................................................... 1 1.3 Background............................................................................................................. 1 2.0 Review Analysis................................................................................................................... 3 2.1 Application of the 1996 Distinct Population Segment (DPS) Policy...................... 3 2.2 Recovery Criteria..................................................................................................... 3 2.3 Updated Information and Current Species Status.................................................... 6 2.3.1 Biology and habitat..................................................................................... 6 2.3.2 Five-Factor analysis.................................................................................... 13 2.4 Synthesis.................................................................................................................
    [Show full text]