Semiclassical Approximations in Wave Mechanics Semiclassical Limit K E Mount

Total Page:16

File Type:pdf, Size:1020Kb

Semiclassical Approximations in Wave Mechanics Semiclassical Limit K E Mount Reports on Progress in Physics Related content - Potential scattering cross sections in the Semiclassical approximations in wave mechanics semiclassical limit K E Mount To cite this article: M V Berry and K E Mount 1972 Rep. Prog. Phys. 35 315 - Uniform approximation for potential scattering involving a rainbow M V Berry - Semiclassical techniques for treating the one-dimensional Schrodinger equation: View the article online for updates and enhancements. uniform approximations and oscillatory integrals B J B Crowley Recent citations - ERS approximation for solving Schrödinger’s equation and applications Hichem Eleuch and Michael Hilke - A quantum mechanical insight into SN2 reactions: Semiclassical initial value representation calculations of vibrational features of the ClCH3Cl pre-reaction complex with the VENUS suite of codes Xinyou Ma et al - Semiclassical Treatment of High-Lying Electronic States of H2+ T. J. Price and Chris H. Greene This content was downloaded from IP address 169.228.105.170 on 09/01/2019 at 20:44 Semiclassical approximations in wave mechanics M V BERRY AND K E MOUNT H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL Contents Page 1. Introduction , . 316 2. Problems with no classical turning points . 317 2.1. A simple illustrative example . 317 2.2. The basic WKB solutions . 319 2.3. The semiclassical reflected wave. 322 3. The complex method for treating classical turning points , . 325 3.1. The origin of the connection problem . 325 3.2. The connection formulae for the case of one turning point: their reversibility . 328 3.3. More turning points . , 335 4. Uniform approximations for one-dimensional problems . 342 4.1. The method of comparison equations . 342 4.2. Simple turning-point problems . 344 4.3. Scattering lengths . 349 5. The WKB method and the radial equation , . 350 5.1. Origin of the Langer modification . 350 5.2. Semiclassical approximations for singular potentials . 353 5.3. Uniformly approximate solutions of the radial equation . 354 6. Short-wavelength potential scattering , . 355 6.1. Transformation of the eigenfunction expansion . , 355 6.2. Introduction of the classical paths . 360 6.3. The phenomena of semiclassical scattering . 364 7. General semiclassical theory , . 371 7.1. Feynman’s formulation of quantum mechanics . 371 7.2. Semiclassical evaluation of the path integral . 375 7.3. ‘ Sewing the wave flesh on the classical bones’ . 382 7.4. Quantization and the density of states . , 386 8. Conclusions, . 393 Acknowledgments . 393 References . 394 Abstract. We review various methods of deriving expressions for quantum- mechanical quantities in the limit when tL is small (in comparison with the relevant classical action functions). To start with we treat one-dimensional problems and discuss the derivation of WKB connection formulae (and their reversibility), reflection coefficients, phase shifts, bound state criteria and resonance formulae, employing first the complex method in which the classical turning points are avoided, and secondly the method of comparison equations with the aid of which uniform approximations are derived, which are valid right through the turning- point regions. The special problems associated with radial equations are also considered. Next we examine semiclassical potential scattering, both for its own sake and also as an example of the three-stage approximation method which must generally be employed when dealing with eigenfunction expansions under semi- classical conditions, when they converge very slowly. Finally, we discuss the derivation of semiclassical expressions for Green functions and energy level densities in very general cases, employing Feynman’s path-integral technique and Rep. Prog. Phys. 1972 35 315-397 316 iW V Berry and K E Mount emphasizing the limitations of the results obtained. Throughout the article we stress the fact that all the expressions obtained involve quantities characterizing the families of orbits in the corresponding purely classical problems, while the analytic forms of the quantal expressions depend on the topological properties of these families. This review was completed in February 1972. 1. Introduction Three classes of approximation method are commonly employed in quantum mechanics. Perturbation techniques produce series expansions for quantities of interest in powers of a variable which specifies the departure of the given problem from an exactly soluble case (as in the Born approximation where scattering ampli- tudes, etc are expanded in powers of the strength of the potential). Variational methods produce the best estimate out of a given class of trial solutions. This article will deal with semiclassical approximations where expressions for wave functions, energy levels, phase shifts, scattering cross sections, etc are derived whose analytic forms are correct in the limiting case where Planck’s (reduced) constant F, is small in comparison with the action functions occurring in the corresponding classical problem. (We shall frequently abbreviate this description of the limit by using such phrases as ‘2, is small’ or ‘correction terms are O(k)’ or ‘as &-to’, bearing in mind that F, is a dimensional quantity which can really have only one value, namely that found in nature.) We emphasize that it is not generally possible to express quantum-mechanical quantities as power series in F, whose first terms are the values of the quantities according to classical mechanics. This is because wave-mechanical functions are almost always highly nonanalytic in 7i as k+O, so that ordinary perturbation theory cannot legitimately be applied. In fact the quantum-classical transition is a singular perturbation problem analogous to, but simpler than, the transition from viscous to frictionless flow. This arises because the Schrodinger equation which, for a particle of mass m and energy E moving in a potential field V(r)is given by k2V2#(r)+2m(E- V(r))#(r)= 0, (1.1) suffers a reduction of order on setting F, equal to zero. The resulting formula, which is not a differential equation at all and does not give the classical limit correctly, implies that #(r) is zero except at the classical turning points, where E- V(r)is zero, and this is an even more drastic approximation than simply taking the classical limit would be, because it is at the turning points that classical quantities themselves frequently become infinite. However, the procedure does at least serve to direct attention to the turning points, which play a crucial role as we shall see. It is however often possible to obtain perturbation series in ascending (not always integral) powers of 6, by starting not from the classical limit but from what we propose to call the semiclassical limit, which takes full account of the various types of singularity at k = 0 (a simple example is discussed in $2.1). In order to keep this article down to a reasonable length we have virtually ignored the problems of finding the correction terms and of analysing the nature of the resulting series; strictly these are matters of asymptotic theory, and the simpler cases can be studied in appropriate texts (eg Copson 1965, Dingle to be published). Instead, we have concentrated on finding the limiting semiclassical forms-the first terms-for a variety of problems, The resulting formulae are often analytically quite com- plicated, but they have the great merit of describing almost all the physics (see Semiclassical mechanics 317 eg the resonance formulae in $3.3). As numerical approximations they are often astonishingly accurate (see $ 6.3, particularly figure 20) ; this is important, because it is precisely in the semiclassical limit that many of the standard calculational methods of wave mechanics-for instance, eigenfunction expansions-converge very slowly. The difficulty of solving a given problem in ‘semiclassical mechanics’ is, fairly obviously, directly related to the complexity of the pattern of classical paths. In particular, we shall find time and again that it is the topology of the orbits that affects the form of the semiclassical expressions. Furthermore, in all cases that have been fully worked out, it is found that the formulae involve only 7i in combina- tion with purely classical quantities, suitably analytically continued (see $9 6.3, 7.3). Semiclassical methods are as old as quantum theory itself, and the literature is correspondingly enormous. Nevertheless, we have frequently found that these techniques are not as widely applied as they might be, and it is the purpose of this article to present them as simply as possible, without losing sight of the complica- tions which are likely to occur in practice. Almost all the results derived here have appeared before, and are ‘well known’ to workers in various different fields. What we have tried to do is to gather together in one place a variety of methods which share the property of being applicable in the semiclassical limit; thus our treatment does not seriously overlap with that given in the books by Heading (1962) and Froman and Froman (1965), which concentrate on the complex method for one- dimensional problems (see our $3). Nevertheless, we have left out a number of topics, the most important being the motion of wave packets (Furry 1963), the semiclassical approximation of relativistic wave equations (eg Rubinow and Keller 1963, Rosen and Yennie 1964), motion in magnetic fields (Furry 1963, Pippard 1969, Lifshitz and Kaganov 1960, 1962), and inelastic collision theory (Percival 1971, Crothers 1971, Child 1971). We have designed the work to be read as a whole, although it is possible to read each section (but not subsection, except $07.1, 7.4) separately without a great deal of reference to the others. The plan is inductive, starting in $2 with the simplest one-dimensional problems not involving real classical turning points, and dealing with progressively more complicated cases until in 3 7 we consider the semiclassical limit of very general situations. We conclude in 0 8 by suggesting some areas where further research is particularly needed.
Recommended publications
  • (T/E) the Wkb Approximation for General Matrix
    SLAC-PUB-2481 March 1980 (T/E) * THE WKB APPROXIMATION FOR GENERAL MATRIX HAMILTONIANS James D. Bjorken and Harry S. Orbach Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 ABSTRACT We present a method of obtaining WKB type solutions for generalized .~ Schroedinger equations for which the Hamiltonian is an arbitrary matrix function of any.number of pairs of canonical operators. Our solution reduces the problem to that of finding the matrix which diagonalizes the classical Hamiltonian and determining the scalar WKB wave functions for the diagonalized Hamiltonian's entries (presented explicitly in terms of classical quantities). If the classical Hamiltonian has degenerate eigenvalues, the solution contains a vector in the classically degenerate subspace. This vector satisfies a classical equation and is given explicitly in terms of the classical Hamiltonian as a Dyson series. As an example, we obtain, from the Dirac equation for an electron with anomalous magnetic moment, the relativistic spin-precession equation. Submitted to Physical Review D Work supported by the Department of Energy, contract DE-AC03-76SF00515. -2- 1. INTRODUCTION The WRB approximation' forms a bridge between classical mechanics and quantum mechanics. Classical features of the system are clearly displayed, and the quantum features are introduced in a simple way, with only minimal appearances of %. And while quantum mechanics, at best, is no easier a problem than classical mechanics, a virtue of the WKB approximation is that it makes it not much harder. The WKB approximation is usually presented in the context of a non-relativistic Schroedinger equation for a scalar wave function of a single spatial variable.
    [Show full text]
  • Some Recent Developments in WKB Approximation SOME RECENT DEVELOPMENTS in WKB APPROXIMATION
    Some recent developments in WKB approximation SOME RECENT DEVELOPMENTS IN WKB APPROXIMATION BY AKBAR SAFARI, M.Sc. a thesis submitted to the department of Physics & Astronomy and the school of graduate studies of mcmaster university in partial fulfilment of the requirements for the degree of Master of Science c Copyright by Akbar Safari, August 2013 All Rights Reserved Master of Science (2013) McMaster University (Physics & Astronomy) Hamilton, Ontario, Canada TITLE: Some recent developments in WKB approximation AUTHOR: Akbar Safari M.Sc., (Condensed Matter Physics) IUST, Tehran, Iran SUPERVISOR: Dr. D.W.L. Sprung NUMBER OF PAGES: xiii, 107 ii To my wife, Mobina Abstract WKB theory provides a plausible link between classical mechanics and quantum me- chanics in its semi-classical limit. Connecting the WKB wave function across the turning points in a quantum well, leads to the WKB quantization condition. In this work, I focus on some improvements and recent developments related to the WKB quantization condition. First I discuss how the combination of super-symmetric quan- tum mechanics and WKB, gives the SWKB quantization condition which is exact for a large class of potentials called shape invariant potentials. Next I turn to the fact that there is always a probability of reflection when the potential is not constant and the phase of the wave function should account for this reflection. WKB theory ignores reflection except at turning points. I explain the work of Friedrich and Trost who showed that by including the correct “reflection phase" at a turning point, the WKB quantization condition can be made to give exact bound state energies.
    [Show full text]
  • Copyright C 2020 by Robert G. Littlejohn Physics 221A Fall 2020 Notes 7 the WKB Method† 1. Introduction the WKB Method Is Impo
    Copyright c 2020 by Robert G. Littlejohn Physics 221A Fall 2020 Notes 7 The WKB Method † 1. Introduction The WKB method is important both as a practical means of approximating solutions to the Schr¨odinger equation and as a conceptual framework for understanding the classical limit of quantum mechanics. The initials stand for Wentzel, Kramers and Brillouin, who first applied the method to the Schr¨odinger equation in the 1920’s. The WKB approximation is also called the semiclassical or quasiclassical approximation. The basic idea behind the method can be applied to any kind of wave (in optics, acoustics, etc): it is to expand the solution of the wave equation in the ratio of the wavelength to the scale length of the environment in which the wave propagates, when that ratio is small. In quantum mechanics, this is equivalent to treating ¯h formally as a small parameter. The method itself antedates quantum mechanics by many years, and was used by Liouville and Green in the early nineteenth century. Planck’s constant ¯h has dimensions of action, so its value depends on the units chosen, and it does not make sense to say that ¯h is “small.” However, typical mechanical problems have quantities with dimensions of action that appear in them, for example, an angular momentum, a linear mo- mentum times a distance, etc., and if ¯h is small in comparison to these then it makes sense to treat ¯h formally as a small parameter. This would normally be the case for macroscopic systems, which are well described by classical mechanics.
    [Show full text]
  • University of Groningen Instantons and Cosmologies in String Theory Collinucci, Giulio
    University of Groningen Instantons and cosmologies in string theory Collinucci, Giulio IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2005 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Collinucci, G. (2005). Instantons and cosmologies in string theory. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 02-10-2021 Chapter 2 Instantons In this chapter we will study the basics of instantons, heavily borrowing material from the classic textbooks by S.
    [Show full text]
  • Modified Airy Function and WKB Solutions to the Wave Equation
    NAT L INST. OF STAND & TECH R.I.C. NIST REFERENCE PUBLICATIONS A11103 VlOVDl NIST Monograph 176 Modified Airy Function and WKB Solutions to the Wave Equation I A. K. Ghataky R. L. GallawUy and 1. C. Goyal - QC- 100 U556 M United States Department of Commerce #176 National Institute of standards and Technology 1991 NIST Monograph 176 QClO mi Modified Airy Function and WKB Solutions to the Wave Equation A. K. Ghatak R. L. Gallawa I. C. Goyal Electromagnetic Technology Division Electronics and Electrical Engineering Laboratory National Institute of Standards and Technology Boulder, CO 80303 This monograph was prepared, in part, under the auspices of the Indo-US Collaborative Program in Materials Sciences. Permanent Affiliation of Professors Ghatak and Goyal is Physics Department, Indian Institute of Technology New Delhi, India. November 1991 U.S. Department of Commerce Robert A. Mosbacher, Secretary National Institute of Standards and Technology John W. Lyons, Director National Institute of Standards and Technology Monograph 176 Natl. Inst. Stand. Technol. Mono. 176, 172 pages (Nov. 1991) CODEN: NIMOEZ U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1991 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402-9325 TABLE OF CONTENTS PREFACE vii 1. INTRODUCTION 1 2. WKB SOLUTIONS TO INITIAL VALUE PROBLEMS 6 2.1 Introduction 6 2.2 The WKB Solutions 6 2.3 An Alternative Derivation 11 2.4 The General WKB Solution 14 Case I: Barrier to the Right 15 Case II: Barrier to the Left 19 2.5 Examples 21 Example 2.1 21 Example 2.2 27 3.
    [Show full text]
  • WKB Approximation - Wikipedia
    WKB approximation - Wikipedia https://en.wikipedia.org/wiki/WKB_approximation WKB approximation From Wikipedia, the free encyclopedia In mathematical physics, the WKB approximation or WKB method is a method for finding approximate solutions to linear differential equations with spatially varying coefficients. It is typically used for a semiclassical calculation in quantum mechanics in which the wavefunction is recast as an exponential function, semiclassically expanded, and then either the amplitude or the phase is taken to be slowly changing. The name is an initialism for Wentzel–Kramers–Brillouin. It is also known as the LG or Liouville–Green method. Other often-used letter combinations include JWKB and WKBJ, where the "J" stands for Jeffreys. Contents 1 Brief history 2 WKB method 3 An example 3.1 Precision of the asymptotic series 4 Application to the Schrödinger equation 5 See also 6 References 6.1 Modern references 6.2 Historical references 7 External links Brief history This method is named after physicists Wentzel, Kramers, and Brillouin, who all developed it in 1926. In 1923, mathematician Harold Jeffreys had developed a general method of approximating solutions to linear, second-order differential equations, which includes the Schrödinger equation. Even though the Schrödinger equation was developed two years later, Wentzel, Kramers, and Brillouin were apparently unaware of this earlier work, so Jeffreys is often neglected credit. Early texts in quantum mechanics contain any number of combinations of their initials, including WBK, BWK, WKBJ, JWKB and BWKJ. An authoritative discussion and critical survey has been given by R B Dingle.[1] Earlier references to the method are: Carlini in 1817, Liouville in 1837, Green in 1837, Rayleigh in 1912 and Gans in 1915.
    [Show full text]
  • Quantum Mechanics-II Problem Set - 6
    Quantum Mechanics-II Problem Set - 6 1. Use WKB approximation to determine energy levels of the potential 8 V if 0 < x < a=2 <> 0 V (x) = 0 if a=2 < x < a :>1 otherwise 0 Express your answer in terms of V0 and the energy En of a particle in 0 a box. Assume E1 > V0. Solution: 1 1 Figure 1: Figure for Q.1 This is a problem with two walls and the corresponding quantization R a condition is 0 pdx = nπ~. The momentum of the particle is given by p = p2m[E − V (x)] where V (x) is as given above. Now Z a p Z a=2 p p Z a p pdx = 2m E − V0dx + 2m Edx 0 0 a=2 p p a p a = 2m[ E − V + E ] = 0 2 2 Thus p a p p 2m [ E − V + E] = nπ 2 0 ~ 1 Square both sides ma2 [E − V + E + 2pE(E − V )] = n2π2 2 2 0 0 ~ which simplifies to 2 2E − V − n2π2 2 = −2pE(E − V ) 0 ma2 ~ 0 n2π2 2 Define E = ~ , which is the energy of the n− th state of particle n 2ma2 in a box. The above equation becomes p 2E − V0 − 4En = −2 E(E − V0) square it again 2 2 2 4E + V0 − 4EV0 + 16En − 8En(2E − V0) = 4E(E − V0) which gives E2E E4 E2 n = V 2 + n − n 4 0 256 8 Simplifying, we get, 2 V0 V0 E = En + + 2 16En V The first order perturbation theory gives E = E + 0 .
    [Show full text]
  • Semiclassical Approximation
    Chapter 3 Semiclassical approximation c B. Zwiebach 3.1 The classical limit The WKB approximation provides approximate solutions for linear differential equations with coefficients that have slow spatial variation. The acronym WKB stands for Wentzel, Kramers, Brillouin, who independently discovered it in 1926. It was in fact discovered earlier, in 1923 by the mathematician Jeffreys. When applied to quantum mechanics, it is called the semi-classical approximation, since classical physics then illuminates the main features of the quantum wavefunction. The de Broglie wavelength λ of a particle can help us assess if classical physics is relevant to the physical situation. For a particle with momentum p we have h λ = : (3.1.1) p Classical physics provides useful physical insight when λ is much smaller than the relevant length scale in the problem we are investigating. Alternatively if we take h ! 0 this will formally make λ ! 0, or λ smaller than the length scale of the problem. Being a constant of nature, we cannot really make ~ ! 0, so taking this limit is a thought experiment in which we imagine worlds in which h takes smaller and smaller values making classical physics more and more applicable. The semi-classical approximation studied here will be applicable if a suitable generalization of the de Broglie wavelength discussed below is small and slowly varying. The semi-classical approximation will be set up mathematically by thinking of ~ as a parameter that can be taken to be as small as desired. Our discussion in this chapter will focus on one-dimensional problems. Consider there- fore a particle of mass m and total energy E moving in a potential V (x).
    [Show full text]
  • PHY 305: WKB and Path Integral Formulation of QM in These Notes, We Will Study the Relationship Between Quantum Mechanics and Cl
    PHY 305: WKB and Path Integral Formulation of QM In these notes, we will study the relationship between quantum mechanics and classical mechanics. Any new physical theory that replaces an existing one, has to show that it can reproduce all the old results in the limit where the old theory is accurate. In our case, this limit is ~ → 0. Since ~ is a dimensionful quantity 2 −1 [ ~ ] = kg · m · s . (1) which is the units of angular momentum = momentum × distance, or action = energy × time. This means that the classical description should for systems for which the characteristic mass, size, and velocity are such that its ‘action’ is large compared to ~. This important requirement is known as the correspondence principle, and quantum mechanics satisfies it beautifully. 1. Classical Action For simplicity we consider a non-relativistic particle of mass m moving in one dimension, under influence of a potential V (x). We can describe the classical motion of the particle either via a Hamiltonian or a Lagrangian p2 1 H(x, p) = + V (x); L(x, x˙) = mx˙ 2 − V (x) . (2) 2m 2 The equations of motion are respectively the Hamilton equations or the Euler-Lagrange equations ∂H ∂H d ∂L ∂L x˙ = , p˙ = − ; − = 0 . (3) ∂p ∂x dt ∂x˙ ∂x In our specific example, these equations reduce to the familiar form p ∂V x˙ = , p˙ = − (4) m ∂x ∂V which is just Newton’s equation with a force F (x) = − ∂x . 1 The usual formulation of quantum mechanics, via the Schr¨odinger equation and Heisen- berg equations of motion, is most closely related to the Hamilton formulation of classical mechanics.
    [Show full text]
  • Copyright C 2020 by Robert G. Littlejohn Physics 221A Fall 2020
    Copyright c 2020 by Robert G. Littlejohn Physics 221A Fall 2020 Notes 7 The WKB Method † 1. Introduction The WKB method is important both as a practical means of approximating solutions to the Schr¨odinger equation and as a conceptual framework for understanding the classical limit of quantum mechanics. The initials stand for Wentzel, Kramers and Brillouin, who first applied the method to the Schr¨odinger equation in the 1920’s. The WKB approximation is also called the semiclassical or quasiclassical approximation. The basic idea behind the method can be applied to any kind of wave (in optics, acoustics, etc): it is to expand the solution of the wave equation in the ratio of the wavelength to the scale length of the environment in which the wave propagates, when that ratio is small. In quantum mechanics, this is equivalent to treating ¯h formally as a small parameter. The method itself antedates quantum mechanics by many years, and was used by Liouville and Green in the early nineteenth century. Planck’s constant ¯h has dimensions of action, so its value depends on the units chosen, and it does not make sense to say that ¯h is “small.” However, typical mechanical problems have quantities with dimensions of action that appear in them, for example, an angular momentum, a linear mo- mentum times a distance, etc., and if ¯h is small in comparison to these then it makes sense to treat ¯h formally as a small parameter. This would normally be the case for macroscopic systems, which are well described by classical mechanics.
    [Show full text]
  • Arxiv:Hep-Th/9405029V2 5 May 1994 LA-UR-94-569 Supersymmetry and Quantum Mechanics
    LA-UR-94-569 Supersymmetry and Quantum Mechanics Fred Cooper Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 Avinash Khare Institute of Physics, Bhubaneswar 751005, INDIA Uday Sukhatme Department of Physics, University of Illinois at Chicago, Chicago, IL 60607 February 1, 2008 arXiv:hep-th/9405029v2 5 May 1994 Abstract In the past ten years, the ideas of supersymmetry have been prof- itably applied to many nonrelativistic quantum mechanical problems. In particular, there is now a much deeper understanding of why cer- tain potentials are analytically solvable and an array of powerful new approximation methods for handling potentials which are not exactly solvable. In this report, we review the theoretical formulation of su- persymmetric quantum mechanics and discuss many applications. Ex- actly solvable potentials can be understood in terms of a few basic ideas which include supersymmetric partner potentials, shape invari- ance and operator transformations. Familiar solvable potentials all 1 have the property of shape invariance. We describe new exactly solv- able shape invariant potentials which include the recently discovered self-similar potentials as a special case. The connection between in- verse scattering, isospectral potentials and supersymmetric quantum mechanics is discussed and multi-soliton solutions of the KdV equation are constructed. Approximation methods are also discussed within the framework of supersymmetric quantum mechanics and in particular it is shown that a supersymmetry inspired WKB approximation is exact for a class of shape invariant potentials. Supersymmetry ideas give particularly nice results for the tunneling rate in a double well potential and for improving large N expansions. We also discuss the problem of a charged Dirac particle in an external magnetic field and other potentials in terms of supersymmetric quantum mechanics.
    [Show full text]
  • Tunneling in Cosine Potential with Periodic Boundary Conditions
    Tunneling in cosine potential with periodic boundary conditions. Zbigniew Ambroziński October 29, 2018 Abstract In this paper we discuss three methods to calculate energy splitting in cosine potential on a circle, Bloch waves, semi–classical approximation and restricted basis approach. While the Bloch wave method gives only a qualitative result, with the WKB method we are able to determine its unknown coefficients. The numerical approach is most exact and enables us to extract further corrections to previous results. 1 Introduction In this article we study tunneling in quantum mechanical cosine potential with periodic boundary conditions. Hamiltonian of this system is given by the formula 1 1 p H = P 2 + (1 − cos (2π gX)) (1) 2 4π2g with X 2 (0; g−1=2K) where K is the number of minima and with periodic boundary conditions. For shorter 1 notation we put V (x) = 4π2 (1 − cos(2πx)). Within perturbative calculus vacuum energy of the system is degenerate. Each ground state is localized in different minimum. Tunneling is responsible for splitting of the energies. In general, this effect cannot be studied analytically. One can give a first approximation to the splitting using semiclassical–approximation (or WKB approximation) which was developed by G. Wentzel, H. Kramers and L. Brillouin in 1926. In this approach, one finds that the ground energy is shifted by a quantity which is a nonperturbative function of coupling constant. This classical solution is called an instanton. Validity of the instanton calculus is limited to systems with widely separated minima with a large potential barrier in between. Nevertheless, it has a vast range of applications to modern field theories.
    [Show full text]