Copyright C 2020 by Robert G. Littlejohn Physics 221A Fall 2020 Notes 7 the WKB Method† 1. Introduction the WKB Method Is Impo
Copyright c 2020 by Robert G. Littlejohn Physics 221A Fall 2020 Notes 7 The WKB Method † 1. Introduction The WKB method is important both as a practical means of approximating solutions to the Schr¨odinger equation and as a conceptual framework for understanding the classical limit of quantum mechanics. The initials stand for Wentzel, Kramers and Brillouin, who first applied the method to the Schr¨odinger equation in the 1920’s. The WKB approximation is also called the semiclassical or quasiclassical approximation. The basic idea behind the method can be applied to any kind of wave (in optics, acoustics, etc): it is to expand the solution of the wave equation in the ratio of the wavelength to the scale length of the environment in which the wave propagates, when that ratio is small. In quantum mechanics, this is equivalent to treating ¯h formally as a small parameter. The method itself antedates quantum mechanics by many years, and was used by Liouville and Green in the early nineteenth century. Planck’s constant ¯h has dimensions of action, so its value depends on the units chosen, and it does not make sense to say that ¯h is “small.” However, typical mechanical problems have quantities with dimensions of action that appear in them, for example, an angular momentum, a linear mo- mentum times a distance, etc., and if ¯h is small in comparison to these then it makes sense to treat ¯h formally as a small parameter. This would normally be the case for macroscopic systems, which are well described by classical mechanics.
[Show full text]