Statistical Analysis 8: Two-Way Analysis of Variance (ANOVA)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Internal Validity Is About Causal Interpretability
Internal Validity is about Causal Interpretability Before we can discuss Internal Validity, we have to discuss different types of Internal Validity variables and review causal RH:s and the evidence needed to support them… Every behavior/measure used in a research study is either a ... Constant -- all the participants in the study have the same value on that behavior/measure or a ... • Measured & Manipulated Variables & Constants Variable -- when at least some of the participants in the study • Causes, Effects, Controls & Confounds have different values on that behavior/measure • Components of Internal Validity • “Creating” initial equivalence and every behavior/measure is either … • “Maintaining” ongoing equivalence Measured -- the value of that behavior/measure is obtained by • Interrelationships between Internal Validity & External Validity observation or self-report of the participant (often called “subject constant/variable”) or it is … Manipulated -- the value of that behavior/measure is controlled, delivered, determined, etc., by the researcher (often called “procedural constant/variable”) So, every behavior/measure in any study is one of four types…. constant variable measured measured (subject) measured (subject) constant variable manipulated manipulated manipulated (procedural) constant (procedural) variable Identify each of the following (as one of the four above, duh!)… • Participants reported practicing between 3 and 10 times • All participants were given the same set of words to memorize • Each participant reported they were a Psyc major • Each participant was given either the “homicide” or the “self- defense” vignette to read From before... Circle the manipulated/causal & underline measured/effect variable in each • Causal RH: -- differences in the amount or kind of one behavior cause/produce/create/change/etc. -
Validity and Reliability of the Questionnaire for Compliance with Standard Precaution for Nurses
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Cadernos Espinosanos (E-Journal) Rev Saúde Pública 2015;49:87 Original Articles DOI:10.1590/S0034-8910.2015049005975 Marília Duarte ValimI Validity and reliability of the Maria Helena Palucci MarzialeII Miyeko HayashidaII Questionnaire for Compliance Fernanda Ludmilla Rossi RochaIII with Standard Precaution Jair Lício Ferreira SantosIV ABSTRACT OBJECTIVE: To evaluate the validity and reliability of the Questionnaire for Compliance with Standard Precaution for nurses. METHODS: This methodological study was conducted with 121 nurses from health care facilities in Sao Paulo’s countryside, who were represented by two high-complexity and by three average-complexity health care facilities. Internal consistency was calculated using Cronbach’s alpha and stability was calculated by the intraclass correlation coefficient, through test-retest. Convergent, discriminant, and known-groups construct validity techniques were conducted. RESULTS: The questionnaire was found to be reliable (Cronbach’s alpha: 0.80; intraclass correlation coefficient: (0.97) In regards to the convergent and discriminant construct validity, strong correlation was found between compliance to standard precautions, the perception of a safe environment, and the smaller perception of obstacles to follow such precautions (r = 0.614 and r = 0.537, respectively). The nurses who were trained on the standard precautions and worked on the health care facilities of higher complexity were shown to comply more (p = 0.028 and p = 0.006, respectively). CONCLUSIONS: The Brazilian version of the Questionnaire for I Departamento de Enfermagem. Centro Compliance with Standard Precaution was shown to be valid and reliable. -
5. Dummy-Variable Regression and Analysis of Variance
Sociology 740 John Fox Lecture Notes 5. Dummy-Variable Regression and Analysis of Variance Copyright © 2014 by John Fox Dummy-Variable Regression and Analysis of Variance 1 1. Introduction I One of the limitations of multiple-regression analysis is that it accommo- dates only quantitative explanatory variables. I Dummy-variable regressors can be used to incorporate qualitative explanatory variables into a linear model, substantially expanding the range of application of regression analysis. c 2014 by John Fox Sociology 740 ° Dummy-Variable Regression and Analysis of Variance 2 2. Goals: I To show how dummy regessors can be used to represent the categories of a qualitative explanatory variable in a regression model. I To introduce the concept of interaction between explanatory variables, and to show how interactions can be incorporated into a regression model by forming interaction regressors. I To introduce the principle of marginality, which serves as a guide to constructing and testing terms in complex linear models. I To show how incremental I -testsareemployedtotesttermsindummy regression models. I To show how analysis-of-variance models can be handled using dummy variables. c 2014 by John Fox Sociology 740 ° Dummy-Variable Regression and Analysis of Variance 3 3. A Dichotomous Explanatory Variable I The simplest case: one dichotomous and one quantitative explanatory variable. I Assumptions: Relationships are additive — the partial effect of each explanatory • variable is the same regardless of the specific value at which the other explanatory variable is held constant. The other assumptions of the regression model hold. • I The motivation for including a qualitative explanatory variable is the same as for including an additional quantitative explanatory variable: to account more fully for the response variable, by making the errors • smaller; and to avoid a biased assessment of the impact of an explanatory variable, • as a consequence of omitting another explanatory variables that is relatedtoit. -
Analysis of Variance and Analysis of Variance and Design of Experiments of Experiments-I
Analysis of Variance and Design of Experimentseriments--II MODULE ––IVIV LECTURE - 19 EXPERIMENTAL DESIGNS AND THEIR ANALYSIS Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur 2 Design of experiment means how to design an experiment in the sense that how the observations or measurements should be obtained to answer a qqyuery inavalid, efficient and economical way. The desigggning of experiment and the analysis of obtained data are inseparable. If the experiment is designed properly keeping in mind the question, then the data generated is valid and proper analysis of data provides the valid statistical inferences. If the experiment is not well designed, the validity of the statistical inferences is questionable and may be invalid. It is important to understand first the basic terminologies used in the experimental design. Experimental unit For conducting an experiment, the experimental material is divided into smaller parts and each part is referred to as experimental unit. The experimental unit is randomly assigned to a treatment. The phrase “randomly assigned” is very important in this definition. Experiment A way of getting an answer to a question which the experimenter wants to know. Treatment Different objects or procedures which are to be compared in an experiment are called treatments. Sampling unit The object that is measured in an experiment is called the sampling unit. This may be different from the experimental unit. 3 Factor A factor is a variable defining a categorization. A factor can be fixed or random in nature. • A factor is termed as fixed factor if all the levels of interest are included in the experiment. -
Validity and Reliability in Quantitative Studies Evid Based Nurs: First Published As 10.1136/Eb-2015-102129 on 15 May 2015
Research made simple Validity and reliability in quantitative studies Evid Based Nurs: first published as 10.1136/eb-2015-102129 on 15 May 2015. Downloaded from Roberta Heale,1 Alison Twycross2 10.1136/eb-2015-102129 Evidence-based practice includes, in part, implementa- have a high degree of anxiety? In another example, a tion of the findings of well-conducted quality research test of knowledge of medications that requires dosage studies. So being able to critique quantitative research is calculations may instead be testing maths knowledge. 1 School of Nursing, Laurentian an important skill for nurses. Consideration must be There are three types of evidence that can be used to University, Sudbury, Ontario, given not only to the results of the study but also the demonstrate a research instrument has construct Canada 2Faculty of Health and Social rigour of the research. Rigour refers to the extent to validity: which the researchers worked to enhance the quality of Care, London South Bank 1 Homogeneity—meaning that the instrument mea- the studies. In quantitative research, this is achieved University, London, UK sures one construct. through measurement of the validity and reliability.1 2 Convergence—this occurs when the instrument mea- Correspondence to: Validity sures concepts similar to that of other instruments. Dr Roberta Heale, Validity is defined as the extent to which a concept is Although if there are no similar instruments avail- School of Nursing, Laurentian accurately measured in a quantitative study. For able this will not be possible to do. University, Ramsey Lake Road, example, a survey designed to explore depression but Sudbury, Ontario, Canada 3 Theory evidence—this is evident when behaviour is which actually measures anxiety would not be consid- P3E2C6; similar to theoretical propositions of the construct ered valid. -
THE ONE-SAMPLE Z TEST
10 THE ONE-SAMPLE z TEST Only the Lonely Difficulty Scale ☺ ☺ ☺ (not too hard—this is the first chapter of this kind, but youdistribute know more than enough to master it) or WHAT YOU WILL LEARN IN THIS CHAPTERpost, • Deciding when the z test for one sample is appropriate to use • Computing the observed z value • Interpreting the z value • Understandingcopy, what the z value means • Understanding what effect size is and how to interpret it not INTRODUCTION TO THE Do ONE-SAMPLE z TEST Lack of sleep can cause all kinds of problems, from grouchiness to fatigue and, in rare cases, even death. So, you can imagine health care professionals’ interest in seeing that their patients get enough sleep. This is especially the case for patients 186 Copyright ©2020 by SAGE Publications, Inc. This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. Chapter 10 ■ The One-Sample z Test 187 who are ill and have a real need for the healing and rejuvenating qualities that sleep brings. Dr. Joseph Cappelleri and his colleagues looked at the sleep difficul- ties of patients with a particular illness, fibromyalgia, to evaluate the usefulness of the Medical Outcomes Study (MOS) Sleep Scale as a measure of sleep problems. Although other analyses were completed, including one that compared a treat- ment group and a control group with one another, the important analysis (for our discussion) was the comparison of participants’ MOS scores with national MOS norms. Such a comparison between a sample’s mean score (the MOS score for par- ticipants in this study) and a population’s mean score (the norms) necessitates the use of a one-sample z test. -
Relations Between Inductive Reasoning and Deductive Reasoning
Journal of Experimental Psychology: © 2010 American Psychological Association Learning, Memory, and Cognition 0278-7393/10/$12.00 DOI: 10.1037/a0018784 2010, Vol. 36, No. 3, 805–812 Relations Between Inductive Reasoning and Deductive Reasoning Evan Heit Caren M. Rotello University of California, Merced University of Massachusetts Amherst One of the most important open questions in reasoning research is how inductive reasoning and deductive reasoning are related. In an effort to address this question, we applied methods and concepts from memory research. We used 2 experiments to examine the effects of logical validity and premise– conclusion similarity on evaluation of arguments. Experiment 1 showed 2 dissociations: For a common set of arguments, deduction judgments were more affected by validity, and induction judgments were more affected by similarity. Moreover, Experiment 2 showed that fast deduction judgments were like induction judgments—in terms of being more influenced by similarity and less influenced by validity, compared with slow deduction judgments. These novel results pose challenges for a 1-process account of reasoning and are interpreted in terms of a 2-process account of reasoning, which was implemented as a multidimensional signal detection model and applied to receiver operating characteristic data. Keywords: reasoning, similarity, mathematical modeling An important open question in reasoning research concerns the arguments (Rips, 2001). This technique can highlight similarities relation between induction and deduction. Typically, individual or differences between induction and deduction that are not con- studies of reasoning have focused on only one task, rather than founded by the use of different materials (Heit, 2007). It also examining how the two are connected (Heit, 2007). -
Questionnaire Validity and Reliability
Questionnaire Validity and reliability Department of Social and Preventive Medicine, Faculty of Medicine Outlines Introduction What is validity and reliability? Types of validity and reliability. How do you measure them? Types of Sampling Methods Sample size calculation G-Power ( Power Analysis) Research • The systematic investigation into and study of materials and sources in order to establish facts and reach new conclusions • In the broadest sense of the word, the research includes gathering of data in order to generate information and establish the facts for the advancement of knowledge. ● Step I: Define the research problem ● Step 2: Developing a research plan & research Design ● Step 3: Define the Variables & Instrument (validity & Reliability) ● Step 4: Sampling & Collecting data ● Step 5: Analysing data ● Step 6: Presenting the findings A questionnaire is • A technique for collecting data in which a respondent provides answers to a series of questions. • The vehicle used to pose the questions that the researcher wants respondents to answer. • The validity of the results depends on the quality of these instruments. • Good questionnaires are difficult to construct; • Bad questionnaires are difficult to analyze. •Identify the goal of your questionnaire •What kind of information do you want to gather with your questionnaire? • What is your main objective? • Is a questionnaire the best way to go about collecting this information? Ch 11 6 How To Obtain Valid Information • Ask purposeful questions • Ask concrete questions • Use time periods -
Reliability, Validity, and Trustworthiness
© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION Chapter 12 Reliability, Validity, and Trustworthiness James Eldridge © VLADGRIN/iStock/Thinkstock Chapter Objectives At the conclusion of this chapter, the learner will be able to: 1. Identify the need for reliability and validity of instruments used in evidence-based practice. 2. Define reliability and validity. 3. Discuss how reliability and validity affect outcome measures and conclusions of evidence-based research. 4. Develop reliability and validity coefficients for appropriate data. 5. Interpret reliability and validity coefficients of instruments used in evidence-based practice. 6. Describe sensitivity and specificity as related to data analysis. 7. Interpret receiver operand characteristics (ROC) to describe validity. Key Terms Accuracy Content-related validity Concurrent validity Correlation coefficient Consistency Criterion-related validity Construct validity Cross-validation 9781284108958_CH12_Pass03.indd 339 10/20/15 5:59 PM © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION 340 | Chapter 12 Reliability, Validity, and Trustworthiness Equivalency reliability Reliability Interclass reliability Sensitivity Intraclass reliability Specificity Objectivity Stability Observed score Standard error of Predictive validity measurement (SEM) Receiver operand Trustworthiness characteristics (ROC) Validity n Introduction The foundation of good research and of good decision making in evidence- based practice (EBP) is the trustworthiness of the data used to make decisions. When data cannot be trusted, an informed decision cannot be made. Trustworthiness of the data can only be as good as the instruments or tests used to collect the data. Regardless of the specialization of the healthcare provider, nurses make daily decisions on the diagnosis and treatment of a patient based on the results from different tests to which the patient is subjected. -
ANALYSIS of VARIANCE and MISSING OBSERVATIONS in COMPLETELY RANDOMIZED, RANDOMIZED BLOCKS and LATIN SQUARE DESIGNS a Thesis
ANALYSIS OF VARIANCE AND MISSING OBSERVATIONS IN COMPLETELY RANDOMIZED, RANDOMIZED BLOCKS AND LATIN SQUARE DESIGNS A Thesis Presented to The Department of Mathematics Kansas State Teachers College, Emporia, Kansas In Partial Fulfillment of the Requirements for the Degree Master of Science by Kiritkumar K. Talati May 1972 c; , ACKNOWLEDGEMENTS Sincere thanks and gratitude is expressed to Dr. John Burger for his assistance, patience, and his prompt attention in all directions in preparing this paper. A special note of appreciation goes to Dr. Marion Emerson, Dr. Thomas Davis, Dr. George Poole, Dr. Darrell Wood, who rendered assistance in the research of this paper. TABLE OF CONTENTS CHAPTER I. INTRODUCTION • • • • • • • • • • • • • • • • 1 A. Preliminary Consideration. • • • • • • • 1 B. Purpose and Assumptions of the Analysis of Variance • • • • • • • • •• 1 C. Analysis of Covariance • • • • • • • • • 2 D. Definitions. • • • • • • • • • • • • • • ) E. Organization of Paper. • • • • • • • • • 4 II. COMPLETELY RANDOMIZED DESIGN • • • • • • • • 5 A. Description............... 5 B. Randomization. • • • • • • • • • • • • • 5 C. Problem and Computations •••••••• 6 D. Conclusion and Further Applications. •• 10 III. RANDOMIZED BLOCK DESIGN. • • • • • • • • • • 12 A. Description............... 12 B. Randomization. • • • • • • • • • • • • • 1) C. Problem and Statistical Analysis • • • • 1) D. Efficiency of Randomized Block Design as Compared to Completely Randomized Design. • • • • • • • • • •• 20 E. Missing Observations • • • • • • • • •• 21 F. -
Validity and Reliability in Social Science Research
Education Research and Perspectives, Vol.38, No.1 Validity and Reliability in Social Science Research Ellen A. Drost California State University, Los Angeles Concepts of reliability and validity in social science research are introduced and major methods to assess reliability and validity reviewed with examples from the literature. The thrust of the paper is to provide novice researchers with an understanding of the general problem of validity in social science research and to acquaint them with approaches to developing strong support for the validity of their research. Introduction An important part of social science research is the quantification of human behaviour — that is, using measurement instruments to observe human behaviour. The measurement of human behaviour belongs to the widely accepted positivist view, or empirical- analytic approach, to discern reality (Smallbone & Quinton, 2004). Because most behavioural research takes place within this paradigm, measurement instruments must be valid and reliable. The objective of this paper is to provide insight into these two important concepts, and to introduce the major methods to assess validity and reliability as they relate to behavioural research. The paper has been written for the novice researcher in the social sciences. It presents a broad overview taken from traditional literature, not a critical account of the general problem of validity of research information. The paper is organised as follows. The first section presents what reliability of measurement means and the techniques most frequently used to estimate reliability. Three important questions researchers frequently ask about reliability are discussed: (1) what Address for correspondence: Dr. Ellen Drost, Department of Management, College of Business and Economics, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032. -
Analysis of Variance in the Modern Design of Experiments
Analysis of Variance in the Modern Design of Experiments Richard DeLoach* NASA Langley Research Center, Hampton, Virginia, 23681 This paper is a tutorial introduction to the analysis of variance (ANOVA), intended as a reference for aerospace researchers who are being introduced to the analytical methods of the Modern Design of Experiments (MDOE), or who may have other opportunities to apply this method. One-way and two-way fixed-effects ANOVA, as well as random effects ANOVA, are illustrated in practical terms that will be familiar to most practicing aerospace researchers. I. Introduction he Modern Design of Experiments (MDOE) is an integrated system of experiment design, execution, and T analysis procedures based on industrial experiment design methods introduced at the beginning of the 20th century for various product and process improvement applications. MDOE is focused on the complexities and special requirements of aerospace ground testing. It was introduced to the experimental aeronautics community at NASA Langley Research Center in the 1990s as part of a renewed focus on quality and productivity improvement in wind tunnel testing, and has been used since then in numerous other applications as well. MDOE has been offered as a more productive, less costly, and higher quality alternative to conventional testing methods used widely in the aerospace industry, and known in the literature of experiment design as ―One Factor At a Time‖ (OFAT) testing. The basic principles of MDOE are documented in the references1-4, and some representative examples of its application in aerospace research are also provided5-16. The MDOE method provides productivity advantages over conventional testing methods by generating more information per data point.