Wing Geometry and Genetic Analyses Reveal Contrasting Spatial

Total Page:16

File Type:pdf, Size:1020Kb

Wing Geometry and Genetic Analyses Reveal Contrasting Spatial bioRxiv preprint doi: https://doi.org/10.1101/2020.09.16.299487; this version posted September 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Wing Geometry and Genetic Analyses Reveal Contrasting Spatial 2 Structures between Male and Female Aedes aegypti Populations in 3 Metropolitan Manila, Philippines 4 Thaddeus M. Carvajal1, 2, 3, Divina M. Amalin2, 3 and Kozo Watanabe1, 2,3a 5 6 1 Center for Marine Environmental Studies (CMES) - Ehime University, Matsuyama, Japan 7 8 2 Biological Control Research Unit, Center for Natural Science and Environmental 9 Research - De La Salle University, Taft Ave Manila, Philippines 10 11 3 Biology Department, College of Science - De La Salle University, Taft Ave Manila, 12 Philippines 13 14 a Corresponding author: [email protected] 15 Emails: 16 TMC: [email protected] 17 DMA: [email protected] 18 KW: [email protected] 19 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.16.299487; this version posted September 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 20 Abstract 21 Background Many important arboviral diseases (e.g. dengue, chikungunya) are transmitted 22 by the bite of a female mosquito vector, Aedes aegypti. Hence, the population genetic 23 structure of the mosquito has been studied in order to understand its role as an efficient 24 vector. Several studies utilized an integrative approach; to combine genetic and phenotypic 25 data to determine the population structure of Ae. aegypti but these studies have only 26 focused on female populations. To address this particular gap, our study compared the 27 population variability and structuring between male and female Ae. aegypti populations 28 using phenotypic (wing geometry) and genetic (microsatellites) data from a highly- 29 urbanized and dengue-endemic region of the Philippines, Metropolitan Manila. 30 Methods. Five mosquito populations comprised of female (n = 137) and male (n = 49) 31 adult Ae. aegypti mosquitoes were used in this study. All mosquito individuals underwent 32 geometric morphometric (26 landmarks), and genetic (11 microsatellite loci) analyses. 33 Results. Results revealed that FST estimates (genetic) were 0.055 and 0.009 while QST 34 estimates (phenotypic) were 0.318 and 0.309 in in male and female populations, 35 respectively. Wing shape variation plots showed that male populations were distinctly 36 separated from each other while female populations overlapped. Similarly, discriminant 37 analysis of principal components using genetic data revealed that male populations were 38 also distinctly separated from each other while female populations showed near- 39 overlapping populations. Genetic and phenetic dendrograms showed the formation of two 40 groups in male populations but no groups in female populations. Further analysis indicated 41 a significant correlation (r = 0.68, p = 0.02) between the genetic and phenetic distances of 42 male populations. Bayesian analysis using genetic data also detected multiple clusters in 43 male (K = 3) and female (K = 2) populations, while no clusters were detected using the 44 phenotypic data from both sexes. 45 Conclusions. Our results revealed contrasting phenotypic and genetic patterns between 46 male and female Ae. aegypti, indicating that male populations were more spatially bioRxiv preprint doi: https://doi.org/10.1101/2020.09.16.299487; this version posted September 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 47 structured than female populations. Although genetic markers demonstrated higher 48 sensitivity in detecting population structures than phenotypic markers, correlating patterns 49 of population structure were still observed between the two markers. 50 Keywords Dengue, Geometric Morphometrics, Microsatellites 51 52 Background 53 Aedes aegypti is the primary mosquito vector for several important mosquito-borne 54 diseases such as dengue, chikungunya and Zika. Over the past decade, many scientists have 55 focused on studying the population genetic structuring of this species within urban areas1-6. 56 Genetic markers such as microsatellite loci and single nucleotide polymorphisms (SNPs) 57 have been largely used to investigate the population structure of Ae. aegypti on macro- and 58 micro-geographic scales which revealed high genetic diversity and distinct genetic 59 clustering in different regions and countries7-9, cities and villages1,2,6. 60 Wing geometry is a phenotypic marker that can be used as an alternative approach 61 to describe the population variability and structure of Ae. aegypti since these are 62 evolutionarily informative and heritable10,11. Previous studies on Ae. aegypti have 63 demonstrated that wing shape can be an indicator of population genetic structure in fine- 64 scale areas12,13. It can also detect subtle variation within a single mosquito population either 65 over time (e.g. temporal variation)4 or along environmental gradients (e.g. altitude, levels of 66 urbanization) 14,15. For this reason, estimating the population genetic structure using wing 67 geometry has been supported by many studies because of its low-cost alternative10. 68 Many independent studies have focused on either genetic or phenotypic markers, 69 but some several studies have also integrated both markers16-19, especially in Ae. aegypti3,4. 70 Patterns of wing shape variation and genetic diversity in Ae. vexans indicated distinct 71 spatial structural differences from northern and central European countries with 72 considerable gene flow on a regional scale19. Parallel temporal changes in allelic 73 frequencies and wing shape were also observed in Ae. aegypti from Brazil, suggesting that bioRxiv preprint doi: https://doi.org/10.1101/2020.09.16.299487; this version posted September 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 74 these changes could be driven by genetic drift and divergent selection4, however, the results 75 generated by genetic and phenotypic markers have often contradicted each other. For 76 example, estimates of the morphological diversity index (QST) have often been larger than 3,4 77 the genetic diversity index (FST) from mosquito populations at the micro- and macro- 78 geographical16 scale in Brazil. Wing shape was also unable to show clear patterns of 79 population differentiation compared to genetic markers at these scales3,18. The slow 80 evolutionary rate of change for wing shape which has resulted in morphological uniformity 81 or homogeneity could be due to high gene flow or continuous migrations of this mosquito 82 vector that counteract local genetic drift10,20. More importantly, since wings of Ae. aegypti 83 are important organs for flight and sexual signaling, selective pressure may have stabilized 84 them over time21. 85 The majority of these integrative (wing geometry and genetic) analysis 86 investigations only focused on female Ae. aegypti populations. This may be due to the 87 importance of female mosquitoes in transmitting arboviruses, but research focusing on male 88 Ae. aegypti mosquitoes is becoming equally important due to its notable role in vector 89 control strategies, particularly in rear-release methods such as sterile insect technique (SIT), 90 insect incompatibility technique (IIT) and genetically modified mosquitoes (GMM)22-24. 91 Notable biological differences in male and female Ae. aegypti mosquitoes could affect 92 genetic and phenotypic variability as well as the spatial structuring of each sex. For 93 instance, smaller-sized male mosquitoes may have shorter dispersal distance, thereby 94 producing heterogeneous male populations even on the micro-geographic scale. This was 95 exemplified in our previous wing geometry study12 which revealed the fine-scale 96 population structure in male mosquitoes with short dispersal distances (up to 22 km). 97 The aim of this study was to describe and compare the population variability and 98 structure between male and female Ae. aegypti mosquitoes using wing geometry and 99 genetic markers. Adult Ae. aegypti mosquitoes were collected from within a highly- 100 urbanized and dengue-endemic region of the Philippines, Metropolitan Manila. Eleven 101 microsatellite loci and 26 identified morphometric landmarks were used to compare both bioRxiv preprint doi: https://doi.org/10.1101/2020.09.16.299487; this version posted September 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 102 sexes. Unlike previous studies that used different mosquito individuals for each approach3, 103 16-18, we utilized the same mosquito for genetic and morphometric analysis in order to 104 reflect and compare the population variability and structure for both markers. 105 Methods 106 Study Area and Mosquito Sampling 107 Collection of Ae. aegypti adult mosquitoes was conducted within Metropolitan 108 Manila, Philippines (Figure 1) from May 2014 to January 2015. Households were selected 109 based on voluntary consent to collecting adult mosquitoes on their premises. The collection 110 procedure, sorting, preservation and identification of adult mosquitoes was based on 111 Carvajal et al.6 while sex determination of each adult was performed using the 112 morphological pictorial keys from Rueda et al.
Recommended publications
  • Laboratory Studies of Anopheles Atroparvus in Relation To
    [ 478 ] LABORATORY STUDIES OF ANOPHELES ATBOPARVUS IN RELATION TO MYXOMATOSIS BY C. H. ANDREWES, R. C. MUIRHEAD-THOMSON AND J. P. STEVENSON* National Institute for Medical Research, Mill Hill, London, N.W.I and the Infesta- tion Control Division, Ministry of Agriculture, Fisheries and Food, Tolworth, Surrey Though rabbit fleas (Spilopsyllus) are the principal vectors of myxomatosis in Britain (Armour & Thompson, 1955), Anopheles labranchiae atroparvus^ has been implicated in its transmission amongst domestic rabbits (Muirhead-Thomson, 1956). This mosquito was first shown to carry infection under laboratory condi- tions by Jacotot, Toumanoff, Vallee & Virat in France (1954). They found that in- fection was transmitted up to 21 days after the infective blood meal; that a single bite of the Anopheles was sufficient to produce infection and that a single mosquito could infect several rabbits one after the other at short intervals. These basic observations have been confirmed. In addition, it has been shown that infection can be produced by insertion of the mosquito's mouthparts alone, without actual feeding; that, after the first few days, virus is present only in the mouthparts of the insect; and that infected mosquitoes can remain infective for several months, much longer than is reported for this insect by the French workers or for other mosquitoes by Australian workers (Fenner, Day & Woodroofe, 1952). The possibility that myxoma virus multiplies in A. atroparvus will be discussed. METHODS We used both wild and laboratory-reared atroparvus, most frequently wild caught semi-hibernating insects. Rabbits used for feeding experiments were first anaes- thetized by intraperitoneal injection of nembutal.
    [Show full text]
  • Mosquitoes of the Maculipennis Complex in Northern Italy
    www.nature.com/scientificreports OPEN Mosquitoes of the Maculipennis complex in Northern Italy Mattia Calzolari1*, Rosanna Desiato2, Alessandro Albieri3, Veronica Bellavia2, Michela Bertola4, Paolo Bonilauri1, Emanuele Callegari1, Sabrina Canziani1, Davide Lelli1, Andrea Mosca5, Paolo Mulatti4, Simone Peletto2, Silvia Ravagnan4, Paolo Roberto5, Deborah Torri1, Marco Pombi6, Marco Di Luca7 & Fabrizio Montarsi4,6 The correct identifcation of mosquito vectors is often hampered by the presence of morphologically indiscernible sibling species. The Maculipennis complex is one of these groups that include both malaria vectors of primary importance and species of low/negligible epidemiological relevance, of which distribution data in Italy are outdated. Our study was aimed at providing an updated distribution of Maculipennis complex in Northern Italy through the sampling and morphological/ molecular identifcation of specimens from fve regions. The most abundant species was Anopheles messeae (2032), followed by Anopheles maculipennis s.s. (418), Anopheles atroparvus (28) and Anopheles melanoon (13). Taking advantage of ITS2 barcoding, we were able to fnely characterize tested mosquitoes, classifying all the Anopheles messeae specimens as Anopheles daciae, a taxon with debated rank to which we referred as species inquirenda (sp. inq.). The distribution of species was characterized by Ecological Niche Models (ENMs), fed by recorded points of presence. ENMs provided clues on the ecological preferences of the detected species, with An. daciae sp. inq. linked to stable breeding sites and An. maculipennis s.s. more associated to ephemeral breeding sites. We demonstrate that historical Anopheles malaria vectors are still present in Northern Italy. In early 1900, afer the incrimination of Anopheles mosquito as a malaria vector, malariologists made big attempts to solve the puzzling phenomenon of “Anophelism without malaria”, that is, the absence of malaria in areas with an abundant presence of mosquitoes that seemed to transmit the disease in other areas1.
    [Show full text]
  • Plasmodium Ovale Malaria Acquired in Central Spain
    DISPATCHES The Study Plasmodium ovale In March 2001, a 75-year-old woman was admitted to the Hospital Príncipe de Asturias in Madrid with a history of inter- Malaria Acquired in mittent fever for 1 week and no obvious infection. Intravenous treatment with ciprofloxacin was prescribed to treat provision- Central Spain ally diagnosed pyelonephritis. While in hospital, the patient Juan Cuadros,* Maria José Calvente,† had two episodes of high fever (39°C–40°C) separated by 48- Agustin Benito,‡ Juan Arévalo,* hour intervals with hypoxemia and deterioration of her general Maria Angeles Calero,* Javier Segura,† condition. On day 7 of fever, the hematologist advised the phy- and Jose Miguel Rubio‡ sician of the presence of rings inside the patient’s erythrocytes (parasitemia rate <1 %). A rapid antigen detection test (HRP2 We describe a case of locally acquired Plasmodium ovale detection; ICT Diagnostics, Amrad Corporation, Victor, Aus- malaria in Spain. The patient was a Spanish woman who had tralia) was done; the test returned negative results for Plasmo- never traveled out of Spain and had no other risk factors for dium falciparum and P. vivax. The sample was later identified malaria. Because patients with malaria may never have visited as P. ovale through microscopy and molecular studies at a ref- endemic areas, occasional transmission of malaria to Euro- erence malaria laboratory. Initial treatment with chloroquine pean hosts is a diagnostic and clinical challenge. followed by primaquine eliminated the infection successfully, and the patient recovered fully without complications. P. ovale was confirmed by semi-nested multiplex poly- n the first decades of the 20th century, malaria was a highly merase chain reaction (PCR) (8).
    [Show full text]
  • Mosquitoes of the Genus Anopheles in Countries of the WHO European Region Having Faced a Recent Resurgence of Malaria
    Within the framework of the new WHO regional strategy aimed at malaria elimination, special attention is given to operational research. In order to update scientifi c knowledge on malaria, the WHO Regional Offi ce for Europe has initiated a regional programme on operational research related to malaria entomology and vector control, which is being carried out successfully with the assistance of research institutions and partners in affected countries of Middle Asia and South Mosquitoes of the genus Caucasus. The objectives of the research are closely tied to the particular situation and problems identifi ed within a single country or a group of neighbouring countries. Anopheles in countries of The identifi cation and geographical distribution of Anopheles mosquitoes, the prevalence of sibling species and their role in malaria transmission, taxonomy, biology and ecology of malaria vectors are of particular interest in the Region. the WHO European Region The results of the research presented in this paper conducted over the past fi ve having faced a recent years in countries having faced a recent resurgence of malaria in the WHO European Region, will help national health authorities to re-examine the current vector control strategies, taking into account the updated knowledge of existing and potential resurgence of malaria malaria vectors. The threat of the re-establishment of malaria transmission in the Region should not be downgraded, despite the substantial progress achieved. In this connection, further research on the taxonomy, biology, ecology, behaviour and genetics of mosquitoes of the Anopheles genus will lead to a better understanding of the nature of malaria vectors and their role in transmission in the WHO European Region, and to providing advice on the ways to best address the problem.
    [Show full text]
  • Anopheles Atroparvus from the Ebro Delta, Spain Lotty Birnberg1, Carles Aranda1,2, Sandra Talavera1, Ana I
    Birnberg et al. Parasites Vectors (2020) 13:394 https://doi.org/10.1186/s13071-020-04268-y Parasites & Vectors METHODOLOGY Open Access Laboratory colonization and maintenance of Anopheles atroparvus from the Ebro Delta, Spain Lotty Birnberg1, Carles Aranda1,2, Sandra Talavera1, Ana I. Núñez1, Raúl Escosa3 and Núria Busquets1* Abstract Background: Historically, Anopheles atroparvus has been considered one of the most important malaria vectors in Europe. Since malaria was eradicated from the European continent, the interest in studying its vectors reduced signif- cantly. Currently, to better assess the potential risk of malaria resurgence on the continent, there is a growing need to update the data on susceptibility of indigenous Anopheles populations to imported Plasmodium species. In order to do this, as a frst step, an adequate laboratory colony of An. atroparvus is needed. Methods: Anopheles atroparvus mosquitoes were captured in rice felds from the Ebro Delta (Spain). Field-caught specimens were maintained in the laboratory under simulated feld-summer conditions. Adult females were artifcially blood-fed on fresh whole rabbit blood for oviposition. First- to fourth-instar larvae were fed on pulverized fsh and turtle food. Adults were maintained with a 10% sucrose solution ad libitum. Results: An An. atroparvus population from the Ebro Delta was successfully established in the laboratory. During the colonization process, feeding and hatching rates increased, while a reduction in larval mortality rate was observed. Conclusions: The present study provides a detailed rearing and maintenance protocol for An. atroparvus and a pub- licly available reference mosquito strain within the INFRAVEC2 project for further research studies involving vector- parasite interactions.
    [Show full text]
  • Windborne Long-Distance Migration of Malaria Mosquitoes in the Sahel
    1 Windborne long-distance migration of malaria mosquitoes in the Sahel 2 Huestis DLa, Dao Ab, Diallo Mb, Sanogo ZLb, Samake Db, Yaro ASb, Ousman Yb, Linton Y-Mf, Krishna Aa, Veru La, Krajacich 3 BJa, Faiman Ra, Florio Ja, Chapman JWc, Reynolds DRd, Weetman De, Mitchell Rg, Donnelly MJe, Talamas Eh,j, Chamorro Lh, 4 Strobach Ek and Lehmann Ta 5 6 a Laboratory of Malaria and Vector Research, NIAID, NIH. Rockville, MD, USA 7 b Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto-stomatology, Bamako, 8 Mali 9 c Centre for Ecology and Conservation, and Environment and Sustainability Inst., University of Exeter, Penryn, 10 Cornwall, UK and College of Plant Protection, Nanjing Agricultural University, Nanjing, P. R. China. 11 d Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, and Rothamsted Research, 12 Harpenden, Hertfordshire AL5 2JQ, UK 13 e Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK 14 f Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, Suitland MD, USA and 15 Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington DC, USA 16 g Smithsonian Institution - National Museum of Natural History, Washington DC, USA 17 h Systematic Entomology Laboratory - ARS, USDA, Smithsonian Institution - National Museum of Natural History, 18 Washington DC, USA 19 j Florida Department of Agriculture and Consumer Services, Department of Plant Industry, Gainesville FL, USA 20 k Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA 21 22 Over the past two decades, control efforts have halved malaria cases globally, yet burdens remain 23 high in much of Africa and elimination has not been achieved even where extreme reductions have 24 occurred over many years, such as in South Africa1,2.
    [Show full text]
  • Using Mobile Phones As Acoustic Sensors for High-Throughput
    TOOLS AND RESOURCES Using mobile phones as acoustic sensors for high-throughput mosquito surveillance Haripriya Mukundarajan1, Felix Jan Hein Hol2, Erica Araceli Castillo1, Cooper Newby1, Manu Prakash2* 1Department of Mechanical Engineering, Stanford University, Stanford, United States; 2Department of Bioengineering, Stanford University, Stanford, United States Abstract The direct monitoring of mosquito populations in field settings is a crucial input for shaping appropriate and timely control measures for mosquito-borne diseases. Here, we demonstrate that commercially available mobile phones are a powerful tool for acoustically mapping mosquito species distributions worldwide. We show that even low-cost mobile phones with very basic functionality are capable of sensitively acquiring acoustic data on species-specific mosquito wingbeat sounds, while simultaneously recording the time and location of the human- mosquito encounter. We survey a wide range of medically important mosquito species, to quantitatively demonstrate how acoustic recordings supported by spatio-temporal metadata enable rapid, non-invasive species identification. As proof-of-concept, we carry out field demonstrations where minimally-trained users map local mosquitoes using their personal phones. Thus, we establish a new paradigm for mosquito surveillance that takes advantage of the existing global mobile network infrastructure, to enable continuous and large-scale data acquisition in resource-constrained areas. DOI: https://doi.org/10.7554/eLife.27854.001 Introduction Frequent, widespread, and high resolution surveillance of mosquitoes is essential to understanding *For correspondence: their complex ecology and behaviour. An in-depth knowledge of human—mosquito interactions is a [email protected] critical component in mitigating mosquito-borne diseases like malaria, dengue, and Zika (Macdon- Competing interests: The ald, 1956; World Health Organization, 2014; Godfray, 2013; Besansky, 2015; Kindhauser et al., authors declare that no 2016).
    [Show full text]
  • Distribution of Anopheles Daciae and Other Anopheles Maculipennis Complex Species in Serbia
    Parasitology Research (2018) 117:3277–3287 https://doi.org/10.1007/s00436-018-6028-y ORIGINAL PAPER Distribution of Anopheles daciae and other Anopheles maculipennis complex species in Serbia Mihaela Kavran1 & Marija Zgomba1 & Thomas Weitzel2 & Dusan Petric1 & Christina Manz3 & Norbert Becker2 Received: 22 May 2018 /Accepted: 24 July 2018 /Published online: 28 August 2018 # The Author(s) 2018 Abstract Malaria is one of the most severe health problems facing the world today. Until the mid-twentieth century, Europe was an endemic area of malaria, with the Balkan countries being heavily infested. Sibling species belonging to the Anopheles maculipennis complex are well-known as effective vectors of Plasmodium in Europe. A vast number of human malaria cases in the past in the former Yugoslavia territory have stressed the significance of An. maculipennis complex species as primary and secondary vectors. Therefore, the present study evaluates the species composition, geographic distribution and abundance of these malaria vector species. Mosquitoes were collected in the northern Serbian province of Vojvodina and analysed by PCR- RFLP, multiplex PCR and sequencing of the ITS2 intron of genomic rDNA. Four sibling species of the An. maculipennis complex were identified. Both larvae and adults of the recently described species An. daciae were identified for the first time in Serbia. In 250 larval samples, 109 (44%) An. messeae,90(36%)An. maculipennis s.s., 33 (13%) An. daciae and 18 (7%) An. atroparvus were identified. In adult collections, 81 (47%) An. messeae,55(32%)An. daciae,33(19%)An. maculipennis s.s., and 3(2%)An. atroparvus were recorded. The most abundant species in Vojvodina was An.
    [Show full text]
  • Plasmodium Falciparum Malaria Occurring Four Years After Leaving an Endemic Area
    Acta Clinica Belgica International Journal of Clinical and Laboratory Medicine ISSN: 1784-3286 (Print) 2295-3337 (Online) Journal homepage: http://www.tandfonline.com/loi/yacb20 Plasmodium falciparum malaria occurring four years after leaving an endemic area B. Vantomme, J. Van Acker, S. Rogge, D. Ommeslag, J. Donck & S. Callens To cite this article: B. Vantomme, J. Van Acker, S. Rogge, D. Ommeslag, J. Donck & S. Callens (2016) Plasmodium falciparum malaria occurring four years after leaving an endemic area, Acta Clinica Belgica, 71:2, 111-113, DOI: 10.1179/2295333715Y.0000000063 To link to this article: http://dx.doi.org/10.1179/2295333715Y.0000000063 Published online: 09 Feb 2016. Submit your article to this journal Article views: 52 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=yacb20 Download by: [JH Libraries] Date: 23 August 2016, At: 08:41 Case Report Plasmodium falciparum malaria occurring four years after leaving an endemic area B. Vantomme1, J. Van Acker2, S. Rogge3, D. Ommeslag4,5, J. Donck6, S. Callens7,8 1Department of Internal Medicine, Ghent University Hospital, Belgium, 2Department of Clinical Biology, St. Lucas General Hospital, Ghent, Belgium, 3Department of Gastroenterology, St. Lucas General Hospital, Ghent, Belgium, 4Department of Infectious Diseases, St. Lucas General Hospital, Ghent, Belgium, 5Department of Pneumology, St. Lucas General Hospital, Ghent, Belgium, 6Department of Nephrology, St. Lucas General Hospital, Ghent, Belgium, 7Department of Infectious Diseases, Ghent University Hospital, Belgium, 8Department of Infectious Diseases, St. Lucas General Hospital, Belgium We present a case of a 52-year-old woman of Ghanaian origin who developed Plasmodium falciparum malaria 4 years after leaving Africa.
    [Show full text]
  • Anopheles Mosquitoes Revealed New Principles of 3D Genome Organization in Insects
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.26.114017; this version posted May 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Anopheles mosquitoes revealed new principles of 3D genome organization in insects Varvara Lukyanchikova1,2,3,4,+, Miroslav Nuriddinov3,+, Polina Belokopytova3,4, Jiangtao Liang1,2, Maarten J.M.F. Reijnders5, Livio Ruzzante5, Robert M. Waterhouse5, Zhijian Tu2,6, Igor V. Sharakhov1,2,7,*, Veniamin Fishman3,4,* 1 Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA 2 Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA 3 Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia 4 Novosibirsk State University, Novosibirsk, Russia 5 Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland 6 Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA 7 Department of Cytology and Genetics, Tomsk State University, Tomsk, Russia + co-first authors * correspondence to I.V.S. ([email protected]) and V.F. ([email protected]) Abstract Chromosomes are hierarchically folded within cell nuclei into territories, domains and subdomains, but the functional importance and evolutionary dynamics of these hierarchies are poorly defined. Here, we comprehensively profiled genome organizations of five Anopheles mosquito species and showed how different levels of chromatin architecture influence contacts between genomic loci. Patterns observed on Hi-C maps are associated with known cytological structures, epigenetic profiles, and gene expression levels.
    [Show full text]
  • Genetic and Phenotypic Variation of the Malaria Vector Anopheles
    Genetic and phenotypic variation of the malaria vector Anopheles atroparvus in southern Europe José Vicente, Carla Sousa, Bulent Alten, Selim Caglar, Elena Falcutá, José Latorre, Céline Toty, Hélène Barré, Berna Demirci, Marco Luca, et al. To cite this version: José Vicente, Carla Sousa, Bulent Alten, Selim Caglar, Elena Falcutá, et al.. Genetic and phenotypic variation of the malaria vector Anopheles atroparvus in southern Europe. Malaria Journal, BioMed Central, 2011, 10, pp.5. 10.1186/1475-2875-10-5. hal-03059510 HAL Id: hal-03059510 https://hal.archives-ouvertes.fr/hal-03059510 Submitted on 12 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Vicente et al. Malaria Journal 2011, 10:5 http://www.malariajournal.com/content/10/1/5 RESEARCH Open Access Genetic and phenotypic variation of the malaria vector Anopheles atroparvus in southern Europe José L Vicente1, Carla A Sousa2, Bulent Alten3, Selim S Caglar3, Elena Falcutá4, José M Latorre5, Celine Toty6, Hélène Barré7, Berna Demirci3, Marco Di Luca8, Luciano Toma8, Ricardo Alves1,2, Patrícia Salgueiro1, Teresa L Silva1, Maria D Bargues5, Santiago Mas-Coma5, Daniela Boccolini8, Roberto Romi8, Gabriela Nicolescu4, Virgílio E do Rosário1, Nurdan Ozer3, Didier Fontenille6, João Pinto1,2* Abstract Background: There is a growing concern that global climate change will affect the potential for pathogen transmission by insect species that are vectors of human diseases.
    [Show full text]
  • Human Migration, Mosquitoes and the Evolution of Plasmodium Falciparum
    144 Review TRENDS in Parasitology Vol.19 No.3 March 2003 Human migration, mosquitoes and the evolution of Plasmodium falciparum Jennifer C.C. Hume, Emily J. Lyons and Karen P. Day Peter Medawar Building for Pathogen Research, Dept of Zoology, University of Oxford, Oxford OX1 3SY, UK To date, coalescent analysis of the Plasmodium falci- The first asserts that the lack of synonymous polymorph- parum genome sequence has failed to provide a unify- ism in some genes [8] and relative absence of single ing theory regarding the parasite’s evolution. While a nucleotide polymorphisms (SNPs) in housekeeping gene better understanding of the evolution of the malaria introns [9] are indicative of a recent expansion from a genome will undoubtedly clarify the current contro- single or limited number of progenitors, and that regions of versy, the importance of the parasite’s interplay with diversity can be explained by positive selection [4,9]. The both the human host and mosquito vector cannot be opposing view asserts that the parasite is ancient due to underestimated. Changes in the population biology or extensive polymorphism observed in some genes [10–12]. ecology of either one of these species have conse- Thus, it is apparent that the genetic data proves contra- quences for malaria transmission and this was never dictory and needs to be explained further. Some researchers more apparent than in the environmental changes have proposed that selective sweeps [7,12] are the most brought about by the advent of agriculture. likely reason for the monomorphism observed in parts of the genome, while others think the most probable Bioinformatic analysis of the malaria genome has allowed explanation is a parasite bottleneck [8,9].
    [Show full text]