The Interplay Between the Bacterial Capsule and Mobile Genetic Elements Determines Direction and Intensity of Gene Flux in Klebsiella Pneumoniae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inhibition of Chloroplast DNA Recombination and Repair by Dominant Negative Mutants of Escherichia Coli Reca
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Center for Plant Science Innovation Plant Science Innovation, Center for June 1995 Inhibition of Chloroplast DNA Recombination and Repair by Dominant Negative Mutants of Escherichia coli RecA Heriberto D. Cerutti University of Nebraska - Lincoln, [email protected] Anita M. Johnson Duke University, Durham, North Carolina John E. Boynton Duke University, Durham, North Carolina Nicholas W. Gillham Duke University, Durham, North Carolina Follow this and additional works at: https://digitalcommons.unl.edu/plantscifacpub Part of the Plant Sciences Commons Cerutti, Heriberto D.; Johnson, Anita M.; Boynton, John E.; and Gillham, Nicholas W., "Inhibition of Chloroplast DNA Recombination and Repair by Dominant Negative Mutants of Escherichia coli RecA" (1995). Faculty Publications from the Center for Plant Science Innovation. 8. https://digitalcommons.unl.edu/plantscifacpub/8 This Article is brought to you for free and open access by the Plant Science Innovation, Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Center for Plant Science Innovation by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MOLECULAR AND CELLULAR BIOLOGY, June 1995, p. 3003–3011 Vol. 15, No. 6 0270-7306/95/$04.0010 Copyright q 1995, American Society for Microbiology Inhibition of Chloroplast DNA Recombination and Repair by Dominant Negative Mutants of Escherichia coli RecA HERIBERTO CERUTTI, ANITA M. JOHNSON, JOHN E. BOYNTON,* AND NICHOLAS W. GILLHAM Developmental, Cell and Molecular Biology Group, Departments of Botany and Zoology, Duke University, Durham, North Carolina 27708 Received 7 December 1994/Returned for modification 12 January 1995/Accepted 28 February 1995 The occurrence of homologous DNA recombination in chloroplasts is well documented, but little is known about the molecular mechanisms involved or their biological significance. -
Evaluation of Prophage Gene Revealed Population Variation Of
Evaluation of Prophage Gene Revealed Population Variation of ‘Candidatus Liberibacter Asiaticus’: Bacterial Pathogen of Citrus Huanglongbing (HLB) in Northern Thailand Jutamas Kongjak Chiang Mai University Angsana Akarapisan ( [email protected] ) Chiang Mai University https://orcid.org/0000-0002-0506-8675 Research Article Keywords: Citrus, Prophage, Bacteriophage, Huanglongbing, Candidatus Liberibacter asiaticus Posted Date: August 24th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-822974/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/15 Abstract ‘Candidatus Liberibacter asiaticus’ is a non-culturable bacterial pathogen, the causal agent of Huanglongbing (HLB, yellow shoot disease, also known as citrus greening disease), a highly destructive disease of citrus (Rutaceae). The pathogen is transmitted by the Asian citrus psyllid: Diaphorina citri Kuwayama. Recent studies, have shown that the HLB pathogen has two prophages, SC1 that has a lytic cycle and SC2 associated with bacterial virulence. This study aimed to search for SC1 and SC2 prophages of HLB in mandarin orange, sweet orange, bitter orange, kumquat, key lime, citron, caviar lime, kar lime, pomelo and orange jasmine from ve provinces in Northern Thailand. A total of 216 samples collected from Northern Thailand during 2019 and 2020 were studied. The results revealed that 62.04% (134/216) citrus samples were infected with the ‘Ca. L. asiaticus’ the bacterial pathogen associated with citrus HLB. The prophage particles are important genetic elements of bacterial genomes that are involved in lateral gene transfer, pathogenicity, environmental adaptation and interstrain genetic variability. Prophage particles were evaluated in the terminase gene of SC1 and SC2-type prophages. -
State of Prophage Mu DNA Upon Induction (Bacteriophage Mu/Bacteriophage X/DNA Insertion/DNA Excision/Transposable Elements) E
Proc. Nati. Acad. Sci. USA Vol. 74, No. 8, pp. 3143-3147, August 1977 Biochemistry State of prophage Mu DNA upon induction (bacteriophage Mu/bacteriophage X/DNA insertion/DNA excision/transposable elements) E. LjUNGQUIST AND A. I. BUKHARI Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Communicated by J. D. Watson, April 18, 1977 ABSTRACT We have compared the process of prophage different host sequences. Yet, a form of Mu DNA free of host A induction with that of prophage Mu. According to the DNA has remained undetected. Campbell model, rescue of A DNA from the host DNA involves In its continuous association with host DNA, Mu resembles reversal of X integration such that the prophage DNA is excised from the host chromosome. We have monitored this event by another class of insertion elements, referred to as the trans- locating the prophage DNA with a technique in which DNA of posable elements. The transposable elements are specific the lysogenic cells is cleaved with a restriction endonuclease stretches of DNA that can be translocated from one position to and fractionated in agarose gels. The DNA fragments are de- another in host DNA (7). Mu undergoes multiple rounds of natured in gels, transferred to a nitrocellulose paper, and hy- transposition during its growth, far exceeding the transposition bridized with 32P-labeled mature phage DNA. The fragments frequency of the bonafide transposable elements. When a Mu containing prophage DNA become visible after autoradiogra- lysogen, carrying a single Mu prophage at a given site on the phy. Upon prophage A induction, the phage-host junction fragments disappear and the fragment containing the A att site host chromosome, is induced, many copies of Mu DNA are appears. -
Philympics 2021: Prophage Predictions Perplex Programs
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.03.446868; this version posted June 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Philympics 2021: Prophage 2 Predictions Perplex Programs 3 Michael J. Roach1*, Katelyn McNair2, Sarah K. Giles1, Laura Inglis1, Evan Pargin1, Przemysław 4 Decewicz3, Robert A. Edwards1 5 1. Flinders Accelerator for Microbiome Exploration, Flinders University, 5042, SA, Australia 6 2. Computational Sciences Research Center, San Diego State University, San Diego, 92182, CA, USA 7 3. Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty 8 of Biology, University of Warsaw, Warsaw, 02-096, Poland 9 10 *Corresponding Author: [email protected] 11 12 Abstract 13 Most bacterial genomes contain integrated bacteriophages—prophages—in various states of decay. 14 Many are active and able to excise from the genome and replicate, while others are cryptic 15 prophages, remnants of their former selves. Over the last two decades, many computational tools 16 have been developed to identify the prophage components of bacterial genomes, and it is a 17 particularly active area for the application of machine learning approaches. However, progress is 18 hindered and comparisons thwarted because there are no manually curated bacterial genomes that 19 can be used to test new prophage prediction algorithms. 20 Here, we present a library of gold-standard bacterial genome annotations that include manually 21 curated prophage annotations, and a computational framework to compare the predictions from 22 different algorithms. -
B. Fragilis Is Mediated by Capsular
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.19.258442; this version posted August 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Hemagglutination by B. fragilis is mediated by capsular 2 polysaccharides and is influenced by host ABO blood type. 3 Kathleen L. Arnolds a, Nancy Moreno-Huizar b, Maggie A. Stanislawski c, 4 Brent Palmer c, Catherine Lozupone c* 5 a Department of Microbiology, University of Colorado Anschutz Medical Campus, 6 Aurora, CO, USA [email protected] 7 b Department of Computer Science, University of Colorado Denver, Denver, CO, USA. 8 c Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, 9 CO, USA [email protected] 10 11 12 13 14 15 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.19.258442; this version posted August 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 Hemagglutination by B. fragilis is mediated by capsular polysaccharides and is 17 influenced by host ABO blood type. 18 19 Bacterial hemagglutination of red blood cells (RBCs) is mediated by 20 interactions between bacterial cell components and RBC envelope glycans 21 that vary across individuals by ABO blood type. -
First Description of a Temperate Bacteriophage (Vb Fhim KIRK) of Francisella Hispaniensis Strain 3523
viruses Article First Description of a Temperate Bacteriophage (vB_FhiM_KIRK) of Francisella hispaniensis Strain 3523 Kristin Köppen 1,†, Grisna I. Prensa 1,†, Kerstin Rydzewski 1, Hana Tlapák 1, Gudrun Holland 2 and Klaus Heuner 1,* 1 Centre for Biological Threats and Special Pathogens, Cellular Interactions of Bacterial Pathogens, ZBS 2, Robert Koch Institute, 13353 Berlin, Germany; [email protected] (K.K.); [email protected] (G.I.P.); [email protected] (K.R.); [email protected] (H.T.) 2 Centre for Biological Threats and Special Pathogens, Advanced Light and Electron Microscopy, ZBS 4, Robert Koch Institute, D-13353 Berlin, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-30-18754-2226 † Both authors contributed equally to this work. Abstract: Here we present the characterization of a Francisella bacteriophage (vB_FhiM_KIRK) includ- ing the morphology, the genome sequence and the induction of the prophage. The prophage sequence (FhaGI-1) has previously been identified in F. hispaniensis strain 3523. UV radiation induced the prophage to assemble phage particles consisting of an icosahedral head (~52 nm in diameter), a tail of up to 97 nm in length and a mean width of 9 nm. The double stranded genome of vB_FhiM_KIRK contains 51 open reading frames and is 34,259 bp in length. The genotypic and phylogenetic analysis indicated that this phage seems to belong to the Myoviridae family of bacteriophages. Under the Citation: Köppen, K.; Prensa, G.I.; conditions tested here, host cell (Francisella hispaniensis 3523) lysis activity of KIRK was very low, and Rydzewski, K.; Tlapák, H.; Holland, the phage particles seem to be defective for infecting new bacterial cells. -
Bacteriophages Targeting Acinetobacter Baumannii Capsule
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.25.965590; this version posted February 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Bacteriophages targeting Acinetobacter baumannii capsule 2 induce antimicrobial resensitization 3 4 Fernando Gordillo Altamirano1*, John H. Forsyth1, Ruzeen Patwa1, Xenia Kostoulias2, Michael Trim1, Dinesh 5 Subedi1, Stuart Archer3, Faye C. Morris2, Cody Oliveira1, Luisa Kielty1, Denis Korneev1, Moira K. O’Bryan1, 6 Trevor J. Lithgow2, Anton Y. Peleg2,4, Jeremy J. Barr1* 7 8 1 School of Biological Sciences, Monash University 9 2 Biomedicine Discovery Institute and Department of Microbiology, Monash University 10 3 Monash Bioinformatics Platform, Faculty of Medicine, Nursing and Health Sciences, Monash University 11 4 Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University 12 13 *Corresponding authors 14 Fernando Gordillo Altamirano [email protected] 15 Jeremy J. Barr [email protected] 16 School of Biological Sciences, Monash University 17 25 Rainforest Walk, 18 Clayton, 3800, VIC 19 Australia 20 21 Abstract 22 Carbapenem-resistant Acinetobacter baumannii is responsible for frequent, hard-to-treat and often fatal 23 healthcare-associated infections. Phage therapy, the use of viruses that infect and kill bacteria, is an approach 24 gaining significant clinical interest to combat antibiotic-resistant infections. However, a major limitation is that 25 bacteria can develop resistance against phages. Here, we isolated phages with activity against a panel of A. -
Molecular Model for the Transposition and Replication of Bacteriophage
Proc. Natl. Acad. Sci. USA Vol. 76, No. 4, pp. 1933-1937, April 1979 Genetics Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements (DNA insertion elements/nonhomologous recombination/site-specific recombination/replicon fusion/topoisomerases) JAMES A. SHAPIRO Department of Microbiology, The University of Chicago, Chicago, Illinois 60637 Communicated by Hewson Swift, December 11, 1978 ABSTRACT A series of molecular events will explain how B genetic elements can transpose from one DNA site to another, B y generate a short oligonucleotide duplication at both ends of the I % new insertion site, and replicate in the transposition process. I These events include the formation of recombinant molecules A a% /; C which have been postulated to be intermediates in the trans- position process. The model explains how the replication of bacteriophage Mu is obligatorily associated with movement to z x x new genetic sites. It postulates that all transposable elements replicate in the transposition process so that they remain at their z original site while moving to new sites. According to this model, the mechanism of transposition is very different from the in- V sertion and excision of bacteriophage X. y FIG. 1. Replicon fusion. The boxes with an arrow indicate copies Recent research on transposable elements in bacteria has pro- of a transposable element. The letters mark arbitrary regions of the vided important insights into the role of nonhomologous re- two replicons to indicate the relative positions of the elements in the combination in genetic rearrangements (1-4). These elements donor and cointegrate molecules. include small insertion sequences (IS elements), transposable resistance determinants (Tn elements), and bacteriophage Mu results in the duplication of a short oligonucleotide sequence (3). -
GIANT CHLOROPLAST 1 Is Essential for Correct Plastid Division in Arabidopsis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology, Vol. 14, 776–781, May 4, 2004, 2004 Elsevier Ltd. All rights reserved. DOI 10.1016/j.cub.2004.04.031 GIANT CHLOROPLAST 1 Is Essential for Correct Plastid Division in Arabidopsis Jodi Maple,1 Makoto T. Fujiwara,1,2 ing frames. Although no functional information exists, Nobutaka Kitahata,2 Tracy Lawson,3 All2390 and Slr1223 were initially annotated as cell divi- Neil R. Baker,3 Shigeo Yoshida,2 sion-inhibitor SulA proteins. Alignment of the GC1 amino and Simon Geir Møller1,* acid sequence (347 amino acids) with the Anabaena sp. ;similarity %65ف 1Department of Biology PCC 7120 All2390 sequence revealed University of Leicester however, GC1 contained a 45 amino acid N-terminal Leicester LE1 7RH extension absent in Anabaena sp. predicted to harbor United Kingdom a 37 amino acid plastid-targeting transit peptide (Figure 2 Plant Functions Laboratory 1A). Phylogenetic analysis using eleven GC1 homologs RIKEN from bacteria, mammals, Drosophila, and Arabidopsis Hirosawa 2-1, Wako, Saitama 351-0198 demonstrated a close relationship between GC1 and Japan GC1-like proteins from cyanobacteria, indicating a cya- 3 Department of Biological Sciences nobacterial origin of GC1 (Figure 1B). -overall identity to prokaryotic nucleo %40ف University of Essex GC1 has Colchester CO4 3SQ tide-sugar epimerases, and secondary structure predic- structural (%90–%80ف) United Kingdom tions showed that GC1 has high similarity to epimerases in the active site region. Epi- merases control and change the stereochemistry of car- Summary bohydrate-hydroxyl substitutions, often modifying pro- tein activity or surface recognition, and epimerases Plastids are vital plant organelles involved in many contain two crucial active site residues (S and Y) vital essential biological processes [1, 2]. -
An In-Vitro Investigation to Determine the Neuroinflammatory Response of CNS Cells to Oral Bacteria and Their Virulence Factors
An in-vitro investigation to determine the neuroinflammatory response of CNS cells to oral bacteria and their virulence factors by Rahul Previn A thesis submitted in partial fulfilment for the requirements for the degree of MSc (by Research) at the University of Central Lancashire February 2013 i ACKNOWLEDGEMENTS I would like to thank the University of Central Lancashire, UK for the opportunity to undertake my postgraduate research degree. I wish to thank my Principle Investigator (PI) and Director of studies (D0S), Dean, Prof St John Crean for steering me into an interesting, and a hybrid dental-neurosciences project. His inspirational and expert guidance made the challenges of education seem more manageable. I would also like to thank Dr Peter Robinson, my Research Degrees Tutor (RDT), as without his expert help in getting through the various postgraduate degree hurdles would have been impossible. I would like to express my sincere gratitude to my supervisor, Dr Sim Singhrao for the daily guidance, advice, and patience throughout the practical work of the project. I would also like to thank Miss Sophie Poole, currently a PhD student, for ad-hoc assistance in the lab and for guidance in interpreting row data whenever she was nearby. I would like to acknowledge Prof. M. Curtis for the essential reagents I used to investigate my research question without which, my project would be incomplete. Above all, I would like to express my heartfelt gratitude to my family, especially my mother for her undying love, invaluable moral and financial support and encouragement to do well, during my time away from home. -
Bacterial Size, Shape and Arrangement & Cell Structure And
Lecture 13, 14 and 15: bacterial size, shape and arrangement & Cell structure and components of bacteria and Functional anatomy and reproduction in bacteria Bacterial size, shape and arrangement Bacteria are prokaryotic, unicellular microorganisms, which lack chlorophyll pigments. The cell structure is simpler than that of other organisms as there is no nucleus or membrane bound organelles.Due to the presence of a rigid cell wall, bacteria maintain a definite shape, though they vary as shape, size and structure. When viewed under light microscope, most bacteria appear in variations of three major shapes: the rod (bacillus), the sphere (coccus) and the spiral type (vibrio). In fact, structure of bacteria has two aspects, arrangement and shape. So far as the arrangement is concerned, it may Paired (diplo), Grape-like clusters (staphylo) or Chains (strepto). In shape they may principally be Rods (bacilli), Spheres (cocci), and Spirals (spirillum). Size of Bacterial Cell The average diameter of spherical bacteria is 0.5- 2.0 µm. For rod-shaped or filamentous bacteria, length is 1-10 µm and diameter is 0.25-1 .0 µm. E. coli , a bacillus of about average size is 1.1 to 1.5 µm wide by 2.0 to 6.0 µm long. Spirochaetes occasionally reach 500 µm in length and the cyanobacterium Accepted wisdom is that bacteria are smaller than eukaryotes. But certain cyanobacteria are quite large; Oscillatoria cells are 7 micrometers diameter. The bacterium, Epulosiscium fishelsoni , can be seen with the naked eye (600 mm long by 80 mm in diameter). One group of bacteria, called the Mycoplasmas, have individuals with size much smaller than these dimensions. -
Introduction to Viroids and Prions
Harriet Wilson, Lecture Notes Bio. Sci. 4 - Microbiology Sierra College Introduction to Viroids and Prions Viroids – Viroids are plant pathogens made up of short, circular, single-stranded RNA molecules (usually around 246-375 bases in length) that are not surrounded by a protein coat. They have internal base-pairs that cause the formation of folded, three-dimensional, rod-like shapes. Viroids apparently do not code for any polypeptides (proteins), but do cause a variety of disease symptoms in plants. The mechanism for viroid replication is not thoroughly understood, but is apparently dependent on plant enzymes. Some evidence suggests they are related to introns, and that they may also infect animals. Disease processes may involve RNA-interference or activities similar to those involving mi-RNA. Prions – Prions are proteinaceous infectious particles, associated with a number of disease conditions such as Scrapie in sheep, Bovine Spongiform Encephalopathy (BSE) or Mad Cow Disease in cattle, Chronic Wasting Disease (CWD) in wild ungulates such as muledeer and elk, and diseases in humans including Creutzfeld-Jacob disease (CJD), Gerstmann-Straussler-Scheinker syndrome (GSS), Alpers syndrome (in infants), Fatal Familial Insomnia (FFI) and Kuru. These diseases are characterized by loss of motor control, dementia, paralysis, wasting and eventually death. Prions can be transmitted through ingestion, tissue transplantation, and through the use of comtaminated surgical instruments, but can also be transmitted from one generation to the next genetically. This is because prion proteins are encoded by genes normally existing within the brain cells of various animals. Disease is caused by the conversion of normal cell proteins (glycoproteins) into prion proteins.