Displays & Optics for AR & MR 2020
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
VR Headset Comparison
VR Headset Comparison All data correct as of 1st May 2019 Enterprise Resolution per Tethered or Rendering Special Name Cost ($)* Available DOF Refresh Rate FOV Position Tracking Support Eye Wireless Resource Features Announced Works with Google Subject to Mobile phone 5.00 Yes 3 60 90 None Wireless any mobile No Cardboard mobile device required phone HP Reverb 599.00 Yes 6 2160x2160 90 114 Inside-out camera Tethered PC WMR support Yes Tethered Additional (*wireless HTC VIVE 499.00 Yes 6 1080x1200 90 110 Lighthouse V1 PC tracker No adapter support available) HTC VIVE PC or mobile ? No 6 ? ? ? Inside-out camera Wireless - No Cosmos phone HTC VIVE Mobile phone 799.00 Yes 6 1440x1600 75 110 Inside-out camera Wireless - Yes Focus Plus chipset Tethered Additional HTC VIVE (*wireless tracker 1,099.00 Yes 6 1440x1600 90 110 Lighthouse V1 and V2 PC Yes Pro adapter support, dual available) cameras Tethered All features HTC VIVE (*wireless of VIVE Pro ? No 6 1440x1600 90 110 Lighthouse V1 and V2 PC Yes Pro Eye adapter plus eye available) tracking Lenovo Mirage Mobile phone 399.00 Yes 3 1280x1440 75 110 Inside-out camera Wireless - No Solo chipset Mobile phone Oculus Go 199.00 Yes 3 1280x1440 72 110 None Wireless - Yes chipset Mobile phone Oculus Quest 399.00 No 6 1440x1600 72 110 Inside-out camera Wireless - Yes chipset Oculus Rift 399.00 Yes 6 1080x1200 90 110 Outside-in cameras Tethered PC - Yes Oculus Rift S 399.00 No 6 1280x1440 90 110 Inside-out cameras Tethered PC - No Pimax 4K 699.00 Yes 6 1920x2160 60 110 Lighthouse Tethered PC - No Upscaled -
Virtual Reality Headsets
VIRTUAL REALITY HEADSETS LILY CHIANG VR HISTORY • Many companies (Virtuality, Sega, Atari, Sony) jumped on the VR hype in the 1990s; but commercialization flopped because both hardware and software failed to deliver on the promised VR vision. • Any use of the VR devices in the 2000s was limited to the military, aviation, and medical industry for simulation and training. • VR hype resurged after Oculus successful KickStarter campaign; subsequently acquired by Facebook for $2.4 bn. • Investments rushed into the VR industry as major tech firms such as Google, Samsung, and Microsoft and prominent VC firms bet big on the VR revolution. LIST OF VIRTUAL REALITY HEADSET FIRMS Company Name Entered Exited Disposition Company Name Entered Exited Disposition Company Name Entered Exited Disposition LEEP Optics 1979 1998 Bankrupt Meta Altergaze 2014 Ongoing VPL Research 1984 1990 Bankrupt SpaceGlasses 2012 Ongoing Archos VR 2014 Ongoing Division Group Sulon Cortex 2012 Ongoing AirVr 2014 Ongoing LTD 1989 1999 Acquired Epson Moverio Sega VR 1991 1994 Bankrupt BT-200 2012 Ongoing 360Specs 2014 Ongoing Virtuality 1991 1997 Acquired i2i iPal 2012 Ongoing Microsoft VictorMaxx 1992 1998 Bankrupt Star VR 2013 Ongoing Hololens Systems 2015 Ongoing Durovis Dive 2013 Ongoing Razr OSVR 2015 Ongoing Atari Jaguar VR 1993 1996 Discontinued Vrizzmo 2013 Ongoing Virtual I-O 1993 1997 Bankrupt Cmoar 2015 Ongoing CastAR 2013 Ongoing eMagin 1993 Ongoing Dior Eyes VR 2015 Ongoing VRAse 2013 Ongoing Virtual Boy 1994 1995 Discontinued Yay3d VR 2013 Ongoing Impression Pi -
Casual Immersive Viewing with Smartphones
Casual Immersive Viewing with Smartphones Ismo Rakkolainen, Roope Raisamo Matthew Turk, Tobias Höllerer Karri Palovuori TAUCHI Research Center Computer Science Department Department of Electronics University of Tampere University of California Tampere Univ. of Tech. 33014 Tampere, Finland Santa Barbara, CA 93106, USA 33720 Tampere, Finland [email protected] mturk, [email protected] [email protected] 1 ABSTRACT ter stereoscope , yet suitable for a much wider range of media. In this paper, we explore how to better integrate virtual reality Such an embedded VR viewer would always be available to the viewing to a smartphone. We present novel designs for casual user. Along with various sensors it would also bring spatial 3D (short-term) immersive viewing of spatial and 3D content, such as and immersive user interfaces (UI) closer to mainstream usage. augmented and virtual reality, with smartphones. Our goal is to Lightweight and high-resolution virtual views can be created with create a simple and low-cost casual-viewing design which could various kinds of hand-held micro-displays or head-mounted dis- be retrofitted and eventually be embedded into smartphones, in- plays (HMD), or projected to the environment with pico projec- stead of using larger spatial viewing accessories. We explore dif- tors. Current HMDs are not pocket-sized or suitable for casual ferent designs and implemented several prototypes. One prototype use. Even lightweight HMDs are too big to be carried everywhere uses thin and light near-to-eye optics with a smartphone display, and may not always be available. They are very immersive and thus providing the user with the functionality of a large, high- suitable for use at homes and offices for many purposes, but they resolution virtual display. -
Immersive Virtual Reality Methods in Cognitive Neuroscience and Neuropsychology: Meeting the Criteria of the National Academy Of
Immersive virtual reality methods in cognitive neuroscience and neuropsychology: Meeting the criteria of the National Academy of Neuropsychology and American Academy of Clinical Neuropsychology Panagiotis Kourtesisa,b,c,d* and Sarah E. MacPhersone,f aNational Research Institute of Computer Science and Automation, INRIA, Rennes, France; bUniv Rennes, Rennes, France; cResearch Institute of Computer Science and Random Systems, IRISA, Rennes, France; dFrench National Centre for Scientific Research, CNRS, Rennes, France. eHuman Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK; fDepartment of Psychology, University of Edinburgh, Edinburgh, UK; * Panagiotis Kourtesis, National Research Institute of Computer Science and Automation, INRIA, Rennes, France. Email: [email protected] Abstract Clinical tools involving immersive virtual reality (VR) may bring several advantages to cognitive neuroscience and neuropsychology. However, there are some technical and methodological pitfalls. The American Academy of Clinical Neuropsychology (AACN) and the National Academy of Neuropsychology (NAN) raised 8 key issues pertaining to Computerized Neuropsychological Assessment Devices. These issues pertain to: (1) the safety and effectivity; (2) the identity of the end-user; (3) the technical hardware and software features; (4) privacy and data security; (5) the psychometric properties; (6) examinee issues; (7) the use of reporting services; and (8) the reliability of the responses and results. The VR Everyday Assessment Lab (VR-EAL) is the first immersive VR neuropsychological battery with enhanced ecological validity for the assessment of everyday cognitive functions by offering a pleasant testing experience without inducing cybersickness. The VR-EAL meets the criteria of the NAN and AACN, addresses the methodological pitfalls, and brings advantages for neuropsychological testing. -
Whitepaper Head Mounted Displays & Data Glasses Applications and Systems
Whitepaper Head Mounted Displays & Data Glasses Applications and Systems Dr.-Ing. Dipl.-Kfm. Christoph Runde Virtual Dimension Center (VDC) Fellbach Auberlenstr. 13 70736 Fellbach www.vdc-fellbach.de © Competence Centre for Virtual Reality and Cooperative Engineering w. V. – Virtual Dimension Center (VDC) System classes Application fields Directions of development Summary Content . System classes Head Mounted Display (HMD) – Video glasses – Data glasses . Simulator disease / Cyber Sickness . Application fields HMDs: interior inspections, training, virtual hedging engineering / ergonomics . Application fields data glasses: process support, teleservice, consistency checks, collaboration . Directions of development: technical specifications, (eye) tracking, retinal displays, light field technology, imaging depth sensors . Application preconditions information & integration (human, IT, processes) . Final remark 2 SystemSystem classes classes Application fields Directions of development Summary Head Mounted Displays (HMDs) – Overview . 1961: first HMD on market . 1965: 3D-tracked HMD by Ivan Sutherland . Since the 1970s a significant number of HMDs is applied in the military sector (training, additional display) Table: Important HMD- projects since the 1970s [Quelle: Li, Hua et. al.: Review and analysis of avionic helmet-mounted displays. In : Op-tical Engineering 52(11), 110901, Novembre2013] 3 SystemSystem classes classes Application fields Directions of development Summary Classification HMD – Video glasses – Data glasses Head Mounted Display -
When VR Really Hits the Street Panel Transcript Final
When VR Really Hits the Street Panel presented at the 2014 SPIE “Engineering of Virtual Reality” Session. Session Chairs Ian MCDowell and Margaret Dolinsky February 3, 2014 Panel Moderator JaCki Morie, All These Worlds, LLC (JFM) Panelists, VR Pioneers Brenda Laurel (BL) and Margaret Dolinsky (MD) AudienCe member partiCipants (AM) JFM: Welcome everybody. I am really excited to be doing this panel. My name is Jacki Morie and I have some illustrious VR people here with me today. Here’s our schedule on the slide, which we’ll try to keep to so we can get a lot of information covered. This is not only about us up here as panelists; it is also about you. We have an extra seat up here and there will times during the presentation that ask YOU to come up and be part of the panel. This panel was actually inspired by recent events – that Silvia (Ruzanka) mentioned in her talk earlier – the new devices coming out, how inexpensive they are, and how much better they are than what we had 20-25 years ago. So many of us who have worked in VR are looking at this and wondering: What is this? Is this the Second Coming, or is this the Second Coming of more hype? We have to figure this out. So my idea was to bring some experts in and have this conversation. Do we really have what we dreamed of 25 years ago or is there still a big gap between what we need and what’s still coming in today? So that’s what we are going to be talking about today. -
Recommendations for Integrating a P300-Based Brain–Computer Interface in Virtual Reality Environments for Gaming: an Update
computers Review Recommendations for Integrating a P300-Based Brain–Computer Interface in Virtual Reality Environments for Gaming: An Update Grégoire Cattan 1,* , Anton Andreev 2 and Etienne Visinoni 3 1 IBM, Cloud and Cognitive Software, Department of SaferPayment, 30-150 Krakow, Poland 2 GIPSA-lab, CNRS, Department of Platforms and Project, 38402 Saint Martin d’Hères, France; [email protected] 3 SputySoft, 75004 Paris, France; [email protected] * Correspondence: [email protected] Received: 19 September 2020; Accepted: 12 November 2020; Published: 14 November 2020 Abstract: The integration of a P300-based brain–computer interface (BCI) into virtual reality (VR) environments is promising for the video games industry. However, it faces several limitations, mainly due to hardware constraints and limitations engendered by the stimulation needed by the BCI. The main restriction is still the low transfer rate that can be achieved by current BCI technology, preventing movement while using VR. The goal of this paper is to review current limitations and to provide application creators with design recommendations to overcome them, thus significantly reducing the development time and making the domain of BCI more accessible to developers. We review the design of video games from the perspective of BCI and VR with the objective of enhancing the user experience. An essential recommendation is to use the BCI only for non-complex and non-critical tasks in the game. Also, the BCI should be used to control actions that are naturally integrated into the virtual world. Finally, adventure and simulation games, especially if cooperative (multi-user), appear to be the best candidates for designing an effective VR game enriched by BCI technology. -
Flightsim Community Survey 2019
FlightSim Community Survey 2019 Final Report 1 Copyright Notice © 2020 Navigraph By licensing our work with the CC BY-SA 4.0 license it means that you are more than welcome to copy, remix, transform and build upon the results of this survey and then redistribute it to whomever you want in any way. You only have to give credit back to Navigraph and keep the same license. https://creativecommons.org/licenses/by-sa/4.0/ 2 Preamble This is the annual flightsim community survey, a collaborative effort between partners – developers, companies and organizations in the flightsim domain – coordinated and compiled by Navigraph. This survey is freely distributed for the common good of the flightsim community to guide future projects and attract new pilots. This flightsim community survey is the largest and most comprehensive of its kind. This year 17,800 respondents participated in the survey. This is an 18.6% increase from last year when 15,000 participated. This year’s survey consisted of 93 questions, compared to last year’s 77 questions. However, this year many more of the questions were conditional, allowing us to add new sections and ask in-depth questions only to those respondents for whom it was relevant. New sections this year contained questions specifically aimed at pilots using flight simulator software on mobile devices and helicopter flight simulators. We also added questions on combat simulators, air traffic control and flight planning. Finally, because of the upcoming release of the new Microsoft Flight Simulator 2020, we added questions on this topic as well. Our main objective this year was to recruit more and diverse partners to broaden the reach of the survey to get an even more representative sample of the community. -
Équipement Léger De Simulation À Domicile
Équipement léger de simulation à domicile Le confinement vous a incité à trouver des solutions pour voler par-delà les interdictions administratives ou une météo capricieuse ? Alors, un ordinateur, un manche, CONDOR 2 et vous voilà prêt (à minima) à décoller *! *Les matériels que vous trouverez ci-dessous ont été testées par les membres du groupe « lab Planeur FFVP ». Ces préconisations ne sont pas exhaustives mais représentent le meilleur rapport qualité/prix du moment sur le matériel testé. Les liens vers les commerces en ligne sont proposés à titre indicatif et la FFVP n’a contracté aucun partenariat avec le distributeur ni le fabricant. Les matériels sont susceptibles d’être trouvés dans tout commerce dédié à un prix inférieur. Les prix peuvent variés d’un jour à l’autre suivant les promotions. Matériel requis : 1) Ordinateur : • Avec ou sans Track IR : processeur I3 minimum avec 4 Go de mémoire, carte graphique GTX 1050 TI • Avec un casque de réalité virtuelle : processeur I7 avec 8Go de mémoire carte graphique GTX 1080 2) Condor 2 et accès réseau internet En plus d’acquérir Condor 2 et de disposer d’un réseau internet de qualité, il vous faudra un disque dur de 500 Go minimum (recommandé 1 ou 2 To) pour stocker les scènes Condor... 3) Le matériel de vol Un joystick avec au minimum 1 manette de gaz et 8 boutons. Si vous voulez allez plus loin, nous conseillons l’acquisition d’un palonnier (ou la fabrication maison avec les nombreux tutos que vous trouverez via internet). a) manche à moins de 75€ Manche thrusmaster T 16000 FCS PC b) palonnier à moins de 150 € Thrustmaster TFRP Rudder c) les combinés manche/palonnier (150 à 250€) ▪ T.16000M FCS FLIGHT PACK (palonnier + manche avec trim 16 boutons + manette des gaz pour volet ou aérofreins) ▪ Thrusmaster T flight à 150 € environ Pour aller plus loin pour votre confort de pilotage Vous pouvez acquérir un Track Ir ou un masque de réalité virtuelle. -
Applikationszentrum V/AR Bericht #08: Head-Mounted Displays
Bericht #08: Head-Mounted Displays: Messung des Sichtfelds (Field of View) Stand: v12. 06.11.2020 Inhalt 1. Einführung - Aufgabenstellung ........................................................................................................ 3 2. Messaufbau ..................................................................................................................................... 4 3. Messverfahren ................................................................................................................................. 6 4. Messergebnisse ............................................................................................................................... 7 5. Schlussfolgerungen ........................................................................................................................ 14 6. Limitationen ................................................................................................................................... 16 7. Glossar ........................................................................................................................................... 17 8. Messprotokoll ................................................................................................................................ 18 9. Literaturverzeichnis ....................................................................................................................... 19 10. Impressum .................................................................................................................................... -
Laval Virtual's Missions Are to Gather, Inspire and Valorize Involved in This Study
The VR/AR special edition #4 health Clinical VR Medicine Well Being #EDITORIAL How VR is changing the way women breast cancer is diagnosed, treated and managed LAURENT CHRÉTIEN DIRECTOR / LAVAL VIRTUAL ancer cells live in complex communities. They will then take all the information they Just like houses in a city, each cell in a collect about the cells in a tumour and use it tumour is different from its neighbour, to construct a 3D version that can be studied Cand relies on infrastructure to support using virtual reality. its existence. And we know that there are different neighbourhoods, some worse than Using virtual reality will allow scientists others. Where we have roads, tumours contain to immerse themselves in a tumour, blood vessels that deliver nutrients, and act meaning they can study patterns and other as highways for different cell types to move characteristics within it, in entirely new around. And when a tumour spreads, the can- ways that aren’t possible in 2D. It will also cer cells themselves use these blood ‘roads’ to allow multiple doctors and scientists to look migrate. at a tumour at the same time, meaning people at opposite ends of a country, and with different areas of expertise, can What the healthcare experts need is a Google Earth-like view work together to help diagnose and treat patients better. And of a tumour. If they could make a 3D map, they would find with the Covid19 crisis, the use of virtual reality to cooperate new targets for treatment and, eventually, could use this view remotely is even more obvious! to track what’s going on in real time, such as in response to treatment. -
Contribution to the Study of Projection-Based Systems for Industrial Applications in Mixed Reality Guillaume Cortes
Contribution to the study of projection-based systems for industrial applications in mixed reality Guillaume Cortes To cite this version: Guillaume Cortes. Contribution to the study of projection-based systems for industrial applications in mixed reality. Graphics [cs.GR]. Université Rennes 1, 2018. English. NNT : 2018REN1S044. tel-02000387 HAL Id: tel-02000387 https://tel.archives-ouvertes.fr/tel-02000387 Submitted on 1 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE L'UNIVERSITE DE RENNES 1 COMUE UNIVERSITE BRETAGNE LOIRE ECOLE DOCTORALE N° 601 Mathématiques et Sciences et Technologies de l'Information et de la Communication Spécialité : Informatique Par Guillaume CORTES Contribution to the Study of Projection-based Systems for Industrial Applications in Mixed Reality Thèse à présenter et soutenir à Rennes, le 24/10/18 Unité de recherche : IRISA – UMR6074 Thèse N° : Rapporteurs avant soutenance : Marie-Odile Berger Directrice de Recherche Inria à Inria Nancy Martin Hachet Directeur de Recherche Inria à Inria Bordeaux Composition du Jury : Rapporteurs : Marie-Odile Berger Directrice de Recherche Inria à Inria Nancy Martin Hachet Directeur de Recherche Inria à Inria Bordeaux Examinateurs : Sabine Coquillart Directrice de Recherche Inria à Inria Grenoble Guillaume Moreau Professeur à l’Ecole Centrale de Nantes Co-dir.