Biodiversity of Bryophytes Growing on the Faeces of Ungulates – a Case Study from North-Eastern Poland
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mississippi Natural Heritage Program Special Plants - Tracking List -2018
MISSISSIPPI NATURAL HERITAGE PROGRAM SPECIAL PLANTS - TRACKING LIST -2018- Approximately 3300 species of vascular plants (fern, gymnosperms, and angiosperms), and numerous non-vascular plants may be found in Mississippi. Many of these are quite common. Some, however, are known or suspected to occur in low numbers; these are designated as species of special concern, and are listed below. There are 495 special concern plants, which include 4 non- vascular plants, 28 ferns and fern allies, 4 gymnosperms, and 459 angiosperms 244 dicots and 215 monocots. An additional 100 species are designated “watch” status (see “Special Plants - Watch List”) with the potential of becoming species of special concern and include 2 fern and fern allies, 54 dicots and 44 monocots. This list is designated for the primary purposes of : 1) in environmental assessments, “flagging” of sensitive species that may be negatively affected by proposed actions; 2) determination of protection priorities of natural areas that contain such species; and 3) determination of priorities of inventory and protection for these plants, including the proposed listing of species for federal protection. GLOBAL STATE FEDERAL SPECIES NAME COMMON NAME RANK RANK STATUS BRYOPSIDA Callicladium haldanianum Callicladium Moss G5 SNR Leptobryum pyriforme Leptobryum Moss G5 SNR Rhodobryum roseum Rose Moss G5 S1? Trachyxiphium heteroicum Trachyxiphium Moss G2? S1? EQUISETOPSIDA Equisetum arvense Field Horsetail G5 S1S2 FILICOPSIDA Adiantum capillus-veneris Southern Maidenhair-fern G5 S2 Asplenium -
Liverworts, Mosses and Hornworts of Afghanistan - Our Present Knowledge
ISSN 2336-3193 Acta Mus. Siles. Sci. Natur., 68: 11-24, 2019 DOI: 10.2478/cszma-2019-0002 Published: online 1 July 2019, print July 2019 Liverworts, mosses and hornworts of Afghanistan - our present knowledge Harald Kürschner & Wolfgang Frey Liverworts, mosses and hornworts of Afghanistan ‒ our present knowledge. – Acta Mus. Siles. Sci. Natur., 68: 11-24, 2019. Abstract: A new bryophyte checklist for Afghanistan is presented, including all published records since the beginning of collection activities in 1839 ‒1840 by W. Griffith till present. Considering several unidentified collections in various herbaria, 23 new records for Afghanistan together with the collection data can be added to the flora. Beside a new genus, Asterella , the new records include Amblystegium serpens var. serpens, Brachythecium erythrorrhizon, Bryum dichotomum, B. elwendicum, B. pallens, B. weigelii, Dichodontium palustre, Didymodon luridus, D. tectorum, Distichium inclinatum, Entosthodon muhlenbergii, Hygroamblystegium fluviatile subsp. fluviatile, Oncophorus virens, Orthotrichum rupestre var. sturmii, Pogonatum urnigerum, Pseudocrossidium revolutum, Pterygoneurum ovatum, Schistidium rivulare, Syntrichia handelii, Tortella inflexa, T. tortuosa, and Tortula muralis subsp. obtusifolia . Therewith the number of species increase to 24 liverworts, 246 mosses and one hornwort. In addition, a historical overview of the country's exploration and a full biogeography of Afghan bryophytes is given. Key words: Bryophytes, checklist, flora, phytodiversity. Introduction Recording, documentation, identification and classification of organisms is a primary tool and essential step in plant sciences and ecology to obtain detailed knowledge on the flora of a country. In many countries, such as Afghanistan, however, our knowledge on plant diversity, function, interactions of species and number of species in ecosystems is very limited and far from being complete. -
Volume 1, Chapter 5-3: Ecophysiology of Development: Protonemata
Glime, J. M. 2017. Ecophysiology of Development: Protonemata. Chapt. 5-3. In: Glime, J. M. Bryophyte Ecology. Volume 1. 5-3-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 17 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 5-3 ECOPHYSIOLOGY OF DEVELOPMENT: PROTONEMATA TABLE OF CONTENTS The Protonema .................................................................................................................................................... 5-3-2 Water Relations ................................................................................................................................................... 5-3-5 Seasonal Light/Temperature Changes ................................................................................................................. 5-3-5 Light .................................................................................................................................................................... 5-3-6 Light Intensity .............................................................................................................................................. 5-3-6 Light Quality ................................................................................................................................................ 5-3-9 Photoperiod ............................................................................................................................................... -
Patterns of Bryophyte Succession in a 160-Year Chronosequence in Deciduous and Coniferous Forests of Boreal Alaska Mélanie Jean, Heather D
1021 ARTICLE Patterns of bryophyte succession in a 160-year chronosequence in deciduous and coniferous forests of boreal Alaska Mélanie Jean, Heather D. Alexander, Michelle C. Mack, and Jill F. Johnstone Abstract: Bryophytes are dominant components of boreal forest understories and play a large role in regulating soil microcli- mate and nutrient cycling. Therefore, shifts in bryophyte communities have the potential to affect boreal forests’ ecosystem processes. We investigated how bryophyte communities varied in 83 forest stands in interior Alaska that ranged in age (since fire) from 8 to 163 years and had canopies dominated by deciduous broadleaf (Populus tremuloides Michx. or Betula neoalaskana Sarg.) or coniferous trees (Picea mariana Mill B.S.P.). In each stand, we measured bryophyte community composition, along with environ- mental variables (e.g., organic layer depth, leaf litter cover, moisture). Bryophyte communities were initially similar in deciduous vs. coniferous forests but diverged in older stands in association with changes in organic layer depth and leaf litter cover. Our data suggest two tipping points in bryophyte succession: one at the disappearance of early colonizing taxa 20 years after fire and another at 40 years after fire, which corresponds to canopy closure and differential leaf litter inputs in mature deciduous and coniferous canopies. Our results enhance understanding of the processes that shape compositional patterns and ecosystem services of bryophytes in relation to stand age, canopy composition, and changing disturbances such as fire that may trigger changes in canopy composition. Key words: boreal forest, succession, moss, chronosequence, leaf litter, canopy effects, fire, bryophyte. Résumé : Les bryophytes sont des éléments dominants du sous-bois de la forêt boréale et jouent un grand rôle dans la régulation du recyclage des nutriments et du microclimat dans le sol. -
Cypripedium Botanical Investigation
Conservation Assessment for Meesia triquetra (L.) Aongstr. (three-ranked hump-moss) and Meesia uliginosa Hedwig (broad-nerved hump-moss) in California with a focus on the Sierra Nevada Bioregion Prepared by: Colin Dillingham VMS Enterprise Team 39696 Hwy 70 Quincy, CA 95971 [email protected] (530)-283-7658 Version 1.2 3 May 2005 TABLE OF CONTENTS Executive Summary………………………………..……2 Taxonomy, Biology and Habitat Information……..…….3 Ecological Relationships……………………………….17 Management………………..……………………..……19 Conservation Considerations…………………………..23 Data Gaps and Needed Research………………………24 Literature Cited…………………………………….…..26 Appendices…………………………………………….29 I. Executive Summary Project Purpose: The primary objective of this investigation is to determine the status of the mosses Meesia triquetra and Meesia uliginosa throughout California with a primary focus on the Sierra Nevada bioregion within the context of the species’ global range. A conservation assessment provides the founding information to guide management and monitoring plan development. Range: Meesia triquetra is a circumboreal moss. The species is well distributed in the Northern Hemisphere with scattered southern hemisphere locations as well. The world distribution includes Europe, Asia, Australia, Papua New Guinea, and Venezuela (Montagnes 1990). North American collections have been made from Alaska to northern California in the west and Labrador and Newfoundland south to Pennsylvania and Wisconsin in the east. A large number of Central and Western European populations are now extinct due to human activities (Odgaard 1988). In California, there were 74 occurrences with the majority in the Sierra Nevada Mountains since 1980. Meesia uliginosa has a continuous circumboreal distribution, with disjunct occurrences in Tierra del Fuego, the Himalayas (Vitt 1992) and Antarctica (Ochyra and Lewis-Smith 1999). -
Checklist of Oregon Mosses Author(S): John A
Checklist of Oregon Mosses Author(s): John A. Christy, John H. Lyford and David H. Wagner Source: The Bryologist, Vol. 85, No. 1 (Spring, 1982), pp. 22-36 Published by: American Bryological and Lichenological Society Stable URL: http://www.jstor.org/stable/3243138 . Accessed: 27/08/2013 18:52 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Bryological and Lichenological Society is collaborating with JSTOR to digitize, preserve and extend access to The Bryologist. http://www.jstor.org This content downloaded from 128.193.8.24 on Tue, 27 Aug 2013 18:52:50 PM All use subject to JSTOR Terms and Conditions The Bryologist 85(1), 1982, pp. 22-36 Copyright@ 1982by the AmericanBryological and LichenologicalSociety, Inc. Checklist of Oregon Mosses JOHN A. CHRISTY MilwaukeePublic Museum,800 Wells St., Milwaukee,WI 53233 JOHN H. LYFORD Departmentof GeneralScience, OregonState University, Corvallis, OR 97331 DAVID H. WAGNER Herbarium,Department of Biology, University of Oregon, Eugene, OR 97403 Abstract. The moss flora of Oregon presently includes 441 taxa, based on herbarium records and literature reports. This list enumerates 411 species and 30 varieties of mosses, representing 134 genera in 41 families, known or reported from the state of Oregon. -
On the Axillary Hairs of Leptobryum (Meesiaceae
Arctoa (2001) 10: 189-200 ON THE AXILLARY HAIRS OF LEPTOBRYUM (MEESIACEAE, MUSCI) AND SOME OTHER ACROCARPOUS MOSSES Î ÏÀÇÓØÍÛÕ ÂÎËÎÑÊÀÕ LEPTOBRYUM (MEESIACEAE, MUSCI) È ÍÅÊÎÒÎÐÛÕ ÄÐÓÃÈÕ ÂÅÐÕÎÏËÎÄÍÛÕ ÌÕΠVALERIJ I. ZOLOTOV1 & MICHAEL S. IGNATOV1 ÂÀËÅÐÈÉ È. ÇÎËÎÒÎÂ1 È ÌÈÕÀÈË Ñ. ÈÃÍÀÒÎÂ1 Abstract Axillary hairs of 55 species of genera Amblyodon, Aplodon, Aulacomnium, Brachymitrion, Breutelia, Bryobrittonia, Bryum, Catoscopium, Encalypta, Funaria, Leptobryum, Meesia, Mnium, Orthodontium, Orthotrichum, Paludella, Philonotis, Plagiomnium, Plagiopus, Pohlia, Pyrrobryum, Rhodobryum, Rhizomnium, Splachnum, Tayloria, Tetraplodon, Timmia, Ulota, Voitia, Zygodon are described (and illustrated for most of genera). Axillary hair morphol- ogy is in agreement with the placement of Leptobryum in Meesiaceae, a family close to Splachnaceae. Similarity of axillary hairs in Encalyptaceae and Timmiaceae, as well as in Mnium and Rhizomnium is outlined. Ðåçþìå Ïàçóøíûå âîëîñêè 55 âèäîâ èç ðîäîâ Amblyodon, Aplodon, Aulacomnium, Brachymitrion, Breutelia, Bryobrittonia, Bryum, Catoscopium, Encalypta, Funaria, Leptobryum, Meesia, Mnium, Orthodontium, Orthotrichum, Paludells, Philonotis, Plagiomnium, Plagiopus, Pohlia, Pyrrobryum, Rhodobryum, Rhizomnium, Splachnum, Tayloria, Tetraplodon, Timmia, Ulota, Voitia, Zygodon îïèñàíû (è äëÿ áîëüøèíñòâà ðîäîâ òàêæå ïðîèëëþñòðèðîâàíû). Ñòðîåíèå ïàçóøíûõ âîëîñêîâ ñâèäåòåëüñòâóåò â ïîëüçó ïîìåùåíèÿ Leptobryum â Meesiaceae, êîòîðîå ðàññìàòðèâàåòñÿ êàê ðîäñòâåííîå Splachnaceae. Îòìå÷åíî ñõîäñòâî ïàçóøíûõ âîëîñêîâ Encalyptaceae è Timmiaceae, à òàêæå Mnium è Rhizomnium. Recent advances in the analysis of DNA all regional floras). Molecular data removed Lep- sequence data of mosses brought the evidenc- tobryum from Bryaceae, and put it very definite- es that both morphological and molecular data ly in proximity to Meesiaceae, in a rather isolat- lead to the generally identical classification, ed clade, which includes also Splachnaceae (Hed- at least at the level of families and genera. -
An Updated List of Mosses of Korea
Journal of Species Research 9(4):377-412, 2020 An updated list of mosses of Korea Wonhee Kim1,*, Masanobu Higuchi2 and Tomio Yamaguchi3 1National Institute of Biological Resources, 42 Hwangyeong-ro, Seo-gu, Incheon 22689 Republic of Korea 2Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba 305-0005 Japan 3Program of Basci Biology, Graduate School of Integrated Science for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima-shi 739-8526 Japan *Correspondent: [email protected] Cardot (1904) first reported 98 Korean mosses, which were collected from Busan, Gangwon Province, Mokpo, Seoul, Wonsan and Pyongyang by Father Faurie in 1901. Thirty-four of these species were new species to the world. However, eight of these species have been not listed to the moss checklist of Korea before this study. Thus, this study complies the literature including Korean mosses, and lists all the species there. As the result, the moss list of Korea is updated as including 775 taxa (728 species, 7 subspecies, 38 varieties, 2 forma) arranged into 56 families and 250 genera. This list include species that have been newly recorded since 1980. Brachythecium is the largest genus in Korea, and Fissidens, Sphagnum, Dicranum and Entodon are relatively large. Additionally, this study cites specimens collected from Jeju Island, Samcheok, Gangwon Province, and Socheong Island, and it is possible to confirm the distribution of 338 species in Korea. Keywords: bryophytes, checklist, Korea, mosses, updated Ⓒ 2020 National Institute of Biological Resources DOI:10.12651/JSR.2020.9.4.377 INTRODUCTION Choi (1980), Park and Choi (2007) reported a “New List of Bryophytes in Korea” by presenting an overview of The first study on Korean bryophytes was published by bryophytes surveyed in Mt. -
Moss Flora of Angkor, Cambodia
Bull. Natl. Mus. Nat. Sci., Ser. B, 35(3), pp. 141–150, September 22, 2009 Moss Flora of Angkor, Cambodia Masanobu Higuchi Department of Botany, National Museum of Nature and Science, Amakubo 4–1–1, Tsukuba 305–0005, Japan E-mail: [email protected] Abstract The moss flora of Angkor, Cambodia, was investigated in 2005 and 2006 with special attention to Ta Nei site. The bryophytes recognized comprise 11 families, 14 genera and 19 species. Calymperes motleyi, Ectropothecium dealbatum, Fissidens crenulatus, F. flaccidus, F. teysmannianus, Hyophila rosea, Leptobryum pyriforme, Scopelophila cataractae and Splachno- bryum flaccidum are reported as new to the moss flora of Cambodia. For each species recognized here, locality, substrate, specimen number and taxonomic note are provided. Key words : Angkor, Cambodia, mosses, Ta Nei. study is to investigate the moss flora of Angkor Introduction and compile it based on the specimens collected. This study deals with the moss flora of Angkor, Cambodia based on the collections Materials and Methods under a research program, “Research on the dete- rioration and conservation of materials constitut- Field studies were carried out in December ing cultural heritage in Asia,” by the National 2005 and July 2006 and a total of ca. 100 speci- Research Institute for Cultural Properties, Tokyo, mens were collected. The sites investigated are Japan in collaboration with the Authority for the divided as follows. The collections are preserved Protection and Management of Angkor and the in the herbarium of the National Museum of Region of Siem Reap, Cambodia. In 2005 and Nature and Science (TNS). 2006 I made field researches and collected I: Prasat Suor Prat, 30 m alt., 13°27ЈN, 103°53ЈE, bryophytes mainly from Ta Nei site (13°27ЈN, December 15, 2005. -
Checklist and Country Status of European Bryophytes – Towards a New Red List for Europe
ISSN 1393 – 6670 Checklist and country status of European bryophytes – towards a new Red List for Europe Cover image, outlined in Department Green Irish Wildlife Manuals No. 84 Checklist and country status of European bryophytes – towards a new Red List for Europe N.G. Hodgetts Citation: Hodgetts, N.G. (2015) Checklist and country status of European bryophytes – towards a new Red List for Europe. Irish Wildlife Manuals, No. 84. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht, Ireland. Keywords: Bryophytes, mosses, liverworts, checklist, threat status, Red List, Europe, ECCB, IUCN Swedish Speices Information Centre Cover photograph: Hepatic mat bryophytes, Mayo, Ireland © Neil Lockhart The NPWS Project Officer for this report was: [email protected] Irish Wildlife Manuals Series Editors: F. Marnell & R. Jeffrey © National Parks and Wildlife Service 2015 Contents (this will automatically update) PrefaceContents ......................................................................................................................................................... 1 1 ExecutivePreface ................................ Summary ............................................................................................................................ 2 2 Acknowledgements 2 Executive Summary ....................................................................................................................................... 3 Introduction 3 Acknowledgements ...................................................................................................................................... -
A Miniature World in Decline: European Red List of Mosses, Liverworts and Hornworts
A miniature world in decline European Red List of Mosses, Liverworts and Hornworts Nick Hodgetts, Marta Cálix, Eve Englefield, Nicholas Fettes, Mariana García Criado, Lea Patin, Ana Nieto, Ariel Bergamini, Irene Bisang, Elvira Baisheva, Patrizia Campisi, Annalena Cogoni, Tomas Hallingbäck, Nadya Konstantinova, Neil Lockhart, Marko Sabovljevic, Norbert Schnyder, Christian Schröck, Cecilia Sérgio, Manuela Sim Sim, Jan Vrba, Catarina C. Ferreira, Olga Afonina, Tom Blockeel, Hans Blom, Steffen Caspari, Rosalina Gabriel, César Garcia, Ricardo Garilleti, Juana González Mancebo, Irina Goldberg, Lars Hedenäs, David Holyoak, Vincent Hugonnot, Sanna Huttunen, Mikhail Ignatov, Elena Ignatova, Marta Infante, Riikka Juutinen, Thomas Kiebacher, Heribert Köckinger, Jan Kučera, Niklas Lönnell, Michael Lüth, Anabela Martins, Oleg Maslovsky, Beáta Papp, Ron Porley, Gordon Rothero, Lars Söderström, Sorin Ştefǎnuţ, Kimmo Syrjänen, Alain Untereiner, Jiri Váňa Ɨ, Alain Vanderpoorten, Kai Vellak, Michele Aleffi, Jeff Bates, Neil Bell, Monserrat Brugués, Nils Cronberg, Jo Denyer, Jeff Duckett, H.J. During, Johannes Enroth, Vladimir Fedosov, Kjell-Ivar Flatberg, Anna Ganeva, Piotr Gorski, Urban Gunnarsson, Kristian Hassel, Helena Hespanhol, Mark Hill, Rory Hodd, Kristofer Hylander, Nele Ingerpuu, Sanna Laaka-Lindberg, Francisco Lara, Vicente Mazimpaka, Anna Mežaka, Frank Müller, Jose David Orgaz, Jairo Patiño, Sharon Pilkington, Felisa Puche, Rosa M. Ros, Fred Rumsey, J.G. Segarra-Moragues, Ana Seneca, Adam Stebel, Risto Virtanen, Henrik Weibull, Jo Wilbraham and Jan Żarnowiec About IUCN Created in 1948, IUCN has evolved into the world’s largest and most diverse environmental network. It harnesses the experience, resources and reach of its more than 1,300 Member organisations and the input of over 10,000 experts. IUCN is the global authority on the status of the natural world and the measures needed to safeguard it. -
A Revised Checklist of Hawaiian Mosses
Tropical Bryology 25: 35-69, 2004 A revised checklist of Hawaiian mosses G. W. Staples, C. T. Imada, W. J. Hoe, and C. W. Smith Correction for Page 38: Hawaiian Moss Flora in Summary Endemic Indigenous Alien Total Families 0 41 1 42 Genera 2 126 7 135 Species 75 166 14 255 Total named taxa 90 169 14 273 Correction for Page 39: Frahm et al. 2000, cited under Amphidium tortuosum, should correctly refer to the following: Frahm, J.-P., T. Klöcker, R. Schmidt, and C. Schöter. 2000. Revision der Gattung Amphidium (Musci, Dicranaceae). Tropical Bryology 18: 173-184. Revised checklist of Hawaiian mosses 35 Tropical Bryology 25: 35-69, 2004 A revised checklist of Hawaiian mosses1 G. W. StaplesA, C. T. ImadaA, W. J. Hoe,B and C. W. SmithC A – Hawaii Biological Survey, Bishop Museum, 1525 Bernice St., Honolulu, Hawaii 96817 U.S.A. B – deceased; C – Department of Botany, The Natural History Museum, Cromwell Road, London, SW7 5BD, U.K. Abstract. A revised and updated literature-based checklist of Hawaiian mosses is presented. Geographic coverage includes the eight main Hawaiian Islands; the Northwestern Hawaiian Islands are excluded. The checklist is alphabetically ordered by scientific names; the family is noted for each genus. Synonyms and misapplied names are cross-referenced to the accepted names. A bibliography of supporting references is included. Introduction cryptogamic plants—the mosses. Also in The Hawaii Biological Survey (HBS) was preparation by HBS staff members are checklists established as a program of Bishop Museum by and bibliographies for the Hawaiian anthocerotes the Hawaii State Legislature in 1992, specifically (hornworts) and hepatics (liverworts).