Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2017 Depth of Field Depth of Field from London and Upton

Total Page:16

File Type:pdf, Size:1020Kb

Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2017 Depth of Field Depth of Field from London and Upton Lecture 22: Cameras & Lenses III Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2017 Depth of Field Depth of Field From London and Upton From • Depth of field is the range of object depths that are rendered with acceptable sharpness in an image CS184/284A Ren Ng from subjects closer than “infinity” Depth of field circle of confusion by the F number, converge at a point in the focal plane. The area in front of and behind a focused regardless of the lens focal length. With subject in which the photographed image modern autofocus SLR cameras, focusing CircleFigure-15 of ConfusionRelationship Between for the IdealDepth Focal of Fieldappears sharp. In other words, the depth of is performed by detecting the state of Point and the Permissible Circle of sharpness to the front and rear of the Confusion and DepthSet of circle Field of confusion as the maximum focus in the image plane (focal plane) permissible blur spot on the image planesubject that where image blur in the focal using a sensor which is both optically will appear sharp under final viewing conditions • For printed photographs from 35mmplane film, falls within the limits of the equivalent (1:1 magnification) and 0.025mm (on negative) is typical permissible circle of confusion. Depth of positioned out of the focal plane, and • For digital image sensors, 1 pixel is typical (e.g. 1.4 micron for phones) field varies according to the lens’ focal automatically controlling the lens to bring • Larger if intended for viewing at web resolution, or if lens is poor length, aperture value and shooting the subject image within the depth of distance, so III] [Canon, EF Lens Work if these values are known, a focus area. Lens Ideal focal point rough estimate of the depth of field can be Figure-17 Relationship Between Depth of Fr on o t d calculated using the following formulas: Focus and Aperture f fi ep eld th 2 2 Re Front depth of field = d·F·a /(f + d·F·a) 50mm f/1.8 D ar ep of de 2 2 Aperture th fie pt Permissible of ld h Rear depth of field = d·F·a /(f — d·F·a) foc circle of confusion us f: focal length F: F number d: minimum f/1.8 Permissible circle of confusion circle of confusion diameter CS184/284A a:Ren subject Ng distance (distance from the Circle of confusion first principal point to subject) Depth of focus at maximum aperture Since all lenses contain a certain amount Aperture hyperfocal distance × Permissible of spherical aberration and astigmatism, Near point limiting shooting distance circle of confusion = they cannot perfectly converge rays from a distance hyperfocal distance + f/5.6 subject point to form a true image point shooting distance Depth of hyperfocal distance × focus at f/5.6 (i.e., an infinitely small dot with zero area). Far point limiting shooting distance distance = In other words, images are formed from a hyperfocal distance - shooting distance composite of dots (not points) having a (Shooting distance: Distance from focal plane to subject) Hyperfocal distance certain area, or size. Since the image Using the depth of field principle, as a becomes less sharp as the size of these If the hyperfocal distance is known, the lens is gradually focused to farther dots increases, the dots are called “circles following formulas can also be used: subject distances, a point will eventually of confusion.” Thus, one way of indicating In general photography, depth of field is be reached where the far limit of the the quality of a lens is by the smallest dot characterised by the following attributes: rear depth of field will be equivalent to it can form, or its “minimum circle of ቢ Depth of field is deep at short focal “infinity.” The shooting distance at this confusion.” The maximum allowable dot lengths, shallow at long focal lengths. point, i,e., the closest shooting distance size in an image is called the “permissible ባ Depth of field is deep at small at which “infinity” falls within the depth circle of confusion.” apertures, shallow at large apertures. of field, is called the hyperfocal distance. ቤ Depth of field is deep at far shooting The hyperfocal distance can be Permissible circle of confusion distances, shallow at close shooting determined as follows: The largest circle of confusion which still distances. appears as a “point” in the image. Image ብ Front depth of field is shallower Hyperfocal f 2 f: focal length F: F number distance = sharpness as sensed by the human eye is than rear depth of field. d•F number d: minimum circle of confusion closely related to the sharpness of the diameter Figure-16 Depth of Field and Depth of Focus actual image and the “resolution” of Minimum circle of confusion Thus, by presetting the lens to the human eyesight. In photography, image hyperfocal distance, the depth of field will sharpness is also dependent on the degree extend from a distance equal to half the Depth of field Depth of focus of image enlargement or projection hyperfocal distance to infinity. This distance and the distance from which the Far point Near point method is useful for presetting a large image is viewed. In other words, in depth of field and taking snapshots practical work it is possible to determine Front without having to worry about adjusting Rear Front depth of field depth depth of certain “allowances” for producing images focus the lens focus, especially when using a of field Near point distance which, although actually blurred to a Image Subject distance distance Rear wide-angle Photo-1 Hyperfocal Length Set certain degree, still appear sharp to the depth Condtion Far point distance of focus lens. (For observer. For 35mm single lens reflex Shooting distance example, when cameras, the permissible circle of confusion Focal plane the EF 20mm is about 1/1000~1/1500 the length of the f/2.8 USM is set film diagonal, assuming the image is Depth of focus to f/16 and the enlarged to a 5”×7” (12 cm × 16.5 cm) The area in front of and behind the focal shooting print and viewed from a distance of 25~30 plane in which the image can be distance is set cm/0.8~1 ft. EF lenses are designed to photographed as a sharp image. Depth of to the hyperfocal distance of ap- produce a minimum circle of confusion of focus is the same on both sides of the proximately 0.7m/2.3ft, all subjects within 0.035 mm, a value on which calculations image plane (focal plane) and can be a range of approximately 0.4m/1.3ft from for items such as depth of field are based. determined by multiplying the minimum the camera to infinity will be in focus.) 197 Depth of Field dN dS C A − = d A Depth of field Depth of focus N d d C S − F = dF A Circle of confusion, C f NN == DA 1 1 1 + = f f DF dF f 1 1 1 DF dF + = DS dS f DS dS 1 1 1 DN dN + = DN dN f DOF = D D F − N D f 2 D f 2 D = S D = S F f 2 NC(D f) N f 2 + NC(D f) − S − S − CS184/284A Ren Ng DOF Demonstration http://graphics.stanford.edu/courses/cs178/applets/dof.html CS184/284A Ren Ng Hyperfocal Distance The focus distance that maximizes the depth of field (such that infinity is at limit of acceptable sharpness) Hyperfocal DOF Hyperfocal distance H H/2 ∞ D f 2 D f 2 D = S D = S F f 2 NC(D f) N f 2 + NC(D f) − S − S − f 2 H As D ,D = H = + f, D = (Calculation omitted) F !1 S NC N 2 CS184/284A Ren Ng Ansel Adams, Mount Williamson Clearing Storm Other Focus / DOF Situations to Consider • How does sensor size affect defocus blur and DOF? • E.g. consider cell phone vs 35mm format sensors • For a given lens & f-stop, how does moving closer/ further from the subject (and adjusting focus onto subject) affect defocus / DOF of other objects? • In 1:1 macro, does focal length affect DOF? • What is the lens-sensor separation for hyperfocal condition, for full-resolution viewing vs web- resolution viewing? If you understand these, you understand lenses! CS184/284A Ren Ng Bokeh Bokeh Bokeh is the shape and quality of out-of-focus blur • For small, out-of-focus lights, bokeh takes on the shape of the lens aperture M Yashna, flickr, 40mm f/3.0 flickr, M Yashna, CS184/284A Ren Ng Bokeh diyphotography.net Heart-shaped bokeh? CS184/284A Ren Ng Bokeh Dino Quinzani, Leica Noctilux 50mm, f/0.95 Why does the bokeh vary across the image? CS184/284A Ren Ng The Psychological Effect of Shallow Depth of Field Dr. Joanne Liu, the president of Doctors without Borders, spoke on 10/7/15 in Geneva. Denis Balibouse/Reuters Hillary Clinton spoke during a campaign event at Cornell College in Mount Vernon, Iowa, on 10/7/15. Scott Morgan/Reuters https://www.youtube.com/watch?v=W5cbk0xVnzA Exposure Exposure • H = T x E • Exposure = time x irradiance • Exposure time (T) • Controlled by shutter (discussed last lecture) • Irradiance (E) • Power of light falling on a unit area of sensor • Controlled by f-stop (aperture and focal length) CS184/284A Ren Ng Exposure Controls in Photography Aperture size • Change the f-stop by opening / closing the aperture (if camera has iris control) Shutter speed • Change the duration the sensor pixels integrate light ISO gain • Change the amplification (analog and/or digital) between sensor values and digital image values CS184/284A Ren Ng Constant Exposure: F-Stop vs Shutter Speed Example: these pairs of aperture and shutter speed give equivalent exposure F-Stop 1.4 2.0 2.8 4.0 5.6 8.0 11.0 16.0 22.0 32.0 Shutter 1/500 1/250 1/125 1/60 1/30 1/15 1/8 1/4 1/2 1 If the exposure is too bright/dark, may need to adjust f-stop and/or shutter up/down.
Recommended publications
  • Camera System Considerations for Geomorphic Applications of Sfm Photogrammetry Adam R
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- ubP lished Research US Geological Survey 2017 Camera system considerations for geomorphic applications of SfM photogrammetry Adam R. Mosbrucker US Geological Survey, [email protected] Jon J. Major US Geological Survey Kurt R. Spicer US Geological Survey John Pitlick University of Colorado Follow this and additional works at: http://digitalcommons.unl.edu/usgsstaffpub Part of the Geology Commons, Oceanography and Atmospheric Sciences and Meteorology Commons, Other Earth Sciences Commons, and the Other Environmental Sciences Commons Mosbrucker, Adam R.; Major, Jon J.; Spicer, Kurt R.; and Pitlick, John, "Camera system considerations for geomorphic applications of SfM photogrammetry" (2017). USGS Staff -- Published Research. 1007. http://digitalcommons.unl.edu/usgsstaffpub/1007 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- ubP lished Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 42, 969–986 (2017) Published 2016. This article is a U.S. Government work and is in the public domain in the USA Published online 3 January 2017 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/esp.4066 Camera system considerations for geomorphic applications of SfM photogrammetry Adam R. Mosbrucker,1* Jon J. Major,1 Kurt R. Spicer1 and John Pitlick2 1 US Geological Survey, Vancouver, WA USA 2 Geography Department, University of Colorado, Boulder, CO USA Received 17 October 2014; Revised 11 October 2016; Accepted 12 October 2016 *Correspondence to: Adam R.
    [Show full text]
  • Colour Relationships Using Traditional, Analogue and Digital Technology
    Colour Relationships Using Traditional, Analogue and Digital Technology Peter Burke Skills Victoria (TAFE)/Italy (Veneto) ISS Institute Fellowship Fellowship funded by Skills Victoria, Department of Innovation, Industry and Regional Development, Victorian Government ISS Institute Inc MAY 2011 © ISS Institute T 03 9347 4583 Level 1 F 03 9348 1474 189 Faraday Street [email protected] Carlton Vic E AUSTRALIA 3053 W www.issinstitute.org.au Published by International Specialised Skills Institute, Melbourne Extract published on www.issinstitute.org.au © Copyright ISS Institute May 2011 This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968. Whilst this report has been accepted by ISS Institute, ISS Institute cannot provide expert peer review of the report, and except as may be required by law no responsibility can be accepted by ISS Institute for the content of the report or any links therein, or omissions, typographical, print or photographic errors, or inaccuracies that may occur after publication or otherwise. ISS Institute do not accept responsibility for the consequences of any action taken or omitted to be taken by any person as a consequence of anything contained in, or omitted from, this report. Executive Summary This Fellowship study explored the use of analogue and digital technologies to create colour surfaces and sound experiences. The research focused on art and design activities that combine traditional analogue techniques (such as drawing or painting) with print and electronic media (from simple LED lighting to large-scale video projections on buildings). The Fellow’s rich and varied self-directed research was centred in Venice, Italy, with visits to France, Sweden, Scotland and the Netherlands to attend large public events such as the Biennale de Venezia and the Edinburgh Festival, and more intimate moments where one-on-one interviews were conducted with renown artists in their studios.
    [Show full text]
  • Depth of Field PDF Only
    Depth of Field for Digital Images Robin D. Myers Better Light, Inc. In the days before digital images, before the advent of roll film, photography was accomplished with photosensitive emulsions spread on glass plates. After processing and drying the glass negative, it was contact printed onto photosensitive paper to produce the final print. The size of the final print was the same size as the negative. During this period some of the foundational work into the science of photography was performed. One of the concepts developed was the circle of confusion. Contact prints are usually small enough that they are normally viewed at a distance of approximately 250 millimeters (about 10 inches). At this distance the human eye can resolve a detail that occupies an angle of about 1 arc minute. The eye cannot see a difference between a blurred circle and a sharp edged circle that just fills this small angle at this viewing distance. The diameter of this circle is called the circle of confusion. Converting the diameter of this circle into a size measurement, we get about 0.1 millimeters. If we assume a standard print size of 8 by 10 inches (about 200 mm by 250 mm) and divide this by the circle of confusion then an 8x10 print would represent about 2000x2500 smallest discernible points. If these points are equated to their equivalence in digital pixels, then the resolution of a 8x10 print would be about 2000x2500 pixels or about 250 pixels per inch (100 pixels per centimeter). The circle of confusion used for 4x5 film has traditionally been that of a contact print viewed at the standard 250 mm viewing distance.
    [Show full text]
  • Dof 4.0 – a Depth of Field Calculator
    DoF 4.0 – A Depth of Field Calculator Last updated: 8-Mar-2021 Introduction When you focus a camera lens at some distance and take a photograph, the further subjects are from the focus point, the blurrier they look. Depth of field is the range of subject distances that are acceptably sharp. It varies with aperture and focal length, distance at which the lens is focused, and the circle of confusion – a measure of how much blurring is acceptable in a sharp image. The tricky part is defining what acceptable means. Sharpness is not an inherent quality as it depends heavily on the magnification at which an image is viewed. When viewed from the same distance, a smaller version of the same image will look sharper than a larger one. Similarly, an image that looks sharp as a 4x6" print may look decidedly less so at 16x20". All other things being equal, the range of in-focus distances increases with shorter lens focal lengths, smaller apertures, the farther away you focus, and the larger the circle of confusion. Conversely, longer lenses, wider apertures, closer focus, and a smaller circle of confusion make for a narrower depth of field. Sometimes focus blur is undesirable, and sometimes it’s an intentional creative choice. Either way, you need to understand depth of field to achieve predictable results. What is DoF? DoF is an advanced depth of field calculator available for both Windows and Android. What DoF Does Even if your camera has a depth of field preview button, the viewfinder image is just too small to judge critical sharpness.
    [Show full text]
  • Optimo 42 - 420 A2s Distance in Meters
    DEPTH-OF-FIELD TABLES OPTIMO 42 - 420 A2S DISTANCE IN METERS REFERENCE : 323468 - A Distance in meters / Confusion circle : 0.025 mm DEPTH-OF-FIELD TABLES ZOOM 35 mm F = 42 - 420 mm The depths of field tables are provided for information purposes only and are estimated with a circle of confusion of 0.025mm (1/1000inch). The width of the sharpness zone grows proportionally with the focus distance and aperture and it is inversely proportional to the focal length. In practice the depth of field limits can only be defined accurately by performing screen tests in true shooting conditions. * : data given for informaiton only. Distance in meters / Confusion circle : 0.025 mm TABLES DE PROFONDEUR DE CHAMP ZOOM 35 mm F = 42 - 420 mm Les tables de profondeur de champ sont fournies à titre indicatif pour un cercle de confusion moyen de 0.025mm (1/1000inch). La profondeur de champ augmente proportionnellement avec la distance de mise au point ainsi qu’avec le diaphragme et est inversement proportionnelle à la focale. Dans la pratique, seuls les essais filmés dans des conditions de tournage vous permettront de définir les bornes de cette profondeur de champ avec un maximum de précision. * : information donnée à titre indicatif Distance in meters / Confusion circle : 0.025 mm APERTURE T4.5 T5.6 T8 T11 T16 T22 T32* HYPERFOCAL / DISTANCE 13,269 10,617 7,61 5,491 3,995 2,938 2,191 40 m Far ∞ ∞ ∞ ∞ ∞ ∞ ∞ Near 10,092 8,503 6,485 4,899 3,687 2,778 2,108 15 m Far ∞ ∞ ∞ ∞ ∞ ∞ ∞ Near 7,212 6,383 5,201 4,153 3,266 2,547 1,984 8 m Far 19,316 31,187 ∞ ∞ ∞ ∞
    [Show full text]
  • Evidences of Dr. Foote's Success
    EVIDENCES OF J "'ll * ' 'A* r’ V*. * 1A'-/ COMPILED FROM BOOKS OF BIOGRAPHY, MSS., LETTERS FROM GRATEFUL PATIENTS, AND FROM FAVORABLE NOTICES OF THE PRESS i;y the %)J\l |)utlfs!iCnfl (Kompans 129 East 28tii Street, N. Y. 1885. "A REMARKABLE BOOKf of Edinburgh, Scot- land : a graduate of three universities, and retired after 50 years’ practice, he writes: “The work in priceless in value, and calculated to re- I tenerate aoclety. It la new, startling, and very Instructive.” It is the most popular and comprehensive book treating of MEDICAL, SOCIAL, AND SEXUAL SCIENCE, P roven by the sale of Hair a million to be the most popula R ! R eaaable because written in language plain, chasti, and forcibl E I instructive, practicalpresentation of “MidiciU Commc .'Sense” medi A V aiuable to invalids, showing new means by which they may be cure D A pproved by editors, physicians, clergymen, critics, and literat I T horough treatment of subjects especially important to young me N E veryone who “wants to know, you know,” will find it interestin C I 4 Parts. 35 Chapters, 936 Pages, 200 Illustrations, and AT T7 \\T 17'T7 * rpT T L) t? just introduced, consists of a series A It Ci VV ETjAI C U D, of beautiful colored anatom- ical charts, in fivecolors, guaranteed superior to any before offered in a pop ular physiological book, and rendering it again the most attractive and quick- selling A Arr who have already found a gold mine in it. Mr. 17 PCl “ work for it v JIj/1” I O Koehler writes: I sold the first six hooks in two hours.” Many agents take 50 or 100at once, at special rates.
    [Show full text]
  • Depth of Field in Photography
    Instructor: N. David King Page 1 DEPTH OF FIELD IN PHOTOGRAPHY Handout for Photography Students N. David King, Instructor WWWHAT IS DDDEPTH OF FFFIELD ??? Photographers generally have to deal with one of two main optical issues for any given photograph: Motion (relative to the film plane) and Depth of Field. This handout is about Depth of Field. But what is it? Depth of Field is a major compositional tool used by photographers to direct attention to specific areas of a print or, at the other extreme, to allow the viewer’s eye to travel in focus over the entire print’s surface, as it appears to do in reality. Here are two example images. Depth of Field Examples Shallow Depth of Field Deep Depth of Field using wide aperture using small aperture and close focal distance and greater focal distance Depth of Field in PhotogPhotography:raphy: Student Handout © N. DavDavidid King 2004, Rev 2010 Instructor: N. David King Page 2 SSSURPRISE !!! The first image (the garden flowers on the left) was shot IIITTT’’’S AAALL AN ILLUSION with a wide aperture and is focused on the flower closest to the viewer. The second image (on the right) was shot with a smaller aperture and is focused on a yellow flower near the rear of that group of flowers. Though it looks as if we are really increasing the area that is in focus from the first image to the second, that apparent increase is actually an optical illusion. In the second image there is still only one plane where the lens is critically focused.
    [Show full text]
  • Schneider-Kreuznach Erweitert Seine F-Mount-Objektiv-Familie
    FAQ Century Film & Video 1. What is Angle of View? 2. What is an Achromat Diopter? 3. How is an Achromat different from a standard close up lens? 4. What is a matte box? 5. What is a lens shade? 6. When do you need a lens shade or a matte box? 7. What is aspect ratio? 8. What is 4:3? 9. What is 16:9? 10. What is anamorphic video? 11. What is the difference between the Mark I and Mark II fisheye lenses? 12. What is anti-reflection coating? 13. How should I clean my lens? 14. Why should I use a bayonet Mount? 15. How much does my accessory lens weigh? 16. What is hyperfocal distance? 17. What is the Hyperfocal distance of my lens? 18. What is a T-Stop? 19. What is a PL mount? 1. What is Angle of View? Angle of view is a measure of how much of the scene a lens can view. A fisheye lens can see as much as 180 degrees and a telephoto lens might see as narrow an angle as 5 degrees. It is important to distinguish horizontal angle of view from the vertical angle of view. 2. What is an Achromat Diopter? An achromat diopter is a highly corrected two element close up lens that provides extremely sharp images edge to edge without prismatic color effects. 3. How is an Achromat different from a standard close up lens? Standard close-up lenses, or diopters, are single element lenses that allow the camera lens to focus more closely on small objects.
    [Show full text]
  • Camera System Considerations for Geomorphic Applications of Sfm Photogrammetry Adam R
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- ubP lished Research US Geological Survey 2017 Camera system considerations for geomorphic applications of SfM photogrammetry Adam R. Mosbrucker US Geological Survey, [email protected] Jon J. Major US Geological Survey Kurt R. Spicer US Geological Survey John Pitlick University of Colorado Follow this and additional works at: http://digitalcommons.unl.edu/usgsstaffpub Part of the Geology Commons, Oceanography and Atmospheric Sciences and Meteorology Commons, Other Earth Sciences Commons, and the Other Environmental Sciences Commons Mosbrucker, Adam R.; Major, Jon J.; Spicer, Kurt R.; and Pitlick, John, "Camera system considerations for geomorphic applications of SfM photogrammetry" (2017). USGS Staff -- Published Research. 1007. http://digitalcommons.unl.edu/usgsstaffpub/1007 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- ubP lished Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 42, 969–986 (2017) Published 2016. This article is a U.S. Government work and is in the public domain in the USA Published online 3 January 2017 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/esp.4066 Camera system considerations for geomorphic applications of SfM photogrammetry Adam R. Mosbrucker,1* Jon J. Major,1 Kurt R. Spicer1 and John Pitlick2 1 US Geological Survey, Vancouver, WA USA 2 Geography Department, University of Colorado, Boulder, CO USA Received 17 October 2014; Revised 11 October 2016; Accepted 12 October 2016 *Correspondence to: Adam R.
    [Show full text]
  • Hyperfocal Distance
    Advanced Photography Topic – 5 - Optics – Hyper Focal Distance Learning Outcomes In this lesson, we will look at what the hyper focal distance means and how it is important in relation to optics in digital photography. Knowing the hyperfocal distance for a given focal length and aperture can be challenging but we will go through this step by step so that you have a better understanding of this important concept. Page | 1 Advanced Photography Hyperfocal Distance Focusing your camera at the hyperfocal distance guarantees maximum sharpness from half of this distance all the way to infinity. This hyperfocal distance is very useful in landscape photography, because it allows you to make the best use of your depth of field. This produces a more detailed final image. Where Do You Find This Hyperfocal Distance? The hyperfocal distance is defined as the focus distance which places the furthest edge of a depth of field at infinity. If we were to focus any closer than this, even by the slightest amount, then a distant background will appear unacceptably soft or ‘unsharp’. Alternatively, if one were to focus any farther than this, then the most distant portion of the depth of field would be out of focus. The best way to optimize your focusing distance is visually. Begin by first focusing on the most distant object within your scene, then manually adjust the focusing distance as close as possible while still retaining an acceptably sharp background. If your scene has distant objects near the horizon, then this focusing distance will closely approximate the hyper focal distance.
    [Show full text]
  • Optical Design of a Novel Collimator System with a Variable Virtual-Object Distance for an Inspection Instrument of Mobile Phone Camera Optics
    applied sciences Article Optical Design of a Novel Collimator System with a Variable Virtual-Object Distance for an Inspection Instrument of Mobile Phone Camera Optics Hojong Choi 1, Se-woon Choe 1,2,* and Jaemyung Ryu 3,* 1 Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Korea; [email protected] 2 Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Korea 3 Department of Optical Engineering, Kumoh National Institute of Technology, Gumi 39253, Korea * Correspondence: [email protected] (S.-w.C.); [email protected] (J.R.); Tel.: +82-54-478-7781 (S.-w.C.); +82-54-478-7778 (J.R.) Featured Application: Optical inspection instrument for a mobile phone camera. Abstract: The resolution performance of mobile phone camera optics was previously checked only near an infinite point. However, near-field performance is required because of reduced camera pixel sizes. Traditional optics are measured using a resolution chart located at a hyperfocal distance, which can only measure the resolution at a specific distance but not at close distances. We designed a new collimator system that can change the virtual image of the resolution chart from infinity to a short distance. Hence, some lenses inside the collimator systems must be moved. Currently, if the focusing lens is moved, chromatic aberration and field curvature occur. Additional lenses are required to Citation: Choi, H.; Choe, S.-w.; Ryu, correct this problem. However, the added lens must not change the characteristics of the proposed J. Optical Design of a Novel collimator. Therefore, an equivalent-lens conversion method was designed to maintain the first-order Collimator System with a Variable and Seidel aberrations.
    [Show full text]
  • The Hyperfocal Distance ©2001 Reefnet Inc
    The Hyperfocal Distance ©2001 ReefNet Inc. Consider the arrangement shown, consisting of a perfect converging lens, an aperture of diameter D, a point object A on the lens axis, and film. When the image of A is perfectly focussed at the film plane, some of the scene behind A and in front of A is also in focus. Suppose that A is very far from the lens (at 'infinity'). By definition, light rays from A will be focused at the point B on the lens' secondary focal plane, which is a distance F (the focal length) behind the center of the lens. If the film plane is positioned to contain point B, the film will record a perfectly focused image of A. Now bring A closer, to a finite distance O from the lens, but still far enough away so that O is much larger than F. The image recedes to a distance 'I' behind the lens, as shown, in accordance with the Gaussian (lens-maker's) formula 1 1 1 + = (1) O I F and the film plane must move with it to record a sharp image. With object A at this new position, any light rays coming from other objects behind it are focused somewhere between the film plane and B, with the most out-of-focus rays being those coming from the most distant objects. In particular, rays coming from infinity meet at B but continue on to form a circle of confusion at the film plane. By moving A back and forth, and moving the film accordingly to maintain a sharp image, the circle of confusion can be made larger or smaller.
    [Show full text]