ACACIA STUDY GROUP NEWSLETTER No. 90 February 2004
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Winter Edition 2020 - 3 in This Issue: Office Bearers for 2017
1 Australian Plants Society Armidale & District Group PO Box 735 Armidale NSW 2350 web: www.austplants.com.au/Armidale e-mail: [email protected] Crowea exalata ssp magnifolia image by Maria Hitchcock Winter Edition 2020 - 3 In this issue: Office bearers for 2017 ......p1 Editorial …...p2Error! Bookmark not defined. New Website Arrangements .…..p3 Solstice Gathering ......p4 Passion, Boers & Hibiscus ......p5 Wollomombi Falls Lookout ......p7 Hard Yakka ......p8 Torrington & Gibraltar after fires ......p9 Small Eucalypts ......p12 Drought tolerance of plants ......p15 Armidale & District Group PO Box 735, Armidale NSW 2350 President: Vacant Vice President: Colin Wilson Secretary: Penelope Sinclair Ph. 6771 5639 [email protected] Treasurer: Phil Rose Ph. 6775 3767 [email protected] Membership: Phil Rose [email protected] 2 Markets in the Mall, Outings, OHS & Environmental Officer and Arboretum Coordinator: Patrick Laher Ph: 0427327719 [email protected] Newsletter Editor: John Nevin Ph: 6775218 [email protected],net.au Meet and Greet: Lee Horsley Ph: 0421381157 [email protected] Afternoon tea: Deidre Waters Ph: 67753754 [email protected] Web Master: Eric Sinclair Our website: http://www.austplants.com.au From the Editor: We have certainly had a memorable year - the worst drought in living memory followed by the most extensive bushfires seen in Australia, and to top it off, the biggest pandemic the world has seen in 100 years. The pandemic has made essential self distancing and quarantining to arrest the spread of the Corona virus. As a result, most APS activities have been shelved for the time being. Being in isolation at home has been a mixed blessing. -
Human-Mediated Introductions of Australian Acacias
Diversity and Distributions, (Diversity Distrib.) (2011) 17, 771–787 S EDITORIAL Human-mediated introductions of PECIAL ISSUE Australian acacias – a global experiment in biogeography 1 2 1 3,4 David M. Richardson *, Jane Carruthers , Cang Hui , Fiona A. C. Impson , :H Joseph T. Miller5, Mark P. Robertson1,6, Mathieu Rouget7, Johannes J. Le Roux1 and John R. U. Wilson1,8 UMAN 1 Centre for Invasion Biology, Department of ABSTRACT - Botany and Zoology, Stellenbosch University, MEDIATED INTRODUCTIONS OF Aim Australian acacias (1012 recognized species native to Australia, which were Matieland 7602, South Africa, 2Department of History, University of South Africa, PO Box previously grouped in Acacia subgenus Phyllodineae) have been moved extensively 392, Unisa 0003, South Africa, 3Department around the world by humans over the past 250 years. This has created the of Zoology, University of Cape Town, opportunity to explore how evolutionary, ecological, historical and sociological Rondebosch 7701, South Africa, 4Plant factors interact to affect the distribution, usage, invasiveness and perceptions of a Protection Research Institute, Private Bag globally important group of plants. This editorial provides the background for the X5017, Stellenbosch 7599, South Africa, 20 papers in this special issue of Diversity and Distributions that focusses on the 5Centre for Australian National Biodiversity global cross-disciplinary experiment of introduced Australian acacias. A Journal of Conservation Biogeography Research, CSIRO Plant Industry, GPO Box Location Australia and global. 1600, Canberra, ACT, Australia, 6Department of Zoology and Entomology, University of Methods The papers of the special issue are discussed in the context of a unified Pretoria, Pretoria 0002, South Africa, framework for biological invasions. -
Acacia Fimbriata Dwarf Crimson Blush 8 Eye on It During the Conference, Please Let Me Know
Australian Native Plants Society (Australia) Inc. ACACIA STUDY GROUP NEWSLETTER Group Leader and Newsletter Editor Seed Bank Curator Bill Aitchison Victoria Tanner 13 Conos Court, Donvale, Vic 3111 Phone (03) 98723583 Email: [email protected] No. 129 June 2015 ISSN 1035-4638 Contents Page From The Leader Dear Members From the Leader 1 It is now only a few months until the ANPSA Biennial Welcome 2 Conference being held in Canberra from 15-20 November. From Members and Readers 2 This is a great opportunity to catch up with some other Some Notes From Yallaroo 3 members of our Study Group, and of course to take part in Wattles With Minni Ritchi Bark 5 the great program put together by the organisers. Introduction of Australian Acacias Information relating to the Conference and details regarding to South America 6 registration are available on the Conference website Max’s Interesting Wattles 7 http://anpsa.org.au/conference2015. Our Study Group will An Acacia dealbata question from have a display at the Conference. If any Study Group Sweden 7 member who will be at the Conference could help with the Pre-treatment of Acacia Seeds 8 display, either in setting it up, or just in helping to keep an Acacia fimbriata dwarf Crimson Blush 8 eye on it during the Conference, please let me know. Books 9 Seed Bank 9 I am sure that many of our members will be aware of the Study Group Membership 10 Wattle Day Association, and the great work that it does in promoting National Wattle Day each year on 1 September. -
Catalogue Outside 180 Red X4.Cdr
Eremophila bignoniiflora - Creek Wilga * Callitris glaucophylla - Murray Pine S K FTHO Eremophila deserti - Turkey Bush * Callitris gracilis - Slender Cypress Pine FT HO WILDFLOWERS FOR CUT FLOWERS Eremophila longifolia - Berrigan Emu Bush * Callitris rhomboidea - Port Jackson Pine FTHO These plants available all year, fresh cut flowers avaliable in season. Eremophila maculata * Callitris verrucosa M Exocarpos cupressiformis * Eucalyptus albens - White Box FTHO Acacia cultriformis - Cut-leaf Wattle - yellow Eucalyptus crenulata, E. gunnii, E. pulverulenta, Exocarpos stricta - Pale Fruit Ballart * Eucalyptus angulosa M Acacia merinthophora - yellow E. albida and E. - ‘Moon Lagoon’ - silver/blue foliage Geijera parviflora - Wilga * Eucalyptus aromaphloia - Scent Bark FTHO Actinotus helianthi - Flannel Flower - cream * Grevillea - 'Evelyn's Coronet' - pink/grey * Goodenia ovata - Hop Goodenia * W Eucalyptus baxteri - Brown Stringybark FTHO Agonis linearifolia - white Grevillea - 'Sylvia' - pink NATIVE NURSERY Goodia lotifolia - Golden Tip Eucalyptus behriana - Bull Mallee K FTHO Agonis parviceps - white Guichenotia macrantha - *Large-flowered Guichenotia - mauve Goodia medicaginea - Western Golden Tip R Eucalyptus blakelyi - Blakely's Red Gum FTHO Anigozanthos - Kangaroo Paws - red, orange, pink, Hakea multilineata - Grass-leaved Hakea - pink * Hakea decurrens subsp. physocarpa - Bushy Needlewood Eucalyptus calycogona - Red Mallee M FTHO yellow or green * Hypocalymma angustifolium - White Myrtle - cream * Hakea leucoptera M Eucalyptus camaldulensis -
Examining the Acacia Boormanii Complex (Fabaceae: Mimosoideae); Recognition of a New Subspecies
Muelleria 37: 23–32 Published online in advance of the print edition, 28 June 2018 Examining the Acacia boormanii complex (Fabaceae: Mimosoideae); recognition of a new subspecies Kelsey J. Tucker1, Daniel J. Murphy2, Neville Walsh2,3 1 Department of Environment, Land, Water and Planning, 1–7 Taylor St, Epsom, Victoria 3551 2 Royal Botanic Gardens Victoria, Melbourne, Victoria 3004 3 Corresponding author: [email protected] Introduction Abstract The iconic genus Acacia Mill. (Leguminosae: Mimosoideae) is the largest A morphometric analysis of specimens angiosperm genus in Australia, consisting of over 1000 species (Miller determined as Acacia boormanii Maiden and A. infecunda Molyneux et al. 2011, Maslin 2015). Acacia boormanii Maiden (syn. A. hunteriana & Forrester supported a distinctive N.A.Wakef.) was described as a species of scattered and restricted population centred on Mt Typo occurrence in south-eastern Australia (Maiden 1916). As currently in north-eastern Victoria, which understood, its natural range extends from south of Thredbo Village, is described here as A. boormanii New South Wales (NSW), to near Buchan, Victoria, mostly south of the subsp. gibba K.J.Tucker subsp. nov. The characters that best separate Great Dividing Range, with isolated occurrences near Cooma, NSW, the new subspecies are the phyllode and Myrtleford, Victoria (Maslin 2001). It is common in cultivation and width, the indentation of the phyllode has become naturalised in a few areas outside its natural range (e.g. margins at the gland, and the shape http://avh.ala.org.au/occurrences/search?taxa=acacia+boormanii#tab_ of the phyllode apex. Neither Acacia mapView). -
Indigenous Plants of Bendigo
Produced by Indigenous Plants of Bendigo Indigenous Plants of Bendigo PMS 1807 RED PMS 432 GREY PMS 142 GOLD A Gardener’s Guide to Growing and Protecting Local Plants 3rd Edition 9 © Copyright City of Greater Bendigo and Bendigo Native Plant Group Inc. This work is Copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the City of Greater Bendigo. First Published 2004 Second Edition 2007 Third Edition 2013 Printed by Bendigo Modern Press: www.bmp.com.au This book is also available on the City of Greater Bendigo website: www.bendigo.vic.gov.au Printed on 100% recycled paper. Disclaimer “The information contained in this publication is of a general nature only. This publication is not intended to provide a definitive analysis, or discussion, on each issue canvassed. While the Committee/Council believes the information contained herein is correct, it does not accept any liability whatsoever/howsoever arising from reliance on this publication. Therefore, readers should make their own enquiries, and conduct their own investigations, concerning every issue canvassed herein.” Front cover - Clockwise from centre top: Bendigo Wax-flower (Pam Sheean), Hoary Sunray (Marilyn Sprague), Red Ironbark (Pam Sheean), Green Mallee (Anthony Sheean), Whirrakee Wattle (Anthony Sheean). Table of contents Acknowledgements ...............................................2 Foreword..........................................................3 Introduction.......................................................4 -
The Vegetation of the Western Blue Mountains Including the Capertee, Coxs, Jenolan & Gurnang Areas
Department of Environment and Conservation (NSW) The Vegetation of the Western Blue Mountains including the Capertee, Coxs, Jenolan & Gurnang Areas Volume 1: Technical Report Hawkesbury-Nepean CMA CATCHMENT MANAGEMENT AUTHORITY The Vegetation of the Western Blue Mountains (including the Capertee, Cox’s, Jenolan and Gurnang Areas) Volume 1: Technical Report (Final V1.1) Project funded by the Hawkesbury – Nepean Catchment Management Authority Information and Assessment Section Metropolitan Branch Environmental Protection and Regulation Division Department of Environment and Conservation July 2006 ACKNOWLEDGMENTS This project has been completed by the Special thanks to: Information and Assessment Section, Metropolitan Branch. The numerous land owners including State Forests of NSW who allowed access to their Section Head, Information and Assessment properties. Julie Ravallion The Department of Natural Resources, Forests NSW and Hawkesbury – Nepean CMA for Coordinator, Bioregional Data Group comments on early drafts. Daniel Connolly This report should be referenced as follows: Vegetation Project Officer DEC (2006) The Vegetation of the Western Blue Mountains. Unpublished report funded by Greg Steenbeeke the Hawkesbury – Nepean Catchment Management Authority. Department of GIS, Data Management and Database Environment and Conservation, Hurstville. Coordination Peter Ewin Photos Kylie Madden Vegetation community profile photographs by Greg Steenbeeke Greg Steenbeeke unless otherwise noted. Feature cover photo by Greg Steenbeeke. All Logistics -
Patterns of Flammability Across the Vascular Plant Phylogeny, with Special Emphasis on the Genus Dracophyllum
Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy at Lincoln University by Xinglei Cui Lincoln University 2020 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy. Abstract Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum by Xinglei Cui Fire has been part of the environment for the entire history of terrestrial plants and is a common disturbance agent in many ecosystems across the world. Fire has a significant role in influencing the structure, pattern and function of many ecosystems. Plant flammability, which is the ability of a plant to burn and sustain a flame, is an important driver of fire in terrestrial ecosystems and thus has a fundamental role in ecosystem dynamics and species evolution. However, the factors that have influenced the evolution of flammability remain unclear. -
Acacia Study Group Newsletter
Australian Native Plants Society (Australia) Inc. ACACIA STUDY GROUP NEWSLETTER Group Leader and Seed Bank Curator Newsletter Editor and Membership Officer Esther Brueggemeier Bill Aitchison 28 Staton Cr, Westlake, Vic 3337 13 Conos Court, Donvale, Vic 3111 Phone 0411 148874 Phone (03) 98723583 Email: [email protected] No. 110 September 2010 ISSN 1035-4638 Contents Page From The Leader Dear Members, From the Leader 1 What a dramatic start to spring we have had down south. Welcome 2 The locals here are wondering if we are ever to see a dry From Members and Readers 2 day again. Melbourne recently braved some of the strongest Origin of Acacias in Australia 2 and most damaging winds in years with gusts up to 100 Acacia scirpifolia 2 km/h and 130 km/h on the Alps while bringing torrential Acacia glaucoptera 3 downpours to much of the state. Despite being one of the Acacia with part red flowers 3 wettest September's this century, I was amazed to see the Banish the winter blues 3 abundance of wattles bursting into full bloom, as if to say, Acacias and Allergies 4 it’s now or never! Those wattles that flower early, flowered Wattle as a symbol of safety 4 in September. Those wattles that flower late, flowered in Insects and Acacias 5 September, turning my entire garden into a glorious blaze of The Germination of Acacia Seeds 6 golden yellow. Myrtle Rust Fungus 9 Books 9 The Australian Plants issue on Acacias is well and truly Correction 10 printed, though I’m sorry to say, has taken a little longer Seed Bank 10 than expected. -
ACT, Australian Capital Territory
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Acacia Dawsonii R.T.Baker
WATTLE Acacias of Australia Acacia dawsonii R.T.Baker Source: W orldW ideW attle ver. 2. Source: Australian Plant Image Index (a.31009). Published at: w w w .w orldw idew attle.com ANBG © M. Fagg, 2000 B.R. Maslin Source: W orldW ideW attle ver. 2. Source: Australian Plant Image Index Published at: w w w .w orldw idew attle.com (dig.31670). J. & M. Simmons ANBG © M. Fagg, 2013 Source: Australian Plant Image Index Source: Australian Plant Image Index Source: Australian Plant Image Index (dig.32763). (dig.32762). (dig.40759). ANBG © M. Fagg, 2014 ANBG © M. Fagg, 2014 ANBG © M. Fagg, 2015 Source: Australian Plant Image Index (a.31010). ANBG © M. Fagg, 2000 Source: Australian Plant Image Index (a.31218). Source: Australian Plant Image Index ANBG © M. Fagg, 2000 (dig.32765). ANBG © M. Fagg, 2014 Source: Australian Plant Image Index (a.31011). Source: Australian Plant Image Index ANBG © M. Fagg, 2001 (dig.32764). ANBG © M. Fagg, 2014 Source: Australian Plant Image Index Source: Australian Plant Image Index Source: Australian Plant Image Index (dig.4864). Source: Australian Plant Image Index (dig.4865). (dig.32766). (dig.32767). ANBG © M. Fagg, 2007 ANBG © M. Fagg, 2007 ANBG © M. Fagg, 2014 ANBG © M. Fagg, 2014 Source: W orldW ideW attle ver. 2. Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com Published at: w w w .w orldw idew attle.com See illustration. See illustration. Acacia daw sonii occurrence map. O ccurrence map generated via Atlas of Living Australia (https://w w w .ala.org.au). -
Delayed Colonisation of Acacia by Thrips and the Timing of Host
McLeish et al. BMC Evolutionary Biology 2013, 13:188 http://www.biomedcentral.com/1471-2148/13/188 RESEARCH ARTICLE Open Access Delayed colonisation of Acacia by thrips and the timing of host-conservatism and behavioural specialisation Michael J McLeish1*, Joseph T Miller2 and Laurence A Mound3 Abstract Background: Repeated colonisation of novel host-plants is believed to be an essential component of the evolutionary success of phytophagous insects. The relative timing between the origin of an insect lineage and the plant clade they eat or reproduce on is important for understanding how host-range expansion can lead to resource specialisation and speciation. Path and stepping-stone sampling are used in a Bayesian approach to test divergence timing between the origin of Acacia and colonisation by thrips. The evolution of host-plant conservatism and ecological specialisation is discussed. Results: Results indicated very strong support for a model describing the origin of the common ancestor of Acacia thrips subsequent to that of Acacia. A current estimate puts the origin of Acacia at approximately 6 million years before the common ancestor of Acacia thrips, and 15 million years before the origin of a gall-inducing clade. The evolution of host conservatism and resource specialisation resulted in a phylogenetically under-dispersed pattern of host-use by several thrips lineages. Conclusions: Thrips colonised a diversity of Acacia species over a protracted period as Australia experienced aridification. Host conservatism evolved on phenotypically and environmentally suitable host lineages. Ecological specialisation resulted from habitat selection and selection on thrips behavior that promoted primary and secondary host associations. These findings suggest that delayed and repeated colonisation is characterised by cycles of oligo- or poly-phagy.