Plastics in the Uk: Jonathan Cullen Practical and Pervasive Michal Drewniok

Total Page:16

File Type:pdf, Size:1020Kb

Plastics in the Uk: Jonathan Cullen Practical and Pervasive Michal Drewniok PLASTICS IN THE UK: JONATHAN CULLEN PRACTICAL AND PERVASIVE MICHAL DREWNIOK ... BUT PROBLEMATIC. ANDRÉ SERRENHO SUMMARY Plastics are ubiquitous in and recycling of plastics is plastic waste in coming decades modern society, owing to their challenging. from all the products made usefulness, durability and how of plastic that we have been This report tackles this data cheap and easy they are to accumulating. problem by mapping plastic produce. This makes plastics flows through UK society, Recycling more plastics in the both a blessing and a curse. collating data from disparate UK could reduce incineration We manufacture a myriad sources on the production, emissions, avoid mismanagement of plastic materials, used in use, disposal and recovery of of exported waste and replace countless consumer products, plastics. With the resulting map the need for the production of which are highly valued by of UK plastic flows, we can new plastics. However, current society. Everything from milk understand the latest trends UK recycling capacity is only 12% bottles to window frames, in plastics use and identify of waste collected, and this is from sunglasses to face masks, opportunities for reducing the hampering the benefits recycling contains plastic. Plastics impacts of plastics in the future. could provide. are pervasive due to their We found that the way we There are several other practicality and profitability. have been disposing of plastics actions we should take, such And yet, plastics have a problem. plays a critical role in two as reducing excessive use of The making, use and disposal serious environmental impacts: plastic packaging, and reducing of plastics creates challenging greenhouse gas emissions and the range of polymers used in pollution issues. Significant CO2 plastic ocean pollution. These various products to improve emissions are released across problems arise because plastics recycling yields. These should the life-cycle of plastic products are not circular in the UK. Less be combined with improved and poor disposal means plastic than 3% of plastics consumed practices in the petrochemical makes its way into our waterways are made of UK recycled plastics, industry, and enhanced reuse and oceans, creating serious and the vast majority of waste and recycling of plastics to environmental impacts. ends up being incinerated, achieve a meaningful reduction landfilled or exported. Without in greenhouse gas emissions. Fixing this problem is not simple. any action this problem will get Even finding good data, on worse, as we will generate more the production, use, disposal The authors have asserted Thanks to: the Alliance for Available for download at: their right under the Copyright, Sustainable Building Products www.refficiency.org/ Designs and Patents Act 1988 (ASBP), Axion, British Plastic publications/the-p-word/ KEY MESSAGES to be identified as authors of Federation (BPF), PlasticEurope, this work. VinylPlus, RecovinylPlus and Research in this report is funded by UKRI as part of CirPlas: The • The two most important • Increasing recycling capacity • Action is urgently required Glass Alliance Europe for help in environmental impacts of in the UK could both reduce to reduce the impacts of Jonathan M. Cullen, Cambridge Creative Circular gathering the data. plastics are greenhouse gas emissions and prevent ocean plastics. We must address Michal P. Drewniok, Plastics Centre. André Cabrera Serrenho Please cite as: Cullen JM, emissions and ocean waste waste pollution. Our limited the excess use of packaging, pollution. These problems domestic recycling capacity the variety of polymers used Drewniok MP, Cabrera Serrenho Copyright © 2020 are being aggravated by the leads to waste exports to in similar products, practice A (2020) The ‘P’ Word – University of Cambridge way we have been disposing countries with poor waste in polymer production, Plastics in the UK: practical and of plastics. management practices. and promoting reuse and Design by New Rhythm Design pervasive ... but problematic.” recycling of plastics. PAGE THREE: SUMMARY The story of plastics over PLASTICS ARE the last 75 years is one of PRACTICAL insatiable growth driven by plastic’s prized properties and low costs compared with other materials. Demand for plastic, and From 1950 to 1990 global other materials production of plastic increased sixty-fold (from 1.5 to 90 Mt), compared with four times for Plastic 350 Cement steel, nine times for glass, and twelve times for aluminium. Aluminium Glass Growth has continued steadily from 1990 until today, with production increasing by three and a half times worldwide, as 250 Steel seen in Fig.2. During this period, Fig.1 Global annual primary plastic production, by end-use. plastic demand outpaced steel, glass and aluminium, and kept abreast with cement. Plastics are a uniquely practical The attractiveness of plastics production increasing from 1.5 x 1990=100 Much of this growth in demand group of materials. They are has led to rapid growth in the Mt in 1950 to 438 Mt in 2017 inde has been driven by increasing strong, lightweight, flexible and global plastics industry (Fig.1). (Fig.1). In fact, growth in plastic 150 populations and per captia durable. They can be shaped demand far outpaced global The first fully synthetic plastic, wealth in developing economies into almost any form. And they GDP over this period. called Bakelite (phenylol- around the world. In contrast, are cheap to make. formaldehyde) was invented by This has made plastics a demand for plastic in the UK The unique properties have led Leo Baekeland in 1907. By 1941, profitable business over many plateaued, with consumption to plastics being used in many more than 20 further plastic decades. remaining constant over the past thousands of products, bringing types (polymers) had been 50 decade, at about 6 Mt per year. Plastics are now used across convenience and ease to our created and plastics began a variety of sectors, including modern lives. Plastics find use finding their way into products in packaging (36%), building in supermarkets, in packaging to in housing, automotive, aviation, 0 and construction (16%) and the reduce food waste, in hospitals, and electrical products. 1990 1995 2000 2005 2010 2015 textiles sector (14%), as well in protective clothing to limit However rapid growth in plastic as consumer and institutional infection, and in homes, in Fig.2 Demand for plastics is compared with steel, cement, production was only realised products (13%). appliances, phones, wires and aluminium and glass from 1950s onwards, with water pipes. PAGE FOUR: PLASTICS ARE PRACTICAL PAGE FIVE: PLASTICS ARE PRACTICAL 100% Types of plastic produced worldwide in 2017 Plastics PLASTICS Others 90% Additives encompasses ARE PS a myriad of PUR PERVASIVE 80% PET different PVC HDPE materials and 70% PP &A LDPE products, each PP 60% with their own unique properties, There aren’t official statistics The supply chains of plastics about plastics in the UK, and are complex, since each polymer only few disparate publications and application is sourced 50% uses and issues from PlasticsEurope and Waste in different ways. However, & Resources Action Programme most of the plastics used in (WRAP) show us snapshots of the UK were made in other for recovery a few stages along the supply countries, and most of them chain of plastics. However, this were imported as finished goods 40% data is still insufficient to tell sold to final consumers. For after use. us how much and which types this reason, the production of of plastics are used every year, plastics in primary form in the where they came from, on UK only supply less than 20% of We tend to think of plastics Plastics are defined as: any what products they are used UK consumption. as one uniform material. But of a group of synthetic or and how they are disposed of. Fig.3 shows that we use a huge 30% plastic, unlike other materials natural organic materials that And knowing this is essential variety of different polymers. such as steel, concrete and may be shaped when soft and to identify what problems are We even use several different paper, encompasses numerous then hardened. This includes being caused by plastics and polymers for the similar types materials (or chemical many types of resins, resinoids, what opportunities exist to of product. However, this formulations, as shown in Fig.3) polymers, cellulose derivatives, mitigate them. mixture the polymers causes and product configurations. casein materials, and proteins, which can be extruded into For this report, we had to additional problems when 20% This makes the recovery of shapes, used as coatings, drawn conciliate available data plastics are disposed of. Each plastic material after use into fibres and woven. on plastics with UK trade polymer has to be separated particularly challenging, as each statistics in order to estimate from waste, because it is chemical formulation needs to be Fig 4. shows the flow the the polymer composition in recycled in a different way. Yet, treated separately. plastics through the UK society, annual trade flows. By doing mixing polymers in products 10% including the production, import this, we were able to trace the makes it more difficult to and export of plastic materials flows of various polymers from separate them with enough visualised as a Sankey diagram. production to transformation, purity to allow recycling. Less use, and disposal. pure recyclates will also lead to POLYMER ABBREVIATIONS Polypropylene (PP), Low Density Polypropylene (LDPE),
Recommended publications
  • Assessment of the Properties of Poly (Lactic Acid) Sheets with Different Amounts of Post-Consumer Recycled Poly (Lactic Acid)
    ASSESSMENT OF THE PROPERTIES OF POLY (LACTIC ACID) SHEETS WITH DIFFERENT AMOUNTS OF POST-CONSUMER RECYCLED POLY (LACTIC ACID) By Chaiyatas Chariyachotilert A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Packaging 2011 ABSTRACT ASSESSMENT OF THE PROPERTIES OF POLY (LACTIC ACID) SHEETS WITH DIFFERENT AMOUNTS OF POST-CONSUMER RECYCLED POLY (LACTIC ACID) By Chaiyatas Chariyachotilert The main objective of this research was to evaluate the properties of sheet containing mechanically recycled post-consumer polylactic acid (PLA) bottle flakes blended with virgin PLA resin. PLA bottles were flaked, cleaned, blended with virgin resin and then extruded and thermoformed into trays. The molecular weight, physical, optical, thermal and mechanical properties of sheet containing 0, 20, 40, 60, 80 and 100 wt.-% recycled content were evaluated. Cleaning conditions were evaluated using response surface methodology, and conditions of 15 min, 85 °C, 1 wt.-% NaOH, and 0.3 wt.-% surfactant were adopted for cleaning the PLA flake. Virgin PLA sheet possessed superior properties to recycled sheet with statistically significant differences at α=0.05. PLA sheets were darker and absorbed more UV light in the 260 to 285 nm range when 20% or more recycled content was added. At 40% recycled content, the sheet had increased blue and red tones and the mechanical properties in the cross-machine direction decreased. At 60% recycled content or above, reduction of weight average molecular weight (Mw), tensile strength and tensile strength at yield in the machine direction (MD) were found. At 80% recycled content, the melting temperature and modulus of elasticity in the MD decreased.
    [Show full text]
  • BPF – Understanding the Debate About Plastic
    Understanding the debate about plastic At a time when a ‘climate emergency’ has been declared, it is important that people understand that ‘plastic free’ does not necessarily mean ‘better for the environment’. For example, researchers found that switching to alternative materials could quadruple what they dubbed ‘the environmental cost.’ Plastic will – and should – continue to play a vital role in all our lives going forward. That may surprise many of you. But this document helps explain why. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, British Plastics Federation recording and/or otherwise, without the prior written permission of the publishers. While all reasonable steps have been taken to ensure that the information BPF House, 6 Bath Place contained within this document is correct, the British Plastics Federation can London, EC2A 3JE make no warranties or representations of any kind as to the content and, to the maximum extent permitted by law, accept no liability whatsoever for the First published in 2019 same including without limit, for direct, indirect or consequential loss, business © 2019 British Plastics Federation interruption, loss of profits, production, contracts or goodwill. Contents The enemy is not plastic, it is plastic waste 2 Key facts and figures 3 The right to choose (wisely) 4 Making a difference 5 Government proposals and the industry’s position 6 Why do we need single-use plastic? 8 Extended producer responsibility 10 Taxing plastic packaging based upon the amount of recycled content 12 Deposit return schemes 14 Exporting plastic waste for recycling 16 Biodegradable and oxo-degradable plastics 18 Marine litter 20 1 The enemy is not plastic, it is plastic waste Plastic brings many benefits, enabling many other cutting-edge technologies and keeping the weight and fuel emissions of vehicles down.
    [Show full text]
  • Year One of Positive Plastics Our Four-Point Plan for a Future with Less Waste
    Year one of positive plastics Our four-point plan for a future with less waste. # PositivePlasticsPledge 2 Klöckner Pentaplast Sustainable protection of everyday needs At kp we have always known the value We still have some way to go, but by of plastic – its unique place in the lives of collaborating closely with our partners in communities we are very much part of the community, governments and local and its irreplaceable attributes that protect authorities, business and industry, and and package our products – in particular environmental groups we are quite literally dramatically avoiding food waste, delivering closing the loop when it comes to plastic medication and protecting the integrity packaging. We are helping reduce leakage of countless other products. Embedded in and littering of plastics into the environment, the fabric of our company is our primary ensuring plastics are valued and packaging is purpose – the sustainable protection of optimally designed for circularity. everyday needs – it’s why we exist; it’s why In the last year, the world of plastics has we do what we do. changed at an unprecedented rate and We’re determined to help we continue our determination to help make the world of plastics make it a sustainable one for society and for our environment. It’s exciting, it’s been sustainable for society successful and we have learned so much and for our environment. in the process. We are proud to share our first year of achievements with you and we We are also fully aware of our huge look forward to another challenging and responsibility to design products and transformational year ahead – we hope packaging to achieve closed-loop solutions.
    [Show full text]
  • Critical Guidance Protocol for PE Film and Flexible Packaging
    Critical Guidance Protocol for PE Film and Flexible Packaging Document number – FPE-CG-01 Revision date – August 17, 2021 Introduction – Scope, significance and use This is a comprehensive laboratory scale evaluation, or protocol, that can be used to assess the compatibility of PE-based films and flexible packaging innovations with film reclamation systems sourcing post-consumer film from store drop-off collection points or, in some cases, curbside collection. This test can be used to evaluate the impact of innovative PE film packaging components for which recycling compatibility is unknown or for which data is notably lacking. As examples: mono- and multi-layer constructions, coatings, additives (including compatibilizers along with innovative material), printing inks and pigments, labels with polymer substrate (paper labels are out of scope for Critical Guidance), adhesives, or new PE resin co- polymer or multi-material compositions. This test requires assessment of the effect of the packaging in blown film. This test evaluates compatibility of the flexible packaging innovation with current, industrial-scale, film-to- film recycling processes. Plastic film is generally defined as plastic items with a thickness of less than 10 mils (i.e., 0.010” or 0.25 mm) that are at least 95 percent (by weight) plastic with up to 5 percent other closely bonded or impregnated material, which may include printing, coatings, or fillers. Film, when used in packaging, is referred to as flexible packaging. The shape of flexible packaging typically changes when it is full of a product compared to when it is empty, whereas the shape of rigid packaging generally remains the same.
    [Show full text]
  • Nylons: a Review of the Literature on Products of Combustion and Toxicity
    — |MH|||| I A111DS l&BTIO NBSIR 85-3280 Nylons: A Review of the Literature on Products of Combustion and Toxicity NBS Reference PUBLICATIONS Emil Braun Barbara C. Levin U S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Fire Research Gaithersburg, MD 20899 February 1986 Sponsored in part by: U.S. Consumer Product Safety Commission — • q c — asda, MD 20207 100 • U56 85-3280 1986 NBS keseaech informattojt CENTER NBSIR 85-3280 NYLONS: A REVIEW OF THE LITERATURE ON PRODUCTS OF COMBUSTION AND TOXICITY Emil Braun Barbara C. Levin U S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Fire Research Gaithersburg, MD 20899 February 1986 Sponsored in part by: U.S. Consumer Product Safety Commission Bethesda, MD 20207 U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS. Ernest Ambler. Director 21 TABLE OF CONTENTS Page LIST OF TABLES iv LIST OF FIGURES vii ABSTRACT 1 1.0 INTRODUCTION 2 2.0 CHEMICAL STRUCTURE AND THERMOPHYSICAL PROPERTIES 4 3.0 DECOMPOSITION 5 3.1 VACUUM PYROLYSIS 7 3.2 DECOMPOSITION IN INERT AND AIR ATMOSPHERES 8 3.2.1 GENERAL DECOMPOSITION PRODUCTS 8 3.2.2 SPECIFIC GAS SPECIES 11 3.2.2. PURE MATERIALS 11 3. 2. 2. COMPOSITE MATERIALS 14 4.0 TOXICITY 17 4.1 DIN 53 436 19 4.2 FAA TOXICITY PROTOCOL 20 4.3 NASA/USF TOXICITY PROTOCOL 22 4.5 MISCELLANEOUS 27 5.0 LARGE-SCALE TESTS 31 6.0 CONCLUSIONS 35 7.0 ACKNOWLEDGEMENTS 36 8.0 REFERENCES 37 iii LIST OF TABLES Page TABLE 1.
    [Show full text]
  • The Recent Developments in Biobased Polymers Toward
    polymers Review The Recent Developments in Biobased Polymers toward General and Engineering Applications: Polymers that Are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed Hajime Nakajima, Peter Dijkstra and Katja Loos * ID Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; [email protected] (H.N.); [email protected] (P.D.) * Correspondence: [email protected]; Tel.: +31-50-363-6867 Received: 31 August 2017; Accepted: 18 September 2017; Published: 18 October 2017 Abstract: The main motivation for development of biobased polymers was their biodegradability, which is becoming important due to strong public concern about waste. Reflecting recent changes in the polymer industry, the sustainability of biobased polymers allows them to be used for general and engineering applications. This expansion is driven by the remarkable progress in the processes for refining biomass feedstocks to produce biobased building blocks that allow biobased polymers to have more versatile and adaptable polymer chemical structures and to achieve target properties and functionalities. In this review, biobased polymers are categorized as those that are: (1) upgrades from biodegradable polylactides (PLA), polyhydroxyalkanoates (PHAs), and others; (2) analogous to petroleum-derived polymers such as bio-poly(ethylene terephthalate) (bio-PET); and (3) new biobased polymers such as poly(ethylene 2,5-furandicarboxylate)
    [Show full text]
  • Recycling Roadmap
    BRITISH PLASTICS FEDERATION RECYCLING ROADMAP SUPPORTED BY The British Plastics Federation (BPF) is the trade association representing the entire plastics supply chain in the UK, from polymer producers and distributors, converters, equipment suppliers and recyclers. The BPF works in close collaboration with its member companies and liaises closely with government departments, as well as a broad range of non-governmental stakeholders such as charities, brands and retailers. The plastics industry is one of the UK manufacturing sector’s biggest strengths, comprising around 6,200 companies and directly employing 180,000 people. This report has been produced by the British Plastics Federation. The BPF would like to thank Keith Freegard of Keith Freegard Consulting Ltd for all his work on this report and all other reviewers who have provided valuable comments and feedback during its production. This report does not necessarily reflect the views of individual companies mentioned in this report and information provided by companies does not necessarily reflect the views of the BPF. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording and/or otherwise, without the prior written permission of the publishers. While all reasonable steps have been taken to ensure that the information contained within this document is correct, the British Plastics Federation can make no warranties or representations of any kind as to the content and, to the maximum extent permitted by law, accept no liability whatsoever for the same including without limit, for direct, indirect or consequential loss, business interruption, loss of profits, production, contracts or goodwill.
    [Show full text]
  • Impact Strength and Morphology of Sustainably Sourced Recycling
    265 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 83, 2021 The Italian Association of Chemical Engineering Online at www.cetjournal.it Guest Editors: Jeng Shiun Lim, Nor Alafiza Yunus, Jiří Jaromír Klemeš Copyright © 20 21 , AIDIC Servizi S.r.l. DOI: 10.3303/CET2183045 ISBN 978-88-95608-81-5; ISSN 2283-9216 Impact Strength and Morphology of Sustainably Sourced Recycling Polyethylene Terephthalate Blends Nur H. M. Rosmmi, Zahid I. Khan, Zurina Mohamad*, Rohah A. Majid, Norhayani Othman, Siti H. C. Man, Khairil J. A. Karim School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia [email protected] Polyethylene terephthalate (PET) is a semi-crystalline material that is widely used in the packaging industry, mainly in the production of bottles for beverages. Similar to other plastics, PET causes a problem in disposal as it remains in the environment for a long time. Most of the bottles are thrown away after a single usage, which worsens the disposal problem. Recycling is one of the best ways to reduce the problem of disposal. However, recycling reduces the mechanical and chemical properties of the PET. Factors such as moisture absorption, biological pollutants, oxidation, high temperature, and thermal degradation have reduced the molecular weight of PET. To improve the properties, recycled PET had been blended with Polyamide 11 (PA11) at different ratios of PET: PA11, 30:70, 50:50, and 70:30. A modified styrene/acrylic/epoxy chain extender (Joncryl) was added at 1 wt % in the blend to enhance the properties. The properties of recycled PET/PA11 blends were investigated in terms of mechanical and morphological aspects.
    [Show full text]
  • Bio-Based and Biodegradable Plastics – Facts and Figures Focus on Food Packaging in the Netherlands
    Bio-based and biodegradable plastics – Facts and Figures Focus on food packaging in the Netherlands Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Rapport nr. 1722 Bio-based and biodegradable plastics - Facts and Figures Focus on food packaging in the Netherlands Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Report 1722 Colophon Title Bio-based and biodegradable plastics - Facts and Figures Author(s) Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Number Wageningen Food & Biobased Research number 1722 ISBN-number 978-94-6343-121-7 DOI http://dx.doi.org/10.18174/408350 Date of publication April 2017 Version Concept Confidentiality No/yes+date of expiration OPD code OPD code Approved by Christiaan Bolck Review Intern Name reviewer Christaan Bolck Sponsor RVO.nl + Dutch Ministry of Economic Affairs Client RVO.nl + Dutch Ministry of Economic Affairs Wageningen Food & Biobased Research P.O. Box 17 NL-6700 AA Wageningen Tel: +31 (0)317 480 084 E-mail: [email protected] Internet: www.wur.nl/foodandbiobased-research © Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen Research All rights reserved. No part of this publication may be reproduced, stored in a retrieval system of any nature, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. The publisher does not accept any liability for inaccuracies in this report. 2 © Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen Research Preface For over 25 years Wageningen Food & Biobased Research (WFBR) is involved in research and development of bio-based materials and products.
    [Show full text]
  • The Dynisco Extrusion Processors Handbook 2Nd Edition
    The Dynisco Extrusion Processors Handbook 2nd edition Written by: John Goff and Tony Whelan Edited by: Don DeLaney Acknowledgements We would like to thank the following people for their contributions to this latest edition of the DYNISCO Extrusion Processors Handbook. First of all, we would like to thank John Goff and Tony Whelan who have contributed new material that has been included in this new addition of their original book. In addition, we would like to thank John Herrmann, Jim Reilly, and Joan DeCoste of the DYNISCO Companies and Christine Ronaghan and Gabor Nagy of Davis-Standard for their assistance in editing and publication. For the fig- ures included in this edition, we would like to acknowledge the contributions of Davis- Standard, Inc., Krupp Werner and Pfleiderer, Inc., The DYNISCO Companies, Dr. Harold Giles and Eileen Reilly. CONTENTS SECTION 1: INTRODUCTION TO EXTRUSION Single-Screw Extrusion . .1 Twin-Screw Extrusion . .3 Extrusion Processes . .6 Safety . .11 SECTION 2: MATERIALS AND THEIR FLOW PROPERTIES Polymers and Plastics . .15 Thermoplastic Materials . .19 Viscosity and Viscosity Terms . .25 Flow Properties Measurement . .28 Elastic Effects in Polymer Melts . .30 Die Swell . .30 Melt Fracture . .32 Sharkskin . .34 Frozen-In Orientation . .35 Draw Down . .36 SECTION 3: TESTING Testing and Standards . .37 Material Inspection . .40 Density and Dimensions . .42 Tensile Strength . .44 Flexural Properties . .46 Impact Strength . .47 Hardness and Softness . .48 Thermal Properties . .49 Flammability Testing . .57 Melt Flow Rate . .59 Melt Viscosity . .62 Measurement of Elastic Effects . .64 Chemical Resistance . .66 Electrical Properties . .66 Optical Properties . .68 Material Identification . .70 SECTION 4: THE SCREW AND BARREL SYSTEM Materials Handling .
    [Show full text]
  • Degradable Polyamides
    iiililiili^ @ EuroPean Patent Office ^-S Office europeen des brevets (fi) Publication number : 0 559 404 A1 @ EUROPEAN PATENT APPLICATION @ Application number : 93301510.9 @ Int. CI.5 : C08K 5/14, C08K 5/1 1 , C08G 69/44, C08G 69/48, (§) Date of filing : 26.02.93 A61L 1 7/00, A61 L 27/00, //(C08K5/14, C08L77:00), (C08K5/27, C08L77:00) (30) Priority : 06.03.92 US 847969 (72) Inventor : Holy, Norman Lee 901 Cherry Lane Penns Park, Pennsylvania 18943 (US) @ Date of publication of application : Inventor : Bortnick, Newman Mayer 08.09.93 Bulletin 93/36 509 Oreland Mill Road Oreland, Pennsylvania 19075 (US) (S) Designated Contracting States : DE ES FR GB IE IT PT @ Representative : Angell, David Whilton et al ROHM AND HAAS (UK) LTD. European Operations Patent Department Lennig House © Applicant : ROHM AND HAAS COMPANY 2 Mason's Avenue Independence Mall West Croydon CR9 3NB (GB) Philadelphia Pennsylvania 19105 (US) (S) Degradable polyamides. (57) Compositions comprising polyamide rendered hydrolytically labile by the incorporation of certain alkyl esters therein are useful in or as articles intended for degradation by water. Certain of the hydrolytically labile polyamides are novel compounds. O 10 10 LU Jouve, 18, rue Saint-Denis, 75001 PARIS EP 0 559 404 A1 This invention is concerned with biodegradable polymeric articles and certain amide polymers useful therein. The polymers and articles become brittle after long exposure to water and are especially useful as biodegradable fiber and netting, degradable plastic dishware, and degradable films for packaging. Another use of interest is in biological implants. 5 Japanese Kokai No.
    [Show full text]
  • Making a Plastic from Potato Starch
    62 Inspirational chemistry Making a plastic from potato starch Index 3.1.7 7 sheets In this activity students make a plastic from potato starch and investigate the effect adding a ‘plasticiser’ has on the properties of the polymer they have made. Students can begin either with potatoes or with commercially bought potato starch. The practical is straightforward; the main hazard is the possibility of the mixture boiling dry. Timing Extracting the starch takes about 15–20 minutes and making the plastic about 20 minutes. Using the activity This can be used simply as a practical to enhance the teaching of a polymers or plastics topic, it can be used as an introduction to further work on biopolymers and bioplastics and/or it can be used as an example of the effects of plasticisers. A number of student sheets are provided so you can choose to do the whole activity or just selected parts of it. Extracting starch from potatoes For each group of students you will need: ■ 100 g potatoes ■ Grater ■ Tea strainer ■ Distilled water ■ 2 x 400 cm3 beaker ■ Pestle and mortar. Making the plastic film For each group of students you will need: ■ 250 cm3 beaker Inspirational chemistry 63 ■ Large watch glass ■ Bunsen burner and heat proof mat ■ Tripod and gauze ■ Stirring rod ■ Potato starch ■ Propan-1,2,3-triol (glycerol) ■ Hydrochloric acid 0.1 mol dm–3 (Minimal hazard) ■ Sodium hydroxide 0.1 mol dm–3 (Irritant) ■ Food colouring ■ Petri dish or white tile ■ Universal Indicator paper ■ Eye protection ■ Pipettes ■ Access to a balance ■ 25 cm3 measuring cylinder ■ 10 cm3 measuring cylinder.
    [Show full text]