The Essential Plastics Industry

Total Page:16

File Type:pdf, Size:1020Kb

The Essential Plastics Industry vii ix x 15 25 37 45 57 81 89 109 123 adidas APME (Association of Plastics Manufacturers in Europe) British Plastics Federation Cannon Rubber Ltd Dunlop Siazenger Dyson Ltd Ford GE Plastics GlaxoSmithKline Harkness Hall UK ITDG (Intermediate Technology Development Group) Nicholas Grimshaw and Partners Ltd Nuffield Design and Technology POD PP Global Technology Priestman Goode Rapak (0 S Smith Plastics) Seymour Powell Skystreme smart"? (DaimlerChrysler UK) St Paul's Nursery School, York Symphony Environmental Ltd The British Council The Design Council The Eden Project The Fabric University UCB Group Wolfson Electrostatics Worshipful Company of Horners John Amner, Ivor Davies, David Egglestone, John Featherstone, Mandy Haberman, Bernie Hanning, Denny Lane, David Oxley, John Sale, Colin Williamson Our grateful thanks also to ATOFINA for their very generous financial support. adidas,70 Aesculap AG and Company KG, 20 Amanda Penny, 85 Arcadia Group, 48 Apex Photo Agency Limited, 34 ATOFINA, 19, 52, 55, 61, 62, 73, 75, 76, 77, 88, 91, 108, 113, 115 AVENT, Cannon Rubber Limited, 40, 41 BASF,69 Board-a-Line Limited, 32, 33 Cambridge Display Technology Limited, 17 City of York Council, I I DaimlerChrysler, 63 Dan Gavere, 10I DuPont, 5 I, 69 Dyson, 72 Elizabeth Hubbard, 85 Erhard & Sohne GmbH, I I Freefoto.com, 27 Gilbert, 54 GlaxoSmithKline, 55 Graham Johnson, NSW Agriculture, 9 Graham Hearn, Wolfson Electrostatics, 12 Graham Mathers 4, 8, 9, 19, 21, 22, 27, 39, 43, 64, 66, 68, 84, 85, 91, 92, 94, 96, 97, 99, 102 Hemera Technologies Incorporated, 18, 27, 43, 67, 10I, 104 Horners Company, 20, 21 Hugh Craig Harpsichords, 79 Hutchison Picture Library, 30 James Pitt, 19, 28, 36, 43, 47, 48, 67, 72, 83, 85, 87, 101 Kath James, 35 Kelvin Fagan, 69 Koninklijke Philips Electronics NY, 18 Larson Boats, 80, 103 Lucite International, 87 Mandy Haberman, 41,42 Microban International Limited, 17 Mothercare, 39 National Museum of Photography, Film & Television, 28, 78 Negri Bossi, 93 NetMotion Incorporated ([email protected]), 19 Plastics Historical Society, I 13 Priestman Goode, 59 Robert Speht Energy Tech Limited (http://www.energytech.co.uk), 5 Roger Ferragallo, 79 RPT Company, 19 Salomon Sports, 53 Samsonite, 59 Sanford, 68 Seymour Powell Design, 29 Shell UK, 22, 117 Skystreme UK Limited, 86 Sony, 47 Sossna GmbH, 108 Stanmore Implants Worldwide Limited, 87 The Centre for Alternative Technology, 4 Tripleplas, 100 UCB Films, 30 University of Leicester, 39 University of York, 28 Wacky Wet World, 71 PLASTICS - MATERIALS FOR A SUSTAINABLE FUTURE? Civilisation does not stand still. Every year there are litter roadsides, get caught in trees, and remain for changes to the way we live, the products we use, the decades in landfill sites. systems through which society is organised. One only But when we think about the issue more, it is not so needs to consider the impact of computers and mobile straightforward. The manufacture of paper carrier bags phones as products, and the Internet and telephone certainly uses a renewable source (trees). If we cellular networks as systems, to see how changing consider the energy used over the whole life cycle of technologies and life-styles interact. the bag, it does not compare well with the plastic But do all changes make life better? Are we sometimes alternative. Papermaking is not without its toxic meeting needs now in a way that will create problems problems. And is the real problem not so much the for future generations? Are the choices being made product, but the behaviour of the people who use it? today limiting the chance of people in the future to After all, people create litter, not plastics manufacturers. meet their needs? Whether or not there are good collection and recycling facilities is a matter of choice, which is of course These are the questions that underlie the concept of affected by economics. Collection points exist in some sustainable development. The Simplest definition is countries, for example Germany, or in some parts of that development (or change) is sustainable if it meets Britain, but not in others. the needs of today without compromising the ability of future generations to meet their needs. Sustainability is All these questions can be asked about many other essentially about choices. If governments, companies or plastic products. So is a society that is making greater individuals commit irreversible acts, such as cutting use of plastic products moving towards more down forests or releasing toxic chemicals, this reduces sustainable living? On balance, we would argue that the choices of future generations. given the right infrastructure, the development towards plastic products is a move in the right direction, that is, Sustainable development is now a policy priority at all plastics can contribute to sustainable development. But levels - the United Nations, international agencies such there is more to this issue than simple environmental as The World Bank, individual governments, companies impact. One needs to look at economic and social and NGOs (non-governmental organisations) - all have factors to get a balanced picture. policies on sustainable development. They do not always live up to these policies, but at least the question of 1.2 The different facets of sustainable sustainable change is becoming central to their thinking. development This is a book about plastics. To what extent have There are three main dimensions to sustainable plastic products and the industries that lie behind them, development - environmental, social and economic. contributed towards sustainable development? To Three interlocking circles can represent them: answer this, we need first to examine the concept more closely. 1.1 Sustainability is a direction of travel, not a destination There is no such thing as a truly sustainable product, be it made from a plastic or another material! What is more important is whether the new or redesigned product is more sustainable than the product it is replacing. Consider plastic bags being used at supermarkets. These have replaced paper bags. Are they more sustainable? In some ways they are. They are far lighter and thinner, thus the transport costs and environmental When analysing the impact of a new product, material, pollution incurred in getting them from factory to shop processing technology or system, it is helpful to use is less. They can be used again and again. They can be these three broad headings. It is not enough to simply collected and recycled or burned to create heat. But say that a product is good or bad. We need more are they? Better collection, sorting and recycling subtle tools for analysis. facilities would enhance the sustainability of the move from paper to plastic carrier bags. But there are also The Total Beauty of Sustainable Products is the name of a negative consequences of this development. Most book by philosopher and design guru Edwin Datschefski. plastics are made from oil, which is a finite resource. In it he describes five simple tests for sustainability - They require energy intensive processing. Toxins can be cyclic, solar, safe, efficient, social. We will add another released. And we all know how plastic carrier bags can - economic. The questions overlap to some extent. PLASTICS - MATERIALS FOR A SUSTAINABLE FUTURE? But this simply reflects the synergy between the three Box 1.1 Fully biodegradable plastics from dimensions of sustainable development. The sustainable sources descriptions below describe an ideal we are working towards. In some cases the goal may not be achievable. 1.2. I. Is it cyclic? This phrase 'Is it cyclic?' is a short-hand way to ask is the product made from compostable, organic materials, or from minerals that can be continuously recycled in a 'closed loop'? The idea here is that there should be no such thing as waste! All by-products should be the 'raw material' for something else. Metals can be recycled again and again. Something that really has to be thrown away might be burned to release the energy stored in it. Or it can be put into compost, to provide nutrients for the soil. In New plastics are being developed that can be made this way, carbon and nitrogen can be recycled. from organic chemicals obtained from renewable "We've often heard that we're running out of resources such as corn or wheat. An example is resources. But there are still the same number of polylactic acid, PLA. The starch produced by atoms around on the earth's surface - we have simply photosynthesis in the plant is first separated and is converted atoms into molecules that are of no use to then converted into dextrose sugar. This is in turn us. With continuous cycling of both organic and converted to lactic acid using a fermentation inorganic materials, we will never run out of the process. A cyclic dimer is formed using a resources we need." condensation reaction. This is purified using vacuum distillation and is then polymerised in a reaction Edwin Datschefski where the lactide ring opens up forming a polymer PLA. This polymer can be used to make a range of 1.2.2 Is it solar? items including clothing, home and office furnishings, In manufacture and use, do the products consume only cups, food containers and sweet wrappers. It is renewable energy that is cyclic and safe? hoped to be able to make We can use energy directly from the sun through bottles also. photovoltaic cells and through using other types of solar I Claims have panels. Energy comes indirectly from the sun in wave been made and wind power, hydro-electricity, and biomass (energy that the stored in plants) (see Boxes 1.1, 1.2 & 1.3) production of "Each day more solar energy falls to the earth than PLA consumes the total amount of energy the planet's 6 billion 20%-30% less inhabitants would consume in 25 years.
Recommended publications
  • The Plastic Resin Export Supply Chain
    Moving Texas Exports Examining the role of transportation in the plastic resin export supply chain TRANSPORTATION Policy Research CENTER TRANSPORTATION Policy Research CENTER CONTENTS Introduction .......................................................................................................1 Background .................................................................................................................2 Plastic Resin Export Supply Chain .................................................................4 Transportation Issues .......................................................................................7 Captive Rail...................................................................................................................8 Rail Capacity ................................................................................................................8 Truck Driver Shortages ............................................................................................8 Overweight Regulations .........................................................................................8 Heavy-Weight Corridors ........................................................................................10 Last-Mile Congestion .............................................................................................10 Port Gate Congestion and Port Gate Hours ...................................................11 Container Availability ............................................................................................11
    [Show full text]
  • Unconventional Gas and Oil in North America Page 1 of 24
    Unconventional gas and oil in North America This publication aims to provide insight into the impacts of the North American 'shale revolution' on US energy markets and global energy flows. The main economic, environmental and climate impacts are highlighted. Although the North American experience can serve as a model for shale gas and tight oil development elsewhere, the document does not explicitly address the potential of other regions. Manuscript completed in June 2014. Disclaimer and copyright This publication does not necessarily represent the views of the author or the European Parliament. Reproduction and translation of this document for non-commercial purposes are authorised, provided the source is acknowledged and the publisher is given prior notice and sent a copy. © European Union, 2014. Photo credits: © Trueffelpix / Fotolia (cover page), © bilderzwerg / Fotolia (figure 2) [email protected] http://www.eprs.ep.parl.union.eu (intranet) http://www.europarl.europa.eu/thinktank (internet) http://epthinktank.eu (blog) Unconventional gas and oil in North America Page 1 of 24 EXECUTIVE SUMMARY The 'shale revolution' Over the past decade, the United States and Canada have experienced spectacular growth in the production of unconventional fossil fuels, notably shale gas and tight oil, thanks to technological innovations such as horizontal drilling and hydraulic fracturing (fracking). Economic impacts This new supply of energy has led to falling gas prices and a reduction of energy imports. Low gas prices have benefitted households and industry, especially steel production, fertilisers, plastics and basic petrochemicals. The production of tight oil is costly, so that a high oil price is required to make it economically viable.
    [Show full text]
  • The Compelling Facts About Plastics 2009 an Analysis of European Plastics Production, Demand and Recovery for 2008
    The Compelling Facts About Plastics 2009 An analysis of European plastics production, demand and recovery for 2008 1 2008 – At a glance Global production fell back in 2008 to 245 million tonnes from 260 in 2007 on the back of the financial crisis. The plastics industry experienced a dramatic 3rd and 4th quarter triggered by the economic crisis – more for those serving capital markets and less in daily consumables. Europe produced 60 million tonnes and remained a major region contributing about 25% of the global total. The plastics industry – plastic producers, converters and machine manufacturers – employed 1.6 million people and many times more in industries depending on plastics for their business. The plastics producers and converters also contributed together around 13 billion € in trade surplus to EU27 which helped to reduce the 242 billion € trade deficit for the whole industry in 2008. Demand by European converters fell back 7.5% to 48.5 million tonnes in 2008. Waste generation increased by just under 1%. Both recycling and energy recovery increased to drive total recovery rate for plastics to 51.3% and disposal at landfill down to 48.7% thereby opening up a gap of 2.6%. Recycling increased by 4.3% over 2007, a lower year-on-year increase than in recent years, reflecting the severe impact of the economic crisis on this sector. Energy recovery increased 3.6% over 2007. Seven of the EU Member States plus Norway and Switzerland recover more than 80% of their used plastics. These countries adopt an integrated resource management strategy using a range of complementary options to address each different waste stream with the best environmental and economic option.
    [Show full text]
  • Plasticseurope's Views on a Strategy on Plastics Plastics - Increasing Circularity and Resource Efficiency
    PlasticsEurope's Views on a Strategy on Plastics Plastics - Increasing Circularity and Resource Efficiency PlasticsEurope’s Views on a Strategy on Plastics Plastics – Increasing Circularity and Resource Efficiency Contents Foreword 2 1. Introduction 3 2. Innovation for a Circular and Resource Efficient Europe 4 Applying three guiding principles: Full Life Cycle Thinking 4 Environmental Protection & Societal Wellbeing 9 Awareness Building 10 3. Addressing the Circularity Challenges of Products using Plastics - The Path Forward 11 References 14 Glossary 15 Version 4: September 2017 Foreword Society enjoys an enhanced quality of life as a result of highly innovative products which rely on plastics. Versatile plastic materials are widely adopted as they meet the demands of today’s lifestyles while contributing to resource savings in diverse applications. Furthermore, PlasticsEurope is committed to working with key stakeholders such as value chain partners, academia and policy makers, to help find solutions for societal challenges; including the inappropriate management of products containing plastics at the end of their useful life. Moreover, the upcoming Strategy on Plastics within the EU Circular Economy Package offers unique opportunities to deliver the innovation needed to ensure that Europe progresses towards a more circular and resource efficient economy. The document describes PlasticsEurope’s ideas regarding the Strategy on Plastics with the aim of stimulating a constructive dialogue with stakeholders. Karl-H. Foerster Executive Director PlasticsEurope September 2017 Version 4: September 2017 PlasticsEurope’s Views on a Strategy on Plastics | Page 2 of 16 Plastics – Increasing Circularity and Resource Efficiency 1. Introduction The European Commission supports a shift to a more circular economy as an alternative to a linear economic model.
    [Show full text]
  • Time to Assess the Future of Plastics Circularity Tional Thermal Processing
    FIRST PERSON By Nina Goodrich Time to assess the future of plastics circularity tional thermal processing. In this system, the food is put in a flexible pouch, sealed and then processed with microwaves in a water bath. Using a frequency that is much lower than that used in a household microwave, the processing eliminates microorganisms in a very short period of time, increasing the flavor and texture of the food product. It can be used to create shelf-stable foods or used to lengthen the shelf life of refrigerated foods. HPP also requires the use of a flexible or semi-rigid package. The product is sealed inside, and the container is placed in a high-pressure vessel to decrease microorganisms. HPP is typically used with heat-sensitive foods like juices and smooth- ies, but the process has a wide range of other applications. Those types of packaging benefits com- plement the sustainability-oriented upsides of flexible packaging that have been dis- cussed among stakeholders for some time – for instance, the use of flexible packaging can, in some instances, reduce overall ma- terials usage or boost transport efficiency in comparison to other packaging types. The flexible packaging example underlines the fact that to enable circularity, we need to predict the material mix of the future and de- velop our infrastructure to meet future needs. GETTING A GRASP ON DIFFERENCES AMONG RESINS In September of this year, the global man- quality required for a massive increase in At the same time, it’s critical to understand agement consultancy McKinsey & Company recycled content use.
    [Show full text]
  • Improving Plastics Management: Trends, Policy Responses, and the Role of International Co-Operation and Trade
    Improving Plastics Management: Trends, policy responses, and the role of international co-operation and trade POLICY PERSPECTIVES OECD ENVIRONMENT POLICY PAPER NO. 12 OECD . 3 This Policy Paper comprises the Background Report prepared by the OECD for the G7 Environment, Energy and Oceans Ministers. It provides an overview of current plastics production and use, the environmental impacts that this is generating and identifies the reasons for currently low plastics recycling rates, as well as what can be done about it. Disclaimers This paper is published under the responsibility of the Secretary-General of the OECD. The opinions expressed and the arguments employed herein do not necessarily reflect the official views of OECD member countries. This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. For Israel, change is measured between 1997-99 and 2009-11. The statistical data for Israel are supplied by and under the responsibility of the relevant Israeli authorities. The use of such data by the OECD is without prejudice to the status of the Golan Heights, East Jerusalem and Israeli settlements in the West Bank under the terms of international law. Copyright You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgment of OECD as source and copyright owner is given.
    [Show full text]
  • Nylons: a Review of the Literature on Products of Combustion and Toxicity
    — |MH|||| I A111DS l&BTIO NBSIR 85-3280 Nylons: A Review of the Literature on Products of Combustion and Toxicity NBS Reference PUBLICATIONS Emil Braun Barbara C. Levin U S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Fire Research Gaithersburg, MD 20899 February 1986 Sponsored in part by: U.S. Consumer Product Safety Commission — • q c — asda, MD 20207 100 • U56 85-3280 1986 NBS keseaech informattojt CENTER NBSIR 85-3280 NYLONS: A REVIEW OF THE LITERATURE ON PRODUCTS OF COMBUSTION AND TOXICITY Emil Braun Barbara C. Levin U S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Fire Research Gaithersburg, MD 20899 February 1986 Sponsored in part by: U.S. Consumer Product Safety Commission Bethesda, MD 20207 U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS. Ernest Ambler. Director 21 TABLE OF CONTENTS Page LIST OF TABLES iv LIST OF FIGURES vii ABSTRACT 1 1.0 INTRODUCTION 2 2.0 CHEMICAL STRUCTURE AND THERMOPHYSICAL PROPERTIES 4 3.0 DECOMPOSITION 5 3.1 VACUUM PYROLYSIS 7 3.2 DECOMPOSITION IN INERT AND AIR ATMOSPHERES 8 3.2.1 GENERAL DECOMPOSITION PRODUCTS 8 3.2.2 SPECIFIC GAS SPECIES 11 3.2.2. PURE MATERIALS 11 3. 2. 2. COMPOSITE MATERIALS 14 4.0 TOXICITY 17 4.1 DIN 53 436 19 4.2 FAA TOXICITY PROTOCOL 20 4.3 NASA/USF TOXICITY PROTOCOL 22 4.5 MISCELLANEOUS 27 5.0 LARGE-SCALE TESTS 31 6.0 CONCLUSIONS 35 7.0 ACKNOWLEDGEMENTS 36 8.0 REFERENCES 37 iii LIST OF TABLES Page TABLE 1.
    [Show full text]
  • The Recent Developments in Biobased Polymers Toward
    polymers Review The Recent Developments in Biobased Polymers toward General and Engineering Applications: Polymers that Are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed Hajime Nakajima, Peter Dijkstra and Katja Loos * ID Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; [email protected] (H.N.); [email protected] (P.D.) * Correspondence: [email protected]; Tel.: +31-50-363-6867 Received: 31 August 2017; Accepted: 18 September 2017; Published: 18 October 2017 Abstract: The main motivation for development of biobased polymers was their biodegradability, which is becoming important due to strong public concern about waste. Reflecting recent changes in the polymer industry, the sustainability of biobased polymers allows them to be used for general and engineering applications. This expansion is driven by the remarkable progress in the processes for refining biomass feedstocks to produce biobased building blocks that allow biobased polymers to have more versatile and adaptable polymer chemical structures and to achieve target properties and functionalities. In this review, biobased polymers are categorized as those that are: (1) upgrades from biodegradable polylactides (PLA), polyhydroxyalkanoates (PHAs), and others; (2) analogous to petroleum-derived polymers such as bio-poly(ethylene terephthalate) (bio-PET); and (3) new biobased polymers such as poly(ethylene 2,5-furandicarboxylate)
    [Show full text]
  • Plastic Industry Awareness of the Ocean Plastics Problem
    Fueling Plastics Plastic Industry Awareness of the Ocean Plastics Problem • Scientists became aware of the ocean plastics problem in the 1950s, and understanding of the nature and severity of the problem grew over the next decades. • The major chemical and petroleum companies and industry groups were aware of the ocean plastics problem no later than the 1970s. • Plastics producers have often taken the position that they are only responsible for plastic waste in the form of resin pellets, and that other forms of plastic waste are out of their control. The use of plastics in consumer resins and the fossil fuel companies the twentieth century. Early observ- goods has been expanding exponen- supplying them with chemical feed- ers concerned about marine plas- tially since the late 1940s. Within stocks — have known about this tics were specifically worried about years of that expansion beginning, problem and for how long. The re- marine animals becoming entan- observers began to document plas- mainder of this document presents a gled in discarded fishing gear and tic pollution in the environment, brief overview of the history of pub- other plastic wastes. As noted by including in the world’s oceans. lic and industry awareness of marine the United States’ National Oce- Plastic is a pollutant of unique con- plastic pollution. Although this his- anic and Atmospheric Administra- cern because it is durable over long torical account is detailed, it is far tion (NOAA), “[p]rior to the 1950s periods of time and its effects accu- from comprehensive, and additional much of the fishing gear and land- mulate as more of it is produced and research is forthcoming.
    [Show full text]
  • 2015 Global Business Trends
    2015 Global Business Trends Published December 2015 plasticsindustry.org/trends © 2015 SPI: The Plastics Industry Trade Association All rights reserved. 1425 K Street, NW · Suite 500 · WAshington, DC 20005-3686 The methodology used to prepare this report is the sole property of Probe Economics LLC. Neither Probe Economics LLC nor SPI: The Plastics Industry Trade Association makes any warranty with respect to the work described in this report, other than to have performed it in a diligent and professional manner, and assumes no liability for consequential damages resulting from any use made of this work. In particular, the reader should be aware that figures on contained trade and “true” consumption are model-determined estimates and are not actual data. Also, some 2014, and even 2013, figures are estimated, because the actual data were not available when this report was prepared. Contents Executive Summary ......................................................................................... 2 I. PLASTICS INDUSTRY TRADE FLOWS .............................................................. 4 A. Industry-Wide ......................................................................................... 4 B. Resins .................................................................................................... 4 C. Plastic Products ...................................................................................... 5 D. Molds .................................................................................................... 5 E. Machinery
    [Show full text]
  • Plastics Guidebook Cover
    PLASTICS INDUSTRY ENERGY BEST PRACTICE GUIDEBOOK Plastics Energy Best Practice Guidebook Provided By: Funding for this guidebook was provided by Focus on Energy. Focus on Energy, a statewide service, works with eligible Wisconsin residents and businesses to install cost-effective energy efficiency and renewable energy projects. We provide technical expertise, training and financial incentives to help implement innovative energy management projects. We place emphasis on helping implement projects that otherwise would not get completed, or to complete projects sooner than scheduled. Our efforts help Wisconsin residents and businesses manage rising energy costs, protect our environment and control the state’s growing demand for electricity and natural gas. With: Science Applications International Corporation Center for Plastic Processing Technology, UW-Platteville Envise, LLC CleanTech Partners, Inc. Tangram Technology Ltd. July 2006 Special thanks to the American Chemistry Council who provided printing and distribution through a grant by the U.S. Department of Energy, administered by CleanTech Partners, Inc. TABLE OF CONTENTS FORWARD ………........................................................................................................ 3 Are you a World Class Energy User?............................................................... 3 What Others Say about the Guidebook............................................................ 3 Development of the Guidebook........................................................................ 4
    [Show full text]
  • Recycling Roadmap
    BRITISH PLASTICS FEDERATION RECYCLING ROADMAP SUPPORTED BY The British Plastics Federation (BPF) is the trade association representing the entire plastics supply chain in the UK, from polymer producers and distributors, converters, equipment suppliers and recyclers. The BPF works in close collaboration with its member companies and liaises closely with government departments, as well as a broad range of non-governmental stakeholders such as charities, brands and retailers. The plastics industry is one of the UK manufacturing sector’s biggest strengths, comprising around 6,200 companies and directly employing 180,000 people. This report has been produced by the British Plastics Federation. The BPF would like to thank Keith Freegard of Keith Freegard Consulting Ltd for all his work on this report and all other reviewers who have provided valuable comments and feedback during its production. This report does not necessarily reflect the views of individual companies mentioned in this report and information provided by companies does not necessarily reflect the views of the BPF. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording and/or otherwise, without the prior written permission of the publishers. While all reasonable steps have been taken to ensure that the information contained within this document is correct, the British Plastics Federation can make no warranties or representations of any kind as to the content and, to the maximum extent permitted by law, accept no liability whatsoever for the same including without limit, for direct, indirect or consequential loss, business interruption, loss of profits, production, contracts or goodwill.
    [Show full text]