ETR 192 TECHNICAL July 1995 REPORT

Total Page:16

File Type:pdf, Size:1020Kb

ETR 192 TECHNICAL July 1995 REPORT ETSI ETR 192 TECHNICAL July 1995 REPORT Source: ETSI TC-SES Reference: DTR/SES-04014 ICS: 33.060, 33.060.20 Key words: broadcasting, contribution, earth station, radio, satellite, TV Satellite Earth Stations and Systems (SES); Modulation and channel coding of 34,368 Mbit/s and 44,736 Mbit/s digital television contribution links via satellite ETSI European Telecommunications Standards Institute ETSI Secretariat Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: [email protected] Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16 Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. New presentation - see History box © European Telecommunications Standards Institute 1995. All rights reserved. Page 2 ETR 192: July 1995 Whilst every care has been taken in the preparation and publication of this document, errors in content, typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to "ETSI Editing and Committee Support Dept." at the address shown on the title page. Page 3 ETR 192: July 1995 Contents Foreword .......................................................................................................................................................5 Introduction....................................................................................................................................................5 1 Scope ..................................................................................................................................................7 2 References..........................................................................................................................................7 3 Overview .............................................................................................................................................7 Annex A (informative): Draft ETS for the modulation and channel coding of 34,368 Mbit/s and 44,736 Mbit/s digital television contribution links via satellite ...............................8 1 Scope ..................................................................................................................................................8 2 Normative references..........................................................................................................................8 3 Abbreviations.......................................................................................................................................8 4 General................................................................................................................................................9 5 Channel unit characteristics (requirements)........................................................................................9 5.1 Modulator .............................................................................................................................9 5.1.1 Output characteristics....................................................................................10 5.1.2 Modulator spectrum output............................................................................10 5.2 Demodulator ......................................................................................................................11 5.2.1 Operating conditions .....................................................................................11 5.2.2 Demodulator filter characteristics..................................................................11 5.3 Forward error correction ....................................................................................................11 5.3.1 Coder.............................................................................................................11 5.3.2 Decoder.........................................................................................................12 5.3.3 Reed-Solomon outer coding (optional)..........................................................12 5.4 Energy dispersal (scrambling) ...........................................................................................12 5.5 BER performance characteristics ......................................................................................13 5.6 Overhead framing for ESC and alarms .............................................................................13 5.6.1 Overhead frame structure .............................................................................13 5.6.1.1 Frame and multiframe alignment.........................................14 5.6.2 Maintenance alarm concept for the channel unit ..........................................14 5.6.2.1 Fault conditions and consequent actions ............................14 5.6.2.2 Definition of AIS...................................................................15 5.7 Timing jitter ........................................................................................................................15 5.8 Terrestrial link interfaces....................................................................................................15 5.8.1 Physical/electrical characteristics..................................................................15 5.8.2 Timing interfaces...........................................................................................15 5.9 IF frequency .......................................................................................................................15 5.9.1 IF frequency stability......................................................................................16 5.10 Buffering and slip control ...................................................................................................16 5.10.1 Buffer capacity...............................................................................................16 5.10.2 Slip control.....................................................................................................16 5.11 Local clock .........................................................................................................................16 6 Channel unit characteristics (optional requirements) ........................................................................16 6.1 RS outer code....................................................................................................................16 6.1.1 Polynomials ...................................................................................................16 6.1.1.1 Field generating polynomial.................................................16 6.1.1.2 Code generator polynomials................................................17 Page 4 ETR 192: July 1995 6.1.2 Code parameters.......................................................................................... 17 6.1.3 Shortened codes........................................................................................... 17 6.1.4 Type of RS code ........................................................................................... 18 6.1.5 Interleaving ................................................................................................... 18 6.2 Implementation of the RS outer coder/decoder ................................................................ 18 6.2.1 Switchability of the RS coder/decoder .......................................................... 18 6.3 Synchronization................................................................................................................. 18 6.3.1 UW Definition................................................................................................ 18 6.3.2 Insertion of UW............................................................................................. 19 6.3.3 Syncronization acquisition ............................................................................ 19 6.3.3.1 Initial acquisition and UW detection .................................... 19 6.3.3.2 Steady state and loss of synchronization............................ 19 6.4 Synchronous scrambler .................................................................................................... 19 6.5 Modulator/Demodulator filter response guidelines............................................................ 20 6.5.1 Analogue filters ............................................................................................. 20 6.5.2 Digital filters .................................................................................................. 20 6.6 Power spectral density requirement.................................................................................. 20 6.7 BER performance characteristics for the concatenated RS plus inner FEC coding ......... 20 History......................................................................................................................................................... 35 Page 5 ETR 192: July 1995 Foreword This ETSI Technical Report (ETR) has been prepared by the Satellite Earth Stations and Systems (SES) Technical Committee of the European Telecommunications Standards Institute (ETSI). ETRs are informative documents resulting from ETSI studies which are not appropriate for European Telecommunication Standard (ETS) or Interim European Telecommunication Standard (I-ETS) status. An ETR may be used to publish material
Recommended publications
  • Tm Synchronization and Channel Coding—Summary of Concept and Rationale
    Report Concerning Space Data System Standards TM SYNCHRONIZATION AND CHANNEL CODING— SUMMARY OF CONCEPT AND RATIONALE INFORMATIONAL REPORT CCSDS 130.1-G-3 GREEN BOOK June 2020 Report Concerning Space Data System Standards TM SYNCHRONIZATION AND CHANNEL CODING— SUMMARY OF CONCEPT AND RATIONALE INFORMATIONAL REPORT CCSDS 130.1-G-3 GREEN BOOK June 2020 TM SYNCHRONIZATION AND CHANNEL CODING—SUMMARY OF CONCEPT AND RATIONALE AUTHORITY Issue: Informational Report, Issue 3 Date: June 2020 Location: Washington, DC, USA This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS) and reflects the consensus of technical panel experts from CCSDS Member Agencies. The procedure for review and authorization of CCSDS Reports is detailed in Organization and Processes for the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-4). This document is published and maintained by: CCSDS Secretariat National Aeronautics and Space Administration Washington, DC, USA Email: [email protected] CCSDS 130.1-G-3 Page i June 2020 TM SYNCHRONIZATION AND CHANNEL CODING—SUMMARY OF CONCEPT AND RATIONALE FOREWORD This document is a CCSDS Report that contains background and explanatory material to support the CCSDS Recommended Standard, TM Synchronization and Channel Coding (reference [3]). Through the process of normal evolution, it is expected that expansion, deletion, or modification of this document may occur. This Report is therefore subject to CCSDS document management and change control procedures, which are defined in Organization and Processes for the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-4). Current versions of CCSDS documents are maintained at the CCSDS Web site: http://www.ccsds.org/ Questions relating to the contents or status of this document should be sent to the CCSDS Secretariat at the email address indicated on page i.
    [Show full text]
  • UC-650E+ DVB-S2 Encoder & Modulator User Manual
    UC-650E+ DVB-S2 Encoder & Modulator User Manual SW Version: 6.11 HW version: 5.8 Web NMS version: 2.00 UC‐650E+ DVB‐S2 Encoder & Modulator User Manual DIRECTORY DIRECTORY .......................................................................................................................................................... 1 CHAPTER 1 INTRODUCTION ................................................................................................................................. 1 1.1 OUTLINE ................................................................................................................................................................. 1 1.2 FEATURES ............................................................................................................................................................... 1 1.3 SPECIFICATIONS ....................................................................................................................................................... 2 1.4 INNER BLOCK DIAGRAM ............................................................................................................................................. 2 1.5 SYSTEM CONNECTION ............................................................................................................................................... 4 1.6 APPEARANCE AND DESCRIPTION .................................................................................................................................. 4 CHAPTER 2 INSTALLATION GUIDE .......................................................................................................................
    [Show full text]
  • Design and Implementation of Data Scrambler & Descrambler System
    Global Journal of Computer Science and Technology: A Hardware & Computation Volume 15 Issue 2 Version 1.0 Year 2015 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 0975-4172 & Print ISSN: 0975-4350 Design and Implementation of Data Scrambler & Descrambler System using VHDL By Naina K. Randive & Prof. G. P. Borkhade Sant Gadge Baba Amaravati University, India Abstract- Multimedia data security is very important for multimedia commerce on the internet and real time data multicast. An striking solution for encrypting data with adequate message security at low cost is the use of Scrambler/Descrambler. Scramblers are necessary components of physical layer system standards besides interleaved coding and modulation. Scramblers are well used in modern VLSI design especially those are used in data communication system either to secure data or re- code periodic sequence of binary bits stream. However, it is necessary to have a descrambler block on the receiving side while using scrambling data in the transmitting end to have the actual input sequence on the receiving end. Scrambling and De-scrambling is an algorithm that converts an input string into a seemingly random string of the same length to avoid simultaneous bits in the long format of data. Scramblers have accomplish of uses in today's data communication protocols. On the other hand, those methods that are theoretical proposed are not feasible in the modern digital design due to many reasons such as slower data rate, increasing information, circuit hazards, uncountable hold- up etc. Therefore it is requisite for the modern digital design to have modified architecture to meet the required goal.
    [Show full text]
  • Dvb-T 8-Asi Scrambler
    DVB-T 8-ASI SCRAMBLER DVB-T 8-ASI Scrambler is professional solution for multichannel digital video broadcasting: it is broadcasting server with its own memory and integrated multiplexer, scrambler and modulator — all in one device — powerful conditional access system Using our DVB-T 8-ASI Scrambler (in which are integrated remultiplexer, scrambler and DVB-T modulator) you are able to organize digital CATV broadcasting network including PC channels monitoring system. The range of the output frequency adjustment for 2 configuration variants: 1RF and 2RF respectively Examples of packages spectrum arrangement within 48 MHz of 2 RF carriers KEY FEATURES: DVB-T 8-ASI Scrambler has integrated re-multiplexer with 8 ASI inputs — which allows you to form program packages from 8 independent transport streams for further broadcasting One or two carriers can be set within 36-850 MHz range, subcarrier frequency can be set within 48 MHz Supports both SD (Standard Definition) and HD (High Definition, 1920x1080i) channels, H.264 / H.265 standard Typical DVB-T/T2 set-top-boxes with CI can be used as subscribers' receivers 90% of STBs with CI support the working with DVB-T 8-ASI Scrambler Connection to PC for management: Ethernet (100 Mbit/s), RJ45 1Gbit data port for IP output (UDP/RTP protocol) MAIN FUNCTIONS: Works 24/7/365 Supports state-of-art broadcasting standards Automatic and manual PID insertion EPG, OTA, LCN support, Network search Generation of output stream with up to 92 PID selected from 8 ASI inputs Optional enabling/disabling of stuffing
    [Show full text]
  • MHOMS: High Speed ACM Modem for Satellite Applications1
    MHOMS : high speed ACM modem for satellite applications Sergio Benedetto, Claude Berrou, Catherine Douillard, Roberto Garello, Domenico Giancristofaro, Alberto Ginesi, Luca Giugno, Marco Luise, G. Montorsi To cite this version: Sergio Benedetto, Claude Berrou, Catherine Douillard, Roberto Garello, Domenico Giancristofaro, et al.. MHOMS : high speed ACM modem for satellite applications. IEEE Wireless Communications, In- stitute of Electrical and Electronics Engineers, 2005, 12 (2), pp.66 - 77. 10.1109/MWC.2005.1421930. hal-02137104 HAL Id: hal-02137104 https://hal.archives-ouvertes.fr/hal-02137104 Submitted on 22 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MHOMS: High Speed ACM Modem for Satellite Applications1 S. Benedetto(3), C. Berrou(5), C. Douillard(5), R. Garello(3), D. Giancristofaro(1), A. Ginesi(2), L. Giugno(4), M. Luise(4), G. Montorsi(3), (1) Alenia Spazio (2) European Space Agency (3) Politecnico di Torino (4) Università di Pisa (5) ENST Bretagne Table of Contents 1 Introduction......................................................................................................................................................................
    [Show full text]
  • Convolutional Codes in Vss
    CONVOLUTIONAL CODES IN VSS . .. By: Dr. Kurt R. Matis Director of Systems Research SIMULATION OF CONVOLUTIONAL CODES IN VSS This document describes the modeling and simulation of short constraint- length convolutional codes used in conjunction with Viterbi decoding in the Visual System Simulator (VSS). After a brief review of the history and application of convolutional codes, a detailed description of VSS models for encoding/decoding of these codes is presented. Step-by-step examples illustrate how to construct simulations and analyze results. Convolutional Code Basics This note begins with some background information on the use of convolutional codes. The development of convolutional codes is discussed along with a history of important applications. This information is meant to provide a perspective on the selection of the convolutional code models that are provided in VSS. Transmission efficiency and reliability can be improved by encoding information digits in a way that creates an interdependence between symbols which are transmitted over a channel. At the receiving end, the interdependence can be exploited to detect or even correct transmission errors, provided erroneous symbols are not received too frequently. Such coding is called error-control coding and is shown in the configuration of Figure 1. Received Source Encoded Symbols Decoded Symbols Symbols ˆ Symbols {bk } {ai} Channel {bk} Transmitter s(t) Channel r(t) Receiver Channel {âi} Encoder Decoder {rk} Figure 1. System Employing Error-Control Coding Visual System Simulator 1 CONVOLUTIONAL CODES IN VSS Simulation of Convolutional Codes in VSS Encoders for error control are usually called channel encoders to differentiate them from various encoders used for other purposes within digital communication systems.
    [Show full text]
  • CRC-Assisted Error Correction in a Convolutionally Coded System Renqiu Wang, Member, IEEE, Wanlun Zhao, Member, IEEE, and Georgios B
    IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 56, NO. 11, NOVEMBER 2008 1807 CRC-Assisted Error Correction in a Convolutionally Coded System Renqiu Wang, Member, IEEE, Wanlun Zhao, Member, IEEE, and Georgios B. Giannakis, Fellow, IEEE Abstract—In communication systems employing a serially When the signal to noise ratio (SNR) is relatively high, only a concatenated cyclic redundancy check (CRC) code along with small number of errors are typically present in an erroneously a convolutional code (CC), erroneous packets after CC decoding decoded packet. Instead of discarding the entire packet, the are usually discarded. The list Viterbi algorithm (LVA) and the iterative Viterbi algorithm (IVA) are two existing approaches theme is this paper is to possibly recover it by utilizing jointly capable of recovering erroneously decoded packets. We here ECC and CRC. employ a soft decoding algorithm for CC decoding, and introduce We will study a system with serially concatenated CRC and several schemes to identify error patterns using the posterior CC (CRC-CC). Being a special case of conventional serially information from the CC soft decoding module. The resultant iterative decoding-detecting (IDD) algorithm improves error concatenated codes (CSCC) [1], CRC-CC has been widely performance by iteratively updating the extrinsic information applied in wireless communications, for example, in an IS-95 based on the CRC parity check matrix. Assuming errors only system. Various approaches are available to recover erroneous happen in unreliable bits characterized by small absolute values packets following the Viterbi decoding stage. One of them is of the log-likelihood ratio (LLR), we also develop a partial IDD based on the list Viterbi algorithm (LVA), which produces a (P-IDD) alternative which exhibits comparable performance to IDD by updating only a subset of unreliable bits.
    [Show full text]
  • Tm Synchronization and Channel Coding
    Recommendation for Space Data System Standards TM SYNCHRONIZATION AND CHANNEL CODING RECOMMENDED STANDARD CCSDS 131.0-B-3 BLUE BOOK September 2017 Recommendation for Space Data System Standards TM SYNCHRONIZATION AND CHANNEL CODING RECOMMENDED STANDARD CCSDS 131.0-B-3 BLUE BOOK September 2017 CCSDS RECOMMENDED STANDARD FOR TM SYNCHRONIZATION AND CHANNEL CODING AUTHORITY Issue: Recommended Standard, Issue 3 Date: September 2017 Location: Washington, DC, USA This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS) and represents the consensus technical agreement of the participating CCSDS Member Agencies. The procedure for review and authorization of CCSDS documents is detailed in Organization and Processes for the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-4), and the record of Agency participation in the authorization of this document can be obtained from the CCSDS Secretariat at the e-mail address below. This document is published and maintained by: CCSDS Secretariat National Aeronautics and Space Administration Washington, DC, USA E-mail: [email protected] CCSDS 131.0-B-3 Page i September 2017 CCSDS RECOMMENDED STANDARD FOR TM SYNCHRONIZATION AND CHANNEL CODING STATEMENT OF INTENT The Consultative Committee for Space Data Systems (CCSDS) is an organization officially established by the management of its members. The Committee meets periodically to address data systems problems that are common to all participants, and to formulate sound technical solutions to these problems. Inasmuch as participation in the CCSDS is completely voluntary, the results of Committee actions are termed Recommended Standards and are not considered binding on any Agency.
    [Show full text]
  • Frame Structure Channel Coding and Modulation for a Second Generation Digital Transmission System for Cable Systems (DVB-C2)
    Digital Video Broadcasting (DVB); Frame structure channel coding and modulation for a second generation digital transmission system for cable systems (DVB-C2) DVB Document A138 March 2015 3 Contents Intellectual Property Rights ................................................................................................................................ 6 Foreword............................................................................................................................................................. 6 1 Scope ........................................................................................................................................................ 7 2 References ................................................................................................................................................ 8 2.1 Normative references ......................................................................................................................................... 8 2.2 Informative references ....................................................................................................................................... 8 3 Definitions, symbols and abbreviations ................................................................................................... 9 3.1 Definitions ......................................................................................................................................................... 9 3.2 Symbols ..........................................................................................................................................................
    [Show full text]
  • Skew Convolutional Codes
    entropy Article Skew Convolutional Codes Vladimir Sidorenko 1,* , Wenhui Li 2, Onur Günlü 3 and Gerhard Kramer 1 1 Institute for Communications Engineering, Technical University of Munich, 80333 München, Germany; [email protected] 2 Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; [email protected] 3 Information Theory and Applications Chair, Technical University of Berlin, 10623 Berlin, Germany; [email protected] * Correspondence: [email protected] Received: 30 October 2020; Accepted: 30 November 2020; Published: 2 December 2020 Abstract: A new class of convolutional codes, called skew convolutional codes, that extends the class of classical fixed convolutional codes, is proposed. Skew convolutional codes can be represented as periodic time-varying convolutional codes but have a description as compact as fixed convolutional codes. Designs of generator and parity check matrices, encoders, and code trellises for skew convolutional codes and their duals are shown. For memoryless channels, one can apply Viterbi or BCJR decoding algorithms, or a dualized BCJR algorithm, to decode skew convolutional codes. Keywords: convolutional codes; skew polynomials; time-varying codes; dual codes; trellises 1. Introduction Convolutional codes were introduced by Elias in 1955 [1]. With the discovery that convolutional codes can be decoded with Fano sequential decoding [2], Massey threshold decoding [3], and, above all, Viterbi decoding [4], they became quite widespread in practice. Convolutional codes are still widely used in telecommunications, e.g., in Turbo codes [5] and in the WiFi IEEE 802.11 standard [6], in cryptography [7], etc. The most common are binary convolutional codes; however, communication with higher orders of modulation [8] or streaming of data [9] require non-binary convolutional codes.
    [Show full text]
  • Error-Correcting Codes: Application of Convolutional Codes to Video Streaming
    Introduction to Error-correcting codes Two challenges that recently emerged Block codes vs convolutional codes Error-Correcting codes: Application of convolutional codes to Video Streaming Diego Napp Department of Mathematics, Universidad of Aveiro, Portugal July 22, 2016 Introduction to Error-correcting codes Two challenges that recently emerged Block codes vs convolutional codes Overview Introduction to Error-correcting codes Two challenges that recently emerged Block codes vs convolutional codes • Bits get corrupted, 0 ! 1 or 1 ! 0, but rarely. What happens when we store/send information and errors occur? can we detect them? correct? Introduction to Error-correcting codes Two challenges that recently emerged Block codes vs convolutional codes Error Correcting Codes Basic Problem: • want to store bits on magnetic storage device • or send a message (sequence of zeros/ones) What happens when we store/send information and errors occur? can we detect them? correct? Introduction to Error-correcting codes Two challenges that recently emerged Block codes vs convolutional codes Error Correcting Codes Basic Problem: • want to store bits on magnetic storage device • or send a message (sequence of zeros/ones) • Bits get corrupted, 0 ! 1 or 1 ! 0, but rarely. can we detect them? correct? Introduction to Error-correcting codes Two challenges that recently emerged Block codes vs convolutional codes Error Correcting Codes Basic Problem: • want to store bits on magnetic storage device • or send a message (sequence of zeros/ones) • Bits get corrupted, 0 ! 1 or 1 ! 0, but rarely. What happens when we store/send information and errors occur? Introduction to Error-correcting codes Two challenges that recently emerged Block codes vs convolutional codes Error Correcting Codes Basic Problem: • want to store bits on magnetic storage device • or send a message (sequence of zeros/ones) • Bits get corrupted, 0 ! 1 or 1 ! 0, but rarely.
    [Show full text]
  • The First Devices to Secure Transmission of Voice Were Developed Just After World War I
    F, 5 January Cabinet War Rooms SIGSALY The first devices to secure transmission of voice were developed just after World War I. They were substitution devices; they inverted frequencies. High frequencies were substituted for low frequencies and low frequencies were substituted for high frequencies. This was easy to do electronically. But, it was also easy to break. In fact, because much voice is in the middle frequencies and the middle frequencies are not changed much by inversion, it was sometimes possible to get a sense of the message just from the ciphertext. The A-3 scrambler … was based upon 1920s concepts. It divided the voice-frequency band into five subbands, inverted each of them, and then shifted the voice from one subband to another every 20 seconds. David Kahn Cryptology and the origin of spread spectrum In 1941, the United States was not at war although we were supporting the Allies, especially Britain, materially. The United States had a device to secure voice transmission called the A-3 Scrambler. This device used both substitution and transposition to encipher voice. Messages were chopped into small pieces, in each piece substitution was made by inverting frequencies, and the pieces were scrambled. This device was broken by the Germans during Fall 1941. The United States military was aware that the A-3 was not secure. On December 7, 1941, cryptanalysts in Washington, D.C., were in the process of breaking a long ciphertext from Tokyo to the Japanese embassy in Washington, D.C. William Friedman’s SIS team had earlier broken the Japanese diplomatic ciphers, but the naval ciphers had not yet been broken.
    [Show full text]