Effects of Heat Stress and Local Human Disturbance on the Structure of Coral Reef Ecosystems at Multiple Scales of Biological Organization

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Heat Stress and Local Human Disturbance on the Structure of Coral Reef Ecosystems at Multiple Scales of Biological Organization Effects of heat stress and local human disturbance on the structure of coral reef ecosystems at multiple scales of biological organization by Jennifer Magel BSc, Carleton University, 2015 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the Department of Biology Jennifer Magel, 2018 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. ii Supervisory Committee Effects of heat stress and local human disturbance on the structure of coral reef ecosystems at multiple scales of biological organization by Jennifer Magel BSc, Carleton University, 2015 Supervisory Committee Dr. Julia Baum, Supervisor Department of Biology Dr. Rana El-Sabaawi, Departmental Member Department of Biology Dr. Verena Tunnicliffe, Departmental Member Department of Biology iii Abstract The world’s coral reefs are being impacted by myriad disturbances, from localized overfishing and nutrient pollution to global climate change-induced temperature increases and ocean acidification. Conservation of coral reefs in the face of increasing variability and uncertainty requires an understanding of the interacting effects of multiple stressors on the diverse components of these vital ecosystems. In this thesis, I use data from reefs around Kiritimati atoll (Republic of Kiribati) in the central equatorial Pacific Ocean to examine the effects of a severe pulse heat stress event and local human disturbance on two important components of the coral reef ecosystem – three-dimensional (3D) structural complexity and reef fish assemblages. Using 3D reef models constructed through structure-from-motion photogrammetry, I examined changes in reef structural complexity in the year following the 2015-2016 El Niño and mass coral bleaching event. I found that exposure to prolonged thermal stress and subsequent coral mortality resulted in declines in reef structural complexity, particularly reef surface rugosity and terrain ruggedness. Baseline levels of structural complexity were also negatively influenced by local human disturbance, while complexity was positively related to the densities of branching and massive coral growth forms. These findings have important implications for the maintenance of healthy reef ecosystems, as high levels of structural complexity are important for supporting diverse reef-associated fish assemblages. Next, using underwater visual censuses of reef fish assemblages, I quantified fish abundance, biomass, species richness, and assemblage structure before, during, and after the 2015-2016 El Niño. Total reef fish abundance, biomass, and species richness declined during the El Niño, suggesting that pulse heat stress events may have short-term, negative consequences for reef fish. Although these metrics did not vary substantially across the local human disturbance gradient, iv recovery of assemblages following the heat stress event was impeded by higher levels of local human disturbance. Reef fish assemblage structure was influenced by a more diverse array of factors, showing significant shifts in response to heat stress, human disturbance, and net primary productivity. Given the many important roles that fish play on coral reefs, declines such as those observed here may impair the ecological functioning of these ecosystems. Together, my results highlight the negative impacts of heat stress and local human disturbance on coral reefs, demonstrating ways in which these stressors may interact to limit reef resilience in the face of increasing anthropogenic pressures. v Table of Contents Supervisory Committee .................................................................................................................. ii Abstract .......................................................................................................................................... iii Table of Contents ............................................................................................................................ v List of Tables ................................................................................................................................ vii List of Figures ................................................................................................................................ ix Acknowledgments.......................................................................................................................... xi Dedication .................................................................................................................................... xiii Chapter 1 – Introduction ............................................................................................................. 1 1.1 Coral reef structural complexity ........................................................................................... 3 1.2 Coral reef fish assemblages .................................................................................................. 5 1.3 Thesis research ...................................................................................................................... 7 Chapter 2 – Effects of bleaching-associated mass coral mortality on reef structural complexity across a gradient of local disturbance ................................................................... 10 2.1 Abstract ............................................................................................................................... 11 2.2 Introduction ......................................................................................................................... 11 2.3 Methods............................................................................................................................... 15 2.3.1 Study site and design ................................................................................................... 15 2.3.2 Photographic surveys ................................................................................................... 15 2.3.3 Three-dimensional model generation .......................................................................... 16 2.3.4 Quantification of complexity metrics and habitat volume ........................................... 16 2.3.5 Benthic composition .................................................................................................... 18 2.3.6 Statistical analyses ....................................................................................................... 19 2.4 Results ................................................................................................................................. 20 2.4.1 Structural complexity metrics ...................................................................................... 20 2.4.2 Habitat volume ............................................................................................................. 22 2.5 Discussion ........................................................................................................................... 22 Chapter 3 – Interacting effects of heat stress and local human disturbance on tropical coral reef fish assemblages ................................................................................................................... 37 3.1 Abstract ............................................................................................................................... 38 3.2 Introduction ......................................................................................................................... 38 3.3 Methods............................................................................................................................... 43 3.3.1 Study site and design ................................................................................................... 43 3.3.2 Reef fish assemblages .................................................................................................. 44 3.3.3 Statistical analyses ....................................................................................................... 46 3.4 Results ................................................................................................................................. 47 3.4.1 Abundance ................................................................................................................... 47 3.4.2 Biomass ........................................................................................................................ 49 3.4.3 Species richness ........................................................................................................... 49 3.4.4 Assemblage structure ................................................................................................... 50 3.5 Discussion ........................................................................................................................... 52 3.5.1 Abundance ................................................................................................................... 53 3.5.2 Biomass ........................................................................................................................ 56 3.5.3 Species richness ........................................................................................................... 57 3.5.4 Interacting effects of heat stress and local disturbance ................................................ 58 vi 3.5.5 Assemblage structure
Recommended publications
  • Fungia Fungites
    University of Groningen Fungia fungites (Linnaeus, 1758) (Scleractinia, Fungiidae) is a species complex that conceals large phenotypic variation and a previously unrecognized genus Oku, Yutaro ; Iwao, Kenji ; Hoeksema, Bert W.; Dewa, Naoko ; Tachikawa, Hiroyuki ; Koido, Tatsuki ; Fukami, Hironobu Published in: Contributions to Zoology DOI: 10.1163/18759866-20191421 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2020 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Oku, Y., Iwao, K., Hoeksema, B. W., Dewa, N., Tachikawa, H., Koido, T., & Fukami, H. (2020). Fungia fungites (Linnaeus, 1758) (Scleractinia, Fungiidae) is a species complex that conceals large phenotypic variation and a previously unrecognized genus. Contributions to Zoology, 89(2), 188-209. https://doi.org/10.1163/18759866-20191421 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • Molecular Diversity, Phylogeny, and Biogeographic Patterns of Crustacean Copepods Associated with Scleractinian Corals of the Indo-Pacific
    Molecular Diversity, Phylogeny, and Biogeographic Patterns of Crustacean Copepods Associated with Scleractinian Corals of the Indo-Pacific Dissertation by Sofya Mudrova In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy of Science King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia November, 2018 2 EXAMINATION COMMITTEE PAGE The dissertation of Sofya Mudrova is approved by the examination committee. Committee Chairperson: Dr. Michael Lee Berumen Committee Co-Chair: Dr. Viatcheslav Ivanenko Committee Members: Dr. James Davis Reimer, Dr. Takashi Gojobori, Dr. Manuel Aranda Lastra 3 COPYRIGHT PAGE © November, 2018 Sofya Mudrova All rights reserved 4 ABSTRACT Molecular diversity, phylogeny and biogeographic patterns of crustacean copepods associated with scleractinian corals of the Indo-Pacific Sofya Mudrova Biodiversity of coral reefs is higher than in any other marine ecosystem, and significant research has focused on studying coral taxonomy, physiology, ecology, and coral-associated fauna. Yet little is known about symbiotic copepods, abundant and numerous microscopic crustaceans inhabiting almost every living coral colony. In this thesis, I investigate the genetic diversity of different groups of copepods associated with reef-building corals in distinct parts of the Indo-Pacific; determine species boundaries; and reveal patterns of biogeography, endemism, and host-specificity in these symbiotic systems. A non-destructive method of DNA extraction allowed me to use an integrated approach to conduct a diversity assessment of different groups of copepods and to determine species boundaries using molecular and taxonomical methods. Overall, for this thesis, I processed and analyzed 1850 copepod specimens, representing 269 MOTUs collected from 125 colonies of 43 species of scleractinian corals from 11 locations in the Indo-Pacific.
    [Show full text]
  • Conservation of Reef Corals in the South China Sea Based on Species and Evolutionary Diversity
    Biodivers Conserv DOI 10.1007/s10531-016-1052-7 ORIGINAL PAPER Conservation of reef corals in the South China Sea based on species and evolutionary diversity 1 2 3 Danwei Huang • Bert W. Hoeksema • Yang Amri Affendi • 4 5,6 7,8 Put O. Ang • Chaolun A. Chen • Hui Huang • 9 10 David J. W. Lane • Wilfredo Y. Licuanan • 11 12 13 Ouk Vibol • Si Tuan Vo • Thamasak Yeemin • Loke Ming Chou1 Received: 7 August 2015 / Revised: 18 January 2016 / Accepted: 21 January 2016 Ó Springer Science+Business Media Dordrecht 2016 Abstract The South China Sea in the Central Indo-Pacific is a large semi-enclosed marine region that supports an extraordinary diversity of coral reef organisms (including stony corals), which varies spatially across the region. While one-third of the world’s reef corals are known to face heightened extinction risk from global climate and local impacts, prospects for the coral fauna in the South China Sea region amidst these threats remain poorly understood. In this study, we analyse coral species richness, rarity, and phylogenetic Communicated by Dirk Sven Schmeller. Electronic supplementary material The online version of this article (doi:10.1007/s10531-016-1052-7) contains supplementary material, which is available to authorized users. & Danwei Huang [email protected] 1 Department of Biological Sciences and Tropical Marine Science Institute, National University of Singapore, Singapore 117543, Singapore 2 Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands 3 Institute of Biological Sciences, Faculty of
    [Show full text]
  • Downloaded from Brill.Com10/11/2021 12:50:19PM Via Free Access 202 RAUCH ET AL
    Contributions to Zoology 88 (2019) 201-235 CTOZ brill.com/ctoz Shrimps of the genus Periclimenes (Crustacea, Decapoda, Palaemonidae) associated with mushroom corals (Scleractinia, Fungiidae): linking DNA barcodes to morphology Cessa Rauch Department of Taxonomy & Systematics, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands Department of Natural History, Section of Taxonomy and Evolution, University Museum of Bergen, University of Bergen, PB7800, 5020 Bergen, Norway Bert W. Hoeksema Department of Taxonomy & Systematics, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands Bambang Hermanto Technical Implementation Unit for Marine Biota Conservation, Research Centre for Oceanog- raphy (RCO-LIPI), Bitung, Indonesia Charles H.J.M. Fransen Department of Taxonomy & Systematics, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] Abstract Most marine palaemonid shrimp species live in symbiosis with invertebrates of various phyla. These as- sociations range from weak epibiosis to obligatory endosymbiosis and from restricted commensalism to semi-parasitism. On coral reefs, such symbiotic shrimps can contribute to the associated biodiversity of reef corals. Among the host taxa, mushroom corals (Cnidaria: Anthozoa: Fungiidae) are known to harbour various groups of symbionts, including shrimps. Some but not all of these associated species are host-specific. Because data on the host specificity of shrimps on mushroom corals are scarce, shrimp spe- cies of the genus Periclimenes were collected from mushroom corals during fieldwork in Lembeh Strait, © RAUCH ET AL., 2019 | doi:10.1163/18759866-20191357 This is an open access article distributed under the terms of the prevailing cc-by license at the time of publication.
    [Show full text]
  • Abundance and Distribution of Mushroom Corals
    BULLETIN OF MARINE SCIENCE, 66(1): 241–254, 2000 CORAL REEF PAPER View metadata, citationABUNDANCE and similar papers AND at core.ac.uk DISTRIBUTION OF MUSHROOM CORALSbrought to you by CORE (SCLERACTINIA: FUNGIIDAE) ON A CORAL REEF ATprovided EILAT, by Almae Matris Studiorum Campus NORTHERN RED SEA S. Goffredo and N. E. Chadwick-Furman ABSTRACT Mushroom corals (Scleractinia: Fungiidae) are important components of Indo-Pacific coral reefs, yet little is known about their patterns of abundance and distribution in the Red Sea. On a fringing reef at Eilat, northern Red Sea, mushroom corals were found to be common on the reef flat and shallow slope at <10 m depth, where they occurred at densi- ties of up to 15 individuals m−2, but were rare on the mid to deep reef slope at 10–50 m depth. Eleven species were observed, a 27% increase in the recorded species diversity of this coral family at Eilat. Individuals of two species were limited to the reef flat and shallow reef slope, and members of five other species also occurred mainly on the shal- low slope, but had wide depth ranges. Individuals of an additional four mushroom coral species were found mainly on the lower reef slope at low densities. In shallow water, most fungiids occurred in shaded reef habitats such as caves or holes, while at >20 m depth, they mainly occupied open, unshaded habitats. This study documents differences in habi- tat use between species of mushroom corals on a fringing reef, and substantial migration by the adult free-living polyps of some species out of shaded reef habitats, down the reef slope, and onto soft substratum.
    [Show full text]
  • A Molecularly Based Phylogeny Reconstruction of Mushroom Corals
    Contributions to Zoology, 80 (2) 107-132 (2011) A molecularly based phylogeny reconstruction of mushroom corals (Scleractinia: Fungiidae) with taxonomic consequences and evolutionary implications for life history traits Arjan Gittenberger1, 2, Bastian T. Reijnen1, Bert W. Hoeksema1, 3 1 Department of Marine Zoology, Netherlands Centre for Biodiversity Naturalis, PO Box 9517, 2300 RA Leiden, The Netherlands 2 Institute for Environmental Sciences and Institute for Biology, Leiden University, PO Box 9516, 2300 RA Leiden, The Netherlands 3 E-mail: [email protected] Key words: COI, evolutionary history, ITS 1 & 2, maximum coral size, polystomatism, reproduction strategy Abstract Sequence alignment and phylogenetic analyses ............. 112 Evolution of life history traits ............................................. 113 The phylogenetic relationships of the Fungiidae, a family of pre- Results ............................................................................................. 113 dominantly free-living, zooxanthellate, reef corals, were studied Molecular phylogeny reconstructions .............................. 113 by sequencing a part of the mitochondrial Cytochrome Oxidase Evolutionary trends in morphology and life I (COI) and the complete ribosomal Internal Transcribed Spacers history traits ............................................................................. 114 (ITS) I & II of specimens from various locations in the Indo- Discussion .....................................................................................
    [Show full text]
  • By Scleractinian Corals (Cnidaria: Anthozoa)
    RESEARCH ARTICLE Selective consumption of sacoglossan sea slugs (Mollusca: Gastropoda) by scleractinian corals (Cnidaria: Anthozoa) Rahul Mehrotra1,2, Coline Monchanin2, Chad M. Scott2, Niphon Phongsuwan3, 4,5 1,6 7 Manuel Caballer GutierrezID , Suchana ChavanichID *, Bert W. Hoeksema 1 Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand, 2 New Heaven Reef Conservation Program, Koh Tao, Suratthani, Thailand, 3 Department of Marine and Coastal Resources, Bangkok, Thailand, 4 MuseÂum National d'Histoire a1111111111 Naturelle, Directions des Collections, Paris, France, 5 American University of Paris, Department of Computer a1111111111 Science Math and Environmental Science, Paris, France, 6 Center for Marine Biotechnology, Department of a1111111111 Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand, 7 Taxonomy and a1111111111 Systematics Group, Naturalis Biodiversity Center, RA Leiden, The Netherlands a1111111111 * [email protected] Abstract OPEN ACCESS Recent studies revealed that reef corals can eat large-sized pelagic and benthic animals in Citation: Mehrotra R, Monchanin C, Scott CM, Phongsuwan N, Caballer Gutierrez M, Chavanich S, addition to small planktonic prey. As follow-up, we document natural ingestion of sea slugs et al. (2019) Selective consumption of sacoglossan by corals and investigate the role of sacoglossan sea slugs as possible prey items of scler- sea slugs (Mollusca: Gastropoda) by scleractinian actinian corals. Feeding trials were carried out using six sacoglossan species as prey, two corals (Cnidaria: Anthozoa). PLoS ONE 14(4): e0215063. https://doi.org/10.1371/journal. each from the genera Costasiella, Elysia and Plakobranchus, and four free-living solitary pone.0215063 corals (Danafungia scruposa, Fungia fungites, Pleuractis paumotensis and Heteropsammia Editor: Shashank Keshavmurthy, Biodiversity cochlea) as predators.
    [Show full text]
  • Fungia Fungites (Linnaeus, 1758) (Scleractinia, Fungiidae) Is a Species Complex That Conceals Large Phenotypic Variation and a Previously Unrecognized Genus
    Contributions to Zoology 89 (2020) 188-209 CTOZ brill.com/ctoz Fungia fungites (Linnaeus, 1758) (Scleractinia, Fungiidae) is a species complex that conceals large phenotypic variation and a previously unrecognized genus Yutaro Oku Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, Miyazaki, 889-2192, Japan Kenji Iwao Akajima Marine Science Laboratory, 179 Aka, Zamami, Okinawa 901-3311, Japan Present address: Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan Bert W. Hoeksema Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands Naoko Dewa Kagoshima City Aquarium, 3-1 Honkoshin-machi, Kagoshima, Kagoshima 892-0814, Japan Hiroyuki Tachikawa Coastal Branch of Natural History Museum and Institute, Chiba, 123 Yoshio, Katsuura, Chiba 299-5242, Japan Tatsuki Koido Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, Miyazaki, 889-2192, Japan Kuroshio Biological Research Foundation, 560 Nishidomari, Otsuki, Hata, Kochi 788-0333, Japan Hironobu Fukami Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, Miyazaki, 889-2192, Japan [email protected] Abstract Recent molecular phylogenetic analyses of scleractinian corals have resulted in the discovery of cryptic lineages. To understand species diversity in corals, these lineages need to be taxonomically defined. In © Oku et al., 2019 | doi:10.1163/18759866-20191421 This is an open access article distributed under the terms of the cc-by 4.0 License.
    [Show full text]
  • Recent Changes in Scleractinian Coral Nomenclature and Classification
    Recent changes in Scleractinian coral nomenclature and classification. (A practical guide for coral and reef ecologists) Michel Pichon Adjunct Professor, James Cook University Australia Honorary Associate, Museum of Tropical Queensland, Townsville The following document provides information on changes which were introduced recently in the classification and nomenclature of scleractinian corals. Such changes stem to a large extent from the research activity and the syntheses carried out by the members of the international “Scleractinian Systematics Working Group” (SSWG) over the last few years. They are the result of a multi-pronged approach combining the information provided by the implementation of relatively new techniques, which have only recently been applied to scleractinian coral taxonomy. Such new tools include, inter alia, morphometrics, microstructural analyses, anatomy of soft parts and molecular genetics. The changes thus made to the nomenclature and classification of scleractinian corals underlie a move towards a classification reflecting more and more the phylogeny of various taxa, and as a result may place side by side morphologically very dissimilar species. Furthermore, such a move will require a re-definition of numerous genera (and of some families, which from a practical viewpoint is less critical) in accordance with the rules set out in the International Code of Zoological Nomenclature. Such a work is still to be done and a number of genera remain to this day without an adequate revised diagnostic morphological characterization. Several important studies are still in progress and one may expect additional changes in the near future. The present document, therefore, does not pretend to represent a complete revision of scleractinian coral taxonomy.
    [Show full text]
  • Patterns of Coral Species Richness and Reef Connectivity in Malaysia
    Patterns of coral species richness and reef connectivity in Malaysia Waheed, Z. Patterns of coral species richness and reef connectivity in Malaysia PhD thesis, Leiden University Cover design: Yee Wah Lau Printed by: Gildeprint, Enschede ISBN: 978 94 6233 460 1 © 2016 by Z. Waheed, all rights reserved. Funding. This thesis was accomplished with financial support from the Ministry of Higher Education Malaysia, with additional support from Universiti Malaysia Sabah, WWF-Malaysia, the A.M. Buitendijkfonds, and TREUB-maatschappij (Society for the Advancement of Research in the Tropics). Disclaimer. Following the recommendation of Article 8.2 of the International Code of Zoological Nomenclature, I declare that this publication is not issued for public and permanent scientific record, or for purposes of zoological nomenclature, and therefore not published within the meaning of the Code. Patterns of coral species richness and reef connectivity in Malaysia Proefschrift ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van de Rector Magnificus prof. mr. C.J.J.M. Stolker, volgens besluit van het College voor Promoties te verdedigen op dinsdag 22 november 2016 klokke 13:45 door Zarinah Waheed geboren te Kota Kinabalu, Maleisië in 1978 Promotiecommissie Prof. dr. L.M. Chou (National University of Singapore, Singapore) Prof. dr. M. Schilthuizen (Universiteit Leiden & Naturalis Biodiversity Center) Prof. dr. H.P. Spaink (Universiteit Leiden) Prof. dr. P.C. van Welzen (Universiteit Leiden & Naturalis Biodiversity Center) Dr. F. Benzoni (University of Milano-Bicoca, Italy) Dr. C.H.J.M. Fransen (Naturalis Biodiversity Center) Promoter Prof. dr. E. Gittenberger (Universiteit Leiden & Naturalis Biodiversity Center) Copromoter Dr.
    [Show full text]
  • Abundance and Distribution of Mushroom Corals (Scleractinia: Fungiidae) on a Coral Reef at Eilat, Northern Red Sea
    BULLETIN OF MARINE SCIENCE, 66(1): 241–254, 2000 CORAL REEF PAPER ABUNDANCE AND DISTRIBUTION OF MUSHROOM CORALS (SCLERACTINIA: FUNGIIDAE) ON A CORAL REEF AT EILAT, NORTHERN RED SEA S. Goffredo and N. E. Chadwick-Furman ABSTRACT Mushroom corals (Scleractinia: Fungiidae) are important components of Indo-Pacific coral reefs, yet little is known about their patterns of abundance and distribution in the Red Sea. On a fringing reef at Eilat, northern Red Sea, mushroom corals were found to be common on the reef flat and shallow slope at <10 m depth, where they occurred at densi- ties of up to 15 individuals m−2, but were rare on the mid to deep reef slope at 10–50 m depth. Eleven species were observed, a 27% increase in the recorded species diversity of this coral family at Eilat. Individuals of two species were limited to the reef flat and shallow reef slope, and members of five other species also occurred mainly on the shal- low slope, but had wide depth ranges. Individuals of an additional four mushroom coral species were found mainly on the lower reef slope at low densities. In shallow water, most fungiids occurred in shaded reef habitats such as caves or holes, while at >20 m depth, they mainly occupied open, unshaded habitats. This study documents differences in habi- tat use between species of mushroom corals on a fringing reef, and substantial migration by the adult free-living polyps of some species out of shaded reef habitats, down the reef slope, and onto soft substratum. Mushroom corals comprise one of the more diverse families of reef-building corals in the tropical Indo-Pacific region, with 41 known species in the family Fungiidae (Hoeksema 1992, 1993a,b).
    [Show full text]
  • Atoll Research Bulletin No. 307
    ATOLL RESEARCH BULLETIN NO. 307 CORAL SPECIES OF THE INDIAN OCEAN AND ADJACENT SEAS: A SYNONYMIZED COMPILATION AND SOME REGIONAL DISTRIBUTIONAL PATTERNS BY C. R. C. SHEPPARD ' ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. October 1987 CORAL SPECIES OF THE INDIAN OCEAN AND ADJACENT SEAS: A SYNONYMIZED COMPILATION AND SOME REGIONAL DISTRIBUTIONAL PATTERNS BY C. R. C. SHEPPARD ABSTRACT A list is provided of hermatypic coral species from 24 locations in the Indian Ocean and its peripheral seas and gulfs. Six sites are newly reported or expanded accounts, and eighteen are derived from recent literature. This is intended: (1) to provide in one place, a uniform compilation of coral species from different areas and from many diverse accounts; (2) to apply synonyms to all sites in a consistent way for the first time, so that; (3) regional analysis at species level is possible. Synonyms are taken mainly from two recent taxonomic series, but because species stability is poor in some genera and authors may differ in their views on synonymy, all names are shown. The sources of data were selected to reduce problems inherent in using diverse material, and many sources themselves include compilations and synonymys of much older works. From 796 entities initially obtained, the removal of synonyms and entries named "sppI1 leaves 439 species. Further reduction is probably needed. Species rich sites extend across the Indian Ocean, with no westerly decline from South East Asia; the Red Sea as a whole contains the most species. Cluster analysis shows geographical groupings in the Arabian Gulf/Arabian Sea area, in the Red Sea and in the southwest and central Indian Ocean island areas.
    [Show full text]