Euphorbia Hirta: Its Chemistry, Traditional and Medicinal Uses, and Pharmacological Activities

Total Page:16

File Type:pdf, Size:1020Kb

Euphorbia Hirta: Its Chemistry, Traditional and Medicinal Uses, and Pharmacological Activities PHCOG REV. REVIEW ARTICLE Euphorbia hirta: Its chemistry, traditional and medicinal uses, and pharmacological activities Sunil Kumar, Rashmi Malhotra, Dinesh Kumar Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra-136 119, Haryana, India Submitted: 10-03-10 Revised: 16-04-10 Published: 10-07-10 ABSTRACT The oldest remedies known to mankind are herbal medicines. India is known worldwide for its Ayurvedic treatment. Euphorbia hirta is often used traditionally for female disorders, respiratory ailments (cough, coryza, bronchitis, and asthma), worm infestations in children, dysentery, jaundice, pimples, gonorrhea, digestive problems, and tumors. It is reported to contain alkanes, triterpenes, phytosterols, tannins, polyphenols, and fl avanoids. This review describes the medicinal properties, chemical constituents, and other important aspects of Euphorbia hirta. Key words: Antioxidant, antimalarial, antibacterial, euphorbia hirta INTRODUCTION phytochemical examination and isolated compounds which include:- fl avanoids, triterpenoids, alkanes, amino acids, and In India use of the different parts of several medicinal plants alkaloids.[1] E. ipecacuanha is known as wild ipecac; E. antiquorum to cure specifi c ailments has been in vogue from ancient is known as Tridhara; E. lathyrus is known as caper spurge; and times. The indigenous system of medicine, namely, Ayurvedic, E. thymifolia is known as Laghududhika.[2] Siddha, and Unani, has been in existence for several centuries. Some drugs from Ayurveda approaches modern diseases, have There are many other species of Euphorbia which are already reached the market place.[1] In modern medicines, used in traditional medicines. All species of Euphorbia plants occupy a very important place as the raw material exudes a milky juice when broken, which is more or less for some important drugs. Synthetic drugs are effective in poisonous and used as an ingredient in arrow poisons. E. hirta controlling different diseases but these synthetic drugs are possesses antibacterial, anthelmintic, antiasthmatic, sedative, out of reach of millions of people. It is estimated that around antispasmodic, antifertility, antifungal, and antimalarial 70,000 plant species have been used for medicinal purposes. properties.[1] The herbs provide the starting material for the synthesis of Distribution conventional drugs. Medicinal plants have curative actions E. hirta is distributed throughout the hotter parts of India and due to the presence of complex chemical constituents. India Australia, often found in waste places along the roadsides.[6] recognizes more than 2500 plant species having medicinal value, Sri Lanka around 1400, and Nepal around 700.[2] Plant Description This review intends to provide an overview of the chemical E. hirta Linn. Syn; E. pilulifera Linn. Chamaesyce pilulifera Linn.[5] constituents and pharmacological actions of Euphorbia hirta. Family: Euphorbiaceae GENERAL INFORMATION Vernacular Names Awuna Akinkodze The largest genus of family Euphorbiaceae is Euphorbia with Bengal Barokhervi about 1600 species. It is characterized by the presence of white English Pill---bearing spurge, asthma herb, milky latex which is more or less toxic. Latices of E. ingens, snakeweed E. mey, E. tirucalli, and E. triangularis are possible sources of Gujarat Dudeli rubber.[3] This group of plants has been a subject of intense Hindi Dudhi Indonesia Daun biji kacang, patikan kebo Address for correspondence: Malayalam Nelapalai Mr. Sunil Kumar, E-mail: [email protected] Malaysia Ambin janyan, kelusan, keremak susu Marathi Dudnali, govardhan DOI: 10.4103/0973-7847.65327 Orissa Jhotikhuntian 58 Pharmacognosy Reviews | January-June 2010 | Vol 4 | Issue 7 Kumar et al.: A review on Euphorbia hirta Sanskrit Amampatchairaisi, barokheruie, dugadhika of active constituents have been isolated. Afzelin (I), Tamil Amumpatchaiyarissi quercitrin (II), and myricitrin (III) have been isolated from the Telagu Reddinanabrolu, bidarie, nanabala, nanabiyan methanolic extract of E. hirta.[13] The chemical investigation Visayan Bovi, buyayava[1--4] of E. hirta has led to the isolation of rutin (IV), quercitin (V), euphorbin-A (VI), euphorbin-B (VII), euphorbin-C (VIII), euphorbin-D (IX), 2,4,6-tri-O-galloyl-β-D-glucose, MORPHOLOGY 1,3,4,6-tetra-O-galloyl-β-D-glucose, kaempferol, gallic acid, and protocatechuic acid.[14-15] E. hirta also contains β-amyrin, E. hirta belongs to the plant family Euphorbiaceae and genus 24-methylenecycloartenol, β-sitosterol, heptacosane, Euphorbia. It is a slender- stemmed, annual hairy plant with nnonacosane,[1] shikmic acid, tinyatoxin, choline, camphol, and many branches from the base to top, spreading upto 40 cm quercitol derivatives containing rhamnose and chtolphenolic in height, reddish or purplish in color. Leaves are opposite, acid [Figure 1].[6] elliptic - oblong to oblong- lanceolate, acute or subacute, dark green above, pale beneath, 1- 2.5 cm long, blotched with purple in the middle, and toothed at the edge. The PHARMACOLOGICAL ACTIVITIES fruits are yellow, three- celled, hairy, keeled capsules, 1-2 mm in diameter, containing three brown, four-sided, angular, Antibacterial activity wrinkled seeds.[1-4] The ethanolic extract of E. hirta inhibited the growth of the Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and [16] ETHNOPHARMACOLOGY Bacillus subtili and aqueous and chloroform leaf extracts of E. hirta possess an antibacterial activity against Klebsiella pneumonia. The extract is noncytotoxic and antibacterial.[17] E. hirta is used in the treatment of gastrointestinal disorders (diarrhea, dysentery, intestinal parasitosis, etc.), bronchial and Antimalarial activity respiratory diseases (asthma, bronchitis, hay fever, etc.), and The bioassay-guided fractionation of the methanolic in conjunctivitis. Hypotensive and tonic properties are also extract of aerial parts of E. hirta, monitored against P. reported in E. hirta. The aqueous extract exhibits anxiolytic, falciparum parasites, yielded a main active chromatographic analgesic, antipyretic, and anti-infl ammatory activities. The fraction showing 90% growth inhibition of P. falciparum at a stem sap is used in the treatment of eyelid styes and a leaf concentration of 5 µg/ml.[13] poultice is used on swelling and boils.[3] Anti-infl ammatory activity Extracts of E. hirta have been found to show anticancer The n-hexane extract of aerial parts of E. hirta showed anti- activity. The aqueous extract of the herb strongly reduced the infl ammatory effects in the model of phorbol acetate-induced release of prostaglandins I E and, D [3] The aqueous extract 2, 2, 2 ear infl ammation in mice. It exhibited a dose-dependent also inhibits afl atoxin contamination in rice, wheat, maize, and effect.[18,19] mustard crops.[7] Methanolic extract of leaves have antifungal and antibacterial activities. The leaves pounded with turmeric Galactogenic activity and coconut oil are warmed and rubbed on itchy soles. The The powdered E. hirta showed a galactogenic activity in guinea latex of E. hirta is applied on lower eyelids, like surma to pigs before puberty by increasing the development of the cure eye sores. The root exudate exhibits nematicidal activity mammary glands and induction of secretion.[20] against juveniles of meloidogyne incognita.[3] Antiasthmatic activity Decoction of dry herbs is used for skin diseases. Decoction E. hirta is reported to have an antiasthmatic activity due to of fresh herbs is used as gargle for the treatment of thrush. the relaxation effect on the bronchial tubes and a depressant Root decoction is also benefi cial for nursing mothers defi cient action on respiration.[12] in milk. Roots are also used for snake bites.[1] The polyphenolic extract of E. hirta has antiamoebic[8] and antispasmodic Effect on urine output and electrolytes activity.[9] Quercitrin, a fl avanoid glycoside, isolated from the Ethanolic and aqueous leaf extracts of E. hirta signifi cantly herb showed an antidiarrheal activity.[10-11] It is reported to induced diuresis in rats. The diuretic effect of the ethanol have a relaxation effect on respiration.[12] The alcoholic extract extract was signifi cant at 6 h (for 100 mg/kg) and at 24 h (for of whole plant shows hypoglycemic activity in rats.[6] It has a 50 mg/kg). The water extract induced a signifi cant increase in sedative effect on the genitor-urinary tract.[4] urine Na+, K+ and HCO3- loss. The ethanol extract (100 mg/ ml) caused a signifi cant decrease in the K+ loss whereas the CHEMICAL CONSTITUENTS water extract increased its excretion. The HCO3- urine output following the injection of both extracts was tremendously E. hirta has been studied by various workers and a number enhanced.[21] Pharmacognosy Reviews | January-June 2010 | Vol 4 | Issue 7 59 Kumar et al.: A review on Euphorbia hirta 1 OR 1 R OR OR O OR OH O OR OH OR O OCO O OCO OH HO O 2 R HO OH HO OH O OH O O OH HO OH HO OH HO O O OH HO O OH OH O O OCO O OH OH OH OH O O O OR OCO OH O CO OH O OH HO O HO OO OO Basic structure CO CO H CO CO 1 2 H R R O OH O OH HO OH I. Afzelin H H OH O HO OH OH O II. Quercitrin OH H VI. Euphorbin-A (basic structure) VIII. Basic structure (euphorbin-C) III. Myricitrin OH OH OH OH . OC OH HO HO CO . OH R - Galloyl OH HO OH HO CO . HO HO O RR 1 = (S) – HHDP (hexahydroxydiphenoyl symmetric) OR RO O O rutinose OR O OH OR OR RO O O O OH IV. Rutin HO OH HO OH OCO OCO OH O OH HO O OH O O OH HO OH HO OH OH OH OH OH HO O OH O OCO O OH OH OH O OH OR OCO O HO O O CO OH O OH O OH OO O OO OH CO CO CO CO H V. Quercitin H O OH O OH HO OH HO OH OH O OH O IX. Basic structure (euphorbin-D) VII. Basic structure (euphorbin-B) OH . OH . OC OH . OH . OC OH R- Galloyl OH R - Galloyl Figure 1: Structures of some constituents present in E.
Recommended publications
  • Studies of the Medicinal Plant Euphorbia Hirta Methanol Leaf Extract Phytocomponents by GCMS Analysis
    International journal of scientific and technical research in engineering (IJSTRE) www.ijstre.com Volume 1 Issue 4 ǁ July 2016. Studies of the medicinal plant Euphorbia hirta methanol leaf extract phytocomponents by GCMS analysis. 1 1 1 2 3 Igwe K. K. , Madubuike A.J. , Akomas S.C. , Otuokere I. E. Ukwueze C. S. 1Departmemt of Veterinary Physiology, Pharmacology and Biochemistry, Michael Okpara University of Agriculture, Umudike, Nigeria. 2Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria. 3Departmemt of Veterinary Medicine, Michael Okpara University of Agriculture, Umudike, Nigeria. Corresponding Author: [email protected] ABSTRACT: Phytocomponents in methanolic extract of Euphorbia hirta, leaf was studied using GC MS analysis. Ten compounds were identified from the extract. The major chemical constituents were Niacin or Nicotinic acid [Peak area: 31.70% ; RT: 22.718;Mol formula:C6H5NO2],S-methyl-L-cysteine [Peak area: 18.88%; RT: 21.794; Mol formula:C4H9NO2S], Methyl 1,4-methylpentadecanoate [Peak area :11.22% ; RT: 19.326; Mol formula:C17H34O2], 2-amino-3-sulfanylpropanoic acid [Peak area: 5.16%; RT: 21.682; Mol formula:C3H7NO2S], 4-amino-4-oxobut-2-enoic acid [Peak area: 4.02%; RT: 23.118; Mol formula:C4H5NO3]. The bioactive compounds in the methanol leaf extract of Euphorbia hirta, exhibited phytopharmacological significance and hence could be beneficial for therapeutic use against some health challenges. Keywords: GCMS, Euphorbia hirta, Asthma plant, Hallucination; Nicotinic acid. I. INTRODUCTION Euphorbia hirta is an annual hairy plant with many stems and branches from the base to top that is reddish or purplish in colour [1]. It belongs to the plant family Euphorbiaceae.
    [Show full text]
  • Effects of Diets Containing Dry Extracts of Achillea Millefolium, Mentha
    Iranian Journal of Aquatic Animal Health 5(1) 1-16 2019 Effects of diets containing dry extracts of Achillea millefolium, Mentha piperita and Echinacea purpurea on growth, hematological and immunological indices in juvenile common carp (Cyprinus carpio) S Alinezhad* Institute of Agricultural Education and Extension, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran Received: March 2019 Accepted: April 2019 Abstract In this study, the effects of three herbal dry Mean corpuscular volume (MCV) and mean extracts (Achillea millefolium, Mentha corpuscular hemoglobin (MCH) in all groups piperita and Echinacea purpurea) were except 0.1% M. piperita group and 0.5% E. investigated on growth, hematological and purpurea were increased compare with control immunological indices in juvenile common group (P≤0.05). MCHC in 0.5% E. purpurea carp (Cyprinus carpio). 400 juvenile fish with and 0.1 and 1% M. piperita groups showed the initial weight of 14.30 ± 0.77g were studied in highest values. Levels of 0.5% M. piperita and 10 treatment groups (9 treatment groups & a 1% E. purpurea and A. millefolium make control) with four replicates for 60 days. Three significantly increases in total leukocytes and levels (0.1, 0.5 and 1%) of dry extracts of each neutrophils (P≤0.05). Significantly increases of herb were prepared according to standard lymphocytes and decrease of monocytes were method and added to the commercial common observed in levels of 0.5% E. purpurea and 1% carp feed. At the end of period twelve fish level of all herbs groups (P≤0.05). Increased collected out of each group and the parameters levels of immunoglobulin compared to control were measured.
    [Show full text]
  • Genotoxicity of Euphorbia Hirta on Allium Cepa Assay
    2012 International Conference on Nutrition and Food Sciences IPCBEE vol. 39 (2012) © (2012) IACSIT Press, Singapore Genotoxicity of Euphorbia Hirta on Allium Cepa Assay Kwan Yuet Ping1, Ibrahim Darah2, Umi Kalsom Yusuf3, Sreenivasan Sasidharan1+ 1Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia 2School of Biological Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia 3Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia Abstract. The genotoxic effects of crude extract of Euphorbia hirta on was investigated using Allium cepa assay. Different concentrations of extract were tested on root meristems of A. cepa. Ethylmethanesulfonate was used as positive control and distilled water as negative control. The result showed that mitotic index decreased as the concentrations of crude extracts increased. The increase of the genotoxic effect corresponds to a decrease of mitotic activity. A dose-dependent increase of chromosome aberrations was observed. Abnormalities scored were stickiness, c-mitosis, bridges and vagrant chromosomes. Result of this study suggested that the methanol crude extracts of E. hirta exerted significant genotoxic and mitodepressive effects at 1000µg/ml. Keywords: Genotoxicity; Allium cepa; Mitotic index; Chromosome aberrations 1. Introduction The use of medicinal plants in remedial pursuits is gaining attention worldwide. Despite the profound therapeutic advantages possessed by the medicinal plants, some constituents of medicinal plants have been found to be potentially toxic, mutagenic, carcinogenic and teratogenic. However, the potential toxicity of herbs has not been recognized by the general public or by professional groups of traditional medicine [1]. Hence, evaluating the toxicological effects of any herbal extract intended to be used in humans is of utmost importance.
    [Show full text]
  • Antioxidant Activity and Phytochemical Screening of the Methanol Extracts of Euphorbia Hirta L
    Asian Pacific Journal of Tropical Medicine (2011)386-390 386 Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Medicine journal homepage:www.elsevier.com/locate/apjtm Document heading doi: Antioxidant activity and phytochemical screening of the methanol extracts of Euphorbia hirta L Abu Arra Basma1, Zuraini Zakaria1, Lacimanan Yoga Latha2, Sreenivasan Sasidharan2* 1Biology Division, School of Distance Education, Universiti Sains Malaysia, USM 11800, Pulau Pinang, Malaysia 2Institutes for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM 11800, Pulau Pinang, Malaysia ARTICLE INFO ABSTRACT Article history: Objective: Euphorbia hirta (E. hirta) To assess antioxidant activities of different parts of , and to Received 25 February 2011 Methods: search for new sources of safe and inexpensive antioxidants. Samples of leaves, stems, Received in revised form 27 March 2011 E. hirta flowers and roots from were tested for total phenolic content, and flavonoids content and Accepted 2 April 2011 in vitro Available online 20 May 2011 antioxidant activity by diphenyl-1-picrylhydrazylResults: (DPPH) assay and reducing power was measured using cyanoferrate method. The leaves extract exhibited a maximum DPPH Keywords: scavenging activity of (72.96依0.78)% followed by the flowers, roots and stems whose scavenging activities were (52.45依0.66)%, (48.59依0.97)%, and (44.42依0.94)%, respectively. The standard Antioxidant butylated hydroxytoluene (BHT) was (75.13依0.75)%. The IC50 for leaves, flowers, roots, stems Euphorbia hirta L and BHT were 0.803, 0.972, 0.989, 1.358 and 0.794 mg/mL, respectively. The reducing power of DPPH scavenging the leaves extract was comparable with that of ascorbic acid and found to be dose dependent.
    [Show full text]
  • Weed Management and Dynamics of Weed Seedbank in Rabi Fennel ( Foeniculum Vulgare ) B.S
    Weed Management and Dynamics of Weed Seedbank in rabi fennel ( Foeniculum vulgare ) B.S. Gohil 1, R.K. Mathukia 2 and P.R. Mathukia 3 1,2,3 Department of Agronomy, College of Agriculture, Junagadh Agricultural University, Junagadh-362001 (Gujarat, India) ABSTRACT A field experiment was conducted during rabi season of 2011-12 at Junagadh to find out most effective and economical method of weed control in rabi fennel (Foeniculum vulgare Mill.). The dominant weed species observed were Cyperus rotundus L., Chenopodium album L., Digera arvensis Forsk and Asphodelus tenuifolius L. Cav. Results revealed that besides weed free treatment, significantly higher plant height, number of branches/plant, number of umbels/plant, number of seeds/umbellate, test weight, seed weight per plant, and seed and stover yields of fennel were recorded with pre-emergence (PRE) application of pendimethalin @ 0.90 kg/ha + post-emergence (POE) application of fenoxaprop @ 75 g/ha at 45 DAS, which was at par with pendimethalin @ 0.90 kg/ha PRE + hand weeding (HW) at 45 DAS and HW twice at 15 and 45 DAS. These treatments also recorded lower weed density and dry weight of weeds along with higher net returns and B: C ratio owing to lower weed index and higher weed control efficiency. The highest depletion of weed seedbank was observed with pendimethalin @ 0.90 kg/ha PRE + HW at 45 DAS. Keywords: Pendimethalin, Fenoxaprop, Quizalofop, oxadiargyl, glyphosate, propaquizafop. 1. INTRODUCTION India occupies prime position in seed spices and plays very important role in earning foreign exchange through export of seed spices. India is the world’s largest producer, consumer and exporter of the spices.
    [Show full text]
  • Biochemical Assessment of the Effect of Aqueous Leaf Extract of Euphorbia Heterophylla Linn on Hepatocytes of Rats
    IOSR Journal Of Environmental Science, Toxicology And Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399. Volume 3, Issue 5 (Mar. - Apr. 2013), PP 37-41 www.Iosrjournals.Org Biochemical Assessment of the Effect of Aqueous Leaf Extract Of Euphorbia Heterophylla Linn on Hepatocytes of Rats Apiamu Augustine1, Evuen Uduenevwo Francis 2, Ajaja Uche Ivy3 1, 2 & 3( Department of Biochemistry, College of Natural and Applied Sciences, Western Delta University, Nigeria) Abstract: In recent years, the search for biologically active compounds from Euphorbia heterophylla in the treatment of different diseases has always been of great interest to researchers. In this present study, we investigated the effect of the aqueous leaf extract of the plant on hepatocytes using animal models. A total of twenty (20) wistar albino rats (150-240g) were used for the study. The rats were randomly divided into four experimental groups (A, B, C & D) comprising five rats per group. The control group was administered deionised water while the treatment groups were orally administered doses of the aqueous leaf extract of the plant( 100mg/kg, 200mg/kg and 300mg/kg body weights) by means of a gavage for two weeks. Total protein, albumin, urea nitrogen, alanine aminotransferase(ALT), aspartate aminotransferase(AST) and alkaline phosphatase(ALP) were the biochemical parameters assessed in this study. The results showed no significant difference(p>0.05 in the levels of the aforementioned parameters. The aqueous leaf extract of the plant indicated the presence of carbohydrates, saponins, tannins, flavonoids, alkaloids, terpenoids and steroids, but anthracene derivatives were absent. The results obtained in this study, therefore, justify the traditional use of the plant for food and medicinal purposes respectively.
    [Show full text]
  • Phytochem Referenzsubstanzen
    High pure reference substances Phytochem Hochreine Standardsubstanzen for research and quality für Forschung und management Referenzsubstanzen Qualitätssicherung Nummer Name Synonym CAS FW Formel Literatur 01.286. ABIETIC ACID Sylvic acid [514-10-3] 302.46 C20H30O2 01.030. L-ABRINE N-a-Methyl-L-tryptophan [526-31-8] 218.26 C12H14N2O2 Merck Index 11,5 01.031. (+)-ABSCISIC ACID [21293-29-8] 264.33 C15H20O4 Merck Index 11,6 01.032. (+/-)-ABSCISIC ACID ABA; Dormin [14375-45-2] 264.33 C15H20O4 Merck Index 11,6 01.002. ABSINTHIN Absinthiin, Absynthin [1362-42-1] 496,64 C30H40O6 Merck Index 12,8 01.033. ACACETIN 5,7-Dihydroxy-4'-methoxyflavone; Linarigenin [480-44-4] 284.28 C16H12O5 Merck Index 11,9 01.287. ACACETIN Apigenin-4´methylester [480-44-4] 284.28 C16H12O5 01.034. ACACETIN-7-NEOHESPERIDOSIDE Fortunellin [20633-93-6] 610.60 C28H32O14 01.035. ACACETIN-7-RUTINOSIDE Linarin [480-36-4] 592.57 C28H32O14 Merck Index 11,5376 01.036. 2-ACETAMIDO-2-DEOXY-1,3,4,6-TETRA-O- a-D-Glucosamine pentaacetate 389.37 C16H23NO10 ACETYL-a-D-GLUCOPYRANOSE 01.037. 2-ACETAMIDO-2-DEOXY-1,3,4,6-TETRA-O- b-D-Glucosamine pentaacetate [7772-79-4] 389.37 C16H23NO10 ACETYL-b-D-GLUCOPYRANOSE> 01.038. 2-ACETAMIDO-2-DEOXY-3,4,6-TRI-O-ACETYL- Acetochloro-a-D-glucosamine [3068-34-6] 365.77 C14H20ClNO8 a-D-GLUCOPYRANOSYLCHLORIDE - 1 - High pure reference substances Phytochem Hochreine Standardsubstanzen for research and quality für Forschung und management Referenzsubstanzen Qualitätssicherung Nummer Name Synonym CAS FW Formel Literatur 01.039.
    [Show full text]
  • Euphorbia Hirta) in Ornamental Crop Production1 Thomas Smith, Chris Marble, Shawn Steed, and Nathan Boyd2
    ENH1322 Biology and Management of Garden Spurge (Euphorbia hirta) in Ornamental Crop Production1 Thomas Smith, Chris Marble, Shawn Steed, and Nathan Boyd2 Introduction Habitat Garden spurge (Euphorbia hirta) is a prostrate (low- Garden spurge (Figure 1) is a common weed in agriculture growing), herbaceous, short-lived, warm-season annual fields, container-grown ornamentals, landscape plant- weed commonly found in Florida landscapes, container ing beds, lawns, gardens, and other disturbed areas. nurseries, and other agricultural production areas. This In container nurseries, garden spurge can be found in article is written to aid green industry professionals and containers, in pot drain holes, growing through weed mats, others in the identification and management of garden and in non-crop areas around the nursery. In landscapes, spurge in and around ornamental plants. it is frequently found growing in turfgrass or in mulched planting beds, but it is also commonly found growing in Species Description sidewalk cracks and between patio pavers. Garden spurge prefers warm and sunny locations but can also grow in Class dense shade. Dicotyledon Distribution Family Garden spurge is native to tropical and subtropical regions Euphorbiaceae—Spurge family of North America but has naturalized throughout tropical and subtropical areas throughout the world (USDA-NRCS Other Common Names 2020). In the United States, garden spurge is commonly Pillpod sandmat, asthma spurge, asthma weed, hairy spurge found in the southeastern states, as far north as North Carolina and west to California (USDA-NRCS 2020). Life Span Current distribution outside the US includes South and Warm-season annual 1. This document is ENH1322, one of a series of the Environmental Horticulture Department, UF/IFAS Extension.
    [Show full text]
  • Arabian Medicinal Plants with Dermatological Effects- Plant Based Review (Part 1)
    IOSR Journal Of Pharmacy www.iosrphr.org (e)-ISSN: 2250-3013, (p)-ISSN: 2319-4219 Volume 8, Issue 10 Version. I (October 2018), PP. 44-73 Arabian medicinal plants with dermatological effects- plant based review (part 1) Ali Esmail Al-Snafi Department of Pharmacology, College of Medicine, University of Thi qar, Iraq. Corresponding author: Ali Esmail Al-Snafi Abstract: Several medicinal plants possessed a wide range of dermatological effects included antibacterial, antifungal, antiviral, antiparasitic, anticancer, hair growth-promoting activity, wound healing effects, for the treatment of burns, eczema, acne, vitiligo, and psoriasis, as skin lightening, as skin protection therapy and to slow down skin ageing. The current review will discuss the medicinal plants which showed dermatological effects and applications. Keywords: medicinal plants, skin, dermatology, alternative medicine, complementary medicine ----------------------------------------------------------------------------------------------------------------------------- ---------- Date of Submission: 12-11-2018 Date of acceptance: 25-11-2018 ----------------------------------------------------------------------------------------------------------------------------- ---------- I. INTRODUCTION: Human skin, the outer covering of the body, is the largest organ in the body. It also constitutes the first line of defense. Skin disease is a common ailment and it affects all ages from the neonate to the elderly and cause harm in number of ways. The skin diseases can be categorized into nine
    [Show full text]
  • Effects of Ambient Temperature on Feeding by Herbivorous Marsupials
    Effects of ambient temperature on feeding by herbivorous marsupials Phillipa K Beale A thesis submitted for the degree of Doctor of Philosophy of The Australian National University. ã Copyright by Phillipa K Beale 2019 All Rights Reserved February 2019 Declaration This thesis contains published work and work prepared for publication that has been co- authored with collaborating researchers. All the data presented in this work is original research and the contribution of each co-author is stated below. No part of this thesis has been submitted for any previous degree. The term “we” is used to acknowledge co- authors in Chapters 2-6 as they are prepared for publication. The term “I” is used in the Introduction and Synthesis sections. Chapter 1. A hot lunch for herbivores: physiological effects of elevated temperatures on mammalian feeding ecology Authors: Phillipa K Beale, Karen J Marsh, William J Foley, Ben D Moore Literature reviewed by Phillipa K Beale. Original manuscript written by Phillipa K Beale. All authors contributed ideas, edited and improved the manuscript. Chapter 2. Reduced hepatic detoxification in marsupial herbivores following moderate heat exposure Authors: Phillipa K Beale, Patrice K Connors, Karen J Marsh, M Denise Dearing, William J Foley Experimental idea conceived by all authors, and carried out by Phillipa K Beale and Patrice K Connors. Manuscript written by Phillipa K Beale, other authors contributed ideas, edited and improved the manuscript. Chapter 3. Changes in ambient temperature can be as important as plant secondary metabolites in limiting feeding in mammalian herbivore Authors: Phillipa K Beale, Karen J Marsh, Ben D Moore, Andrew K Krockenberger, William J Foley Experiments carried out by Phillipa K Beale.
    [Show full text]
  • Role and Modulation of TRPV1 in Mammalian Spermatozoa: an Updated Review
    International Journal of Molecular Sciences Review Role and Modulation of TRPV1 in Mammalian Spermatozoa: An Updated Review Marina Ramal-Sanchez 1,*,† , Nicola Bernabò 1,2,† , Luca Valbonetti 1,2 , Costanza Cimini 1, Angela Taraschi 1,3, Giulia Capacchietti 1, Juliana Machado-Simoes 1 and Barbara Barboni 1 1 Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; [email protected] (N.B.); [email protected] (L.V.); [email protected] (C.C.); [email protected] (A.T.); [email protected] (G.C.); [email protected] (J.M.-S.); [email protected] (B.B.) 2 Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Monterotondo Scalo, 00015 Rome, Italy 3 Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario 1, 64100 Teramo, Italy * Correspondence: [email protected] † These Authors contributed equally. Abstract: Based on the abundance of scientific publications, the polymodal sensor TRPV1 is known as one of the most studied proteins within the TRP channel family. This receptor has been found in numerous cell types from different species as well as in spermatozoa. The present review is focused on analyzing the role played by this important channel in the post-ejaculatory life of spermatozoa, where it has been described to be involved in events such as capacitation, acrosome reaction, calcium Citation: Ramal-Sanchez, M.; trafficking, sperm migration, and fertilization. By performing an exhaustive bibliographic search, this Bernabò, N.; Valbonetti, L.; Cimini, C.; review gathers, for the first time, all the modulators of the TRPV1 function that, to our knowledge, Taraschi, A.; Capacchietti, G.; were described to date in different species and cell types.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,593,371 B1 Staggs (45) Date of Patent: Jul
    USOO6593371 B1 (12) United States Patent (10) Patent No.: US 6,593,371 B1 Staggs (45) Date of Patent: Jul. 15, 2003 (54) TREATMENT FORWARTAND RELATED (56) References Cited DSORDERS U.S. PATENT DOCUMENTS (76) Inventor: Jeff J. Staggs, 1285 E. Goldsmith Dr., 4,180,058 A 12/1979 Brem ......................... 128/1 R Highlands Ranch, CO (US) 80126 6,063,381 A * 5/2000 Staggs ..................... 424/195.1 (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 * cited by examiner U.S.C. 154(b) by 0 days. Primary Examiner Kevin E. Weddington (21) Appl. No.: 09/571,644 (57) ABSTRACT (22) Filed: May 15, 2000 A novel treatment for wart and related disorderS Such as papillomas derived from extracts of pepper, ginger, and Related U.S. Application Data related plant species containing Vanillyl (FIG. 3), and pip eridine (FIG. 7) ring structures typical of the pungent (63) Continuation-in-part of application No. PCT/US93/04763, principals found in pepper, and ginger. The pepper extracts, filed on May 19, 1993. which also possess antifungal properties are demonstrated in (51) Int. Cl." ......................... A61K 31/16; A61K 31/70 the topical treatment of warts. (52) U.S. Cl. .......................................... 514/627; 514/31 (58) Field of Search .................................... 514/627, 31 38 Claims, 7 Drawing Sheets U.S. Patent Jul. 15, 2003 Sheet 1 of 7 US 6,593,371 B1 OH PHENOL CH5OH FIGURE 1 OCH3 OH ORTHO-METHOXYPHENOL CHOCH4OH FIGURE 2 CH2 OCH OH VANILLYL (CHO)(OH) Chi -CH2 FIGURE3 U.S. Patent Jul.
    [Show full text]