Insects Associated with the Lupin (Lupinus Angustifolius) Cultivars Fest

Total Page:16

File Type:pdf, Size:1020Kb

Insects Associated with the Lupin (Lupinus Angustifolius) Cultivars Fest INSECTS ASSOCIATED WITH THE LUPIN (LUPINUS ANGUSTIFOLIUS) CULTIVARS FEST AND UNIHARVEST A thesis submitted In partial fulfilment of the requirements for the Degree of Master of Applied Science in the University of Canterbury by B.M. Harris Lincoln College 1980 i Abstract of a thesis submitted In partial fulfilment of the requirements for the Degree of M.Appl.Sci. INSECTS ASSOCIATED WITH THE LUPIN (LUPINUS ANGUSTIFOLIUS) CULTIVARS FEST AND UNIHARVEST by B.M. Harris The insect fauna of two Lupinus angustifolius cultivars (Fest and Uniharvest) was surveyed between October, 1978 and March, 1979. The main sampling methods were sweepnetting, use of the D-Vac R , and pod removal. Glasshouse experiments were carried out with species showing pest potential (based on the survey). These species were Acyrthosiphon pisum (Harris), Nysius huttoni White, and Sidnia kinbergi (Stalenberg). While ~. pisum and ~. kinbergi had their pest potential confirmed, ~. huttoni did not. Although the aphids Acyrthosiphon kondoi Shinji, Macrosiphum euphorbiae (Thompson) and Myzus ~rslcae (Sulzer) were not studied in the laboratory, field data indicated their pest potential. Insects to show lesser pest potential were Calocoris norvegicus (Gmelin), Hyle~yia deceptiva ii Malloch, and Hylemyia platura (Meigen). Important potential predators or parasites were Austromicromus tasmaniae (Walker), Coccinella undecimpunctata L., Tropiconabis capsiformis (Germar), some Araneae species and single unidentified species of Braconidae and Eulophidae. The cultivar Uniharvest was the preferred host presumably because it does not possess the toxic alkaloids of Fest. However, crop loss through insect damage appeared unimportant compared to th~ 10% loss of Uniharvest caused by the aphid-borne bean yellow mosaic virus. iii CONTENTS PART ONE IN,;[,RODUCTION AND LITERATURE REVIEW CHAPTER I INTRODUCTION 1 CHAPTER 11 LITERATURE REVIEW 3 2 .~ LUPINS : GENERAL INFORMATION 3 A. Introduction 3 B. Lupins in New Zealand 4 C. Lupin cultivation in New Zealand 5 D. Disease in lupins 6 1. Fungal diseases 6 2. Viral diseases and their control 6 2.2 INSECTS ASSOCIATED WITH LUPINS 9 A. World insect fauna 9 B. New Zealand insect fauna 10 2 . 3 SAMPLING TECHNIQUES 11 A. Introduction 11 B. Techniques used during this survey 12 1. Introduction 12 2. The sweepnet 13 3. The D-Vac 15 C. Comparison of D-Vac and sweepnet sampling methods 15 PART TWO FIELD STUDIES CHAPTER Ill: METHODS AND MATERIALS 17 3.1 INTRODUCTION 17 3.2 METHODS OF SAMPLING 18 iv CONTENTS continued: A. Direct observation 18 ~. Complete plant removal 18 C. Pod removal 18 D. The sweepnet 20 E. The D-Vac 23 CHAPTER IV THE FAUNA 24 4.1 INTRODUCTION 24 4.2 ORDER COLEOPTERA 25 4.3 ORDER DIPTERA 35 4.4 ORDER HEMIPTERA 48 4.5 ORDER HYMENOPTERA 78 4.6 ORDER LEPIDOPTERA 84 4.7 ORDER NEUROPTERA 84 4.8 ORDER THYSANOPTERA 87 4.9 MISCELLANEOUS ORDERS 89 4.10 CLASS ARACHNIDA 90 CHAPTER V RESULTS AND DISCUSSION 94 5.1 GENERAL RESULTS 94 5.2 WEATHER . 96 A. General 96 B .. The effects of the weather 98 1. Effects on the lupins 98 2. Effects on the insects 99 C. Weather at the research site 100 5.3 DISEASES 105 A. Bean yellow mosaic virus 105 B. Cucumber mosaic virus 107 5.4 SAMPLING TECHNIQUES: THEIR APPLICABILITY TO LUPINS 107 A. Direct observation 107 B. Complete plant removal 108 C. Pod sampling 108 D. The sweepnet 109 E. The D-Vac 110 F. Comparison of D-Vac and sweepnet results 111 v CONTENTS continued: 5.5 VARIABLES ASSOCIATED WITH THE ANALYSIS OF RESULTS 117 A. Variation within and between each cultivar 117 B. Insect distribution 118 C. The effect of sampling 119 D. v'leather 119 E. Comments 119 PART THREE LABORATORY STUDIES CHAPTER VI PRELIMINARY. EVALUATION OF THREE POTENTIAL PEST SPECIES 121 6.1 INTRODUCTION 121 6.2 METHODS AND MATERIALS : GENERAL 121 6.3 SIDNIA KINBERGI EXPERIMENTATION 122 A. Introduction 122 B. Methods and materials 123 C. Results and discussion 125 D. Conclusions 134 6.4 ACYRTHOSIPHON PISUM EXPERIMENTATION 135 A. Introduction 135 B. Methods and materials 136 C. Results and discussion 139 D. Conclusions 147 6.5 NYSIUS HUTTONI EXPERIMENTATION 148 A. Introduction 148 B. Methods and materials 149 C. Results and discussion 150 D. Conclusions 152 vi CONTENTS continued: PART FOUR CONCLUSIONS CHAPTER VII CONCLUDING DISCUSSION 153 A. General 153 B. Conclusions 158 ACKNOWLEDGEMENTS 160 REFERENCES 162 APPENDIX 1 INSECTS ASSOCIATED WITH LUPINS 178 APPENDIX 2 LESS PROMINENT INSECTS 188 vii LIST OF FIGURES FIGURE 3.1 Sampling calend$r 19 3.2 Areas sampled by the sweepnet and the D-Vac 22 The number of C. undecimpunctata captured versus time 4.1 (i) The sweepnet 26 4.2 (ii) The D-Vac 27 The number of adult C. hirtalis captured versus time 4. 3 (i) The sweepnet 29 4.4 (ii) The D-Vac 30 The number of adult C. australis captured versus time 4.5 (i) The sweepnet 36 4.6 (ii) The D-Vac 37 The number'of adult C. triplicata captured versus time 4.7 (i) The sweepnet 38 4.8 (ii) The D-Vac 39 The number of adult L. chenopodi captured versus time-: 4.9 (i) The sweepnet 41 4.10 (ii) The D-Vac 42 4.11 The number of adult Hylemyia spp captured by the D-Vac versus time 44 4.12 The number of adult A. kondoi captured by the sweepnet versus time 49 4.13 The number of adult A. plsum captured by the sweepnet versus time 51 4.14 The number of adult M. euphorbiae captured by the sweepnet versus time 53 4.15 The number of aphid juveniles captured by the sweepnet versus time 58 The number of N. huttoni captured versus time : 4.16 (i) The sweepnet 66 4.17 (ii) The D-Vac 67 viii LIST OF FIGURES continued: FIGURE 4.18 The number of C. norvegicus captured by the sweephet versus time 69 The number of S. kinbergi captured versus time : - 4.19 Ci) The sweepnet 71 4.20 Cii) The D-Vac 72 The number of T. capsifo"rmis captured versus time : 4.21 Ci) The sweepnet 75 4.22 Cii) The D-Vac 76 The number of adult Braconidae captured versus time : 4.23 Ci) The sweepnet 79 4.24 Cii) The D-Vac 80 The number of adult Eu10phidae captured versus time : 4.25 Ci) The sweepnet 81 4.26 Cii) The D-Vac 82 4.27 The number of adult A. tasmaniae captured by the D-Vac versus time 85 The number of Araneae captured versus time 4.28 Ci) The sweepnet 91 4.29 Cii) The D-Vac 92 5.1 Time of maturation versus position within the two plots 95 6.1A The number of starved adult N. huttoni versus time 132 B The number of starved adult S. kinbergi versus time 132 6.2A The number of starved A. plsum alive versus time 141 B The number of A. pisum alive on Uniharvest versus time 141 C The number of A. pisum alive on Fest versus time 141 6. 3 A comparison of the fecundity of A. plsum on Uniharvest and broad beans 145 ix LIST OF TABLES TABLE 2.1 Percentage of BYMV and CMV infection in lupin cultivars sown at different dates 7 4.1 Unimportant Diptera captured on L. angustifolius and biological data concerning their feeding habits 46 4.2 Summary of the temperatures recorded at the Lincoln College Meteorological Station during the time of the observed decline In aphid numbers 62 5.1 Summary of the weather during the.time of crop growth 97 5.2 Weather at the time of sweepnet sampling 102 5 . 3 D-Vac : Sweepnet sample ratios 113 6.1 The number of S. kinbergi present after 15 days 127 6 . 2 The number of S. kinbergi alive on field trial L. angustifolius after 65 days 133 6.3 The number of N. huttoni alive on field trial L. angustifolius after 65 days 151 7.1 A summary of insects showing pest or predator/parasite potential on L. angustifolius 155 x LIST OF PLATES PLATE 5.1 BYMV symptoms in Uniharvest 106 6.1 The vented cylindrical perspex cages used in the glasshouse 124 6.2 The insect cages used during the field trial 126 6. 3 Leaflet stunting caused by S. kinbergi feeding 128 6.4 Severe leaflet stunting and death caused by ~. kinbergi feeding 128 6.5 Severe necrosis of the mainstem of L. angustifolius caused by S. kinbergi feeding 130 6.6 Moderate necrosis of the mainstem of L. angustifolius caused by S. kinbergi feeding 130 6.7 L. angustifolius recovery from s. kinbergi feeding 131 6. 8 The small feeding cages used to enclose A. pisum individuals on L. angustifolius leaves 137 6.9 A. pisum feeding from primary leaves of Uniharvest 143 6.10 A. pisum damage to mature Uniharvest plants 146 1 PART ONE INTRODUCTION AND LITERATURE REVIEW CHAPTER I INTRODUCTION While lupins have undergone extensive research to ascertain their suitability for growth in New Zealand as a forage or grain legume crop, the present trend is for research to be centred on their applicability to a seed protein and oil industry, as is found in the United St-ates, Australia and elsewhere. A study of literature showed that no intensive study of the lupin insect fauna had been carried out in New Zealand. Also it appeared that elsewhere research into the lupin . insect fauna had concentrated on individual pest species rather than on the overall fauna. Because Lupinus angustifolius is the most commonly grown lupin species in New Zealand, a survey was designed to sample the insect fauna associated with the foliage of two cultivars, Fest (alkaloid, bitter) and Uniharvest (low-alkaloid, sweet) .
Recommended publications
  • Download Download
    Journal Journal of Entomological of Entomological and Acarologicaland Acarological Research Research 2020; 2012; volume volume 52:9304 44:e INSECT ECOLOGY Update to the “Catalogue of Lepidoptera Tortricidae of the Italian Fauna” (2003-2020) P. Trematerra Department of Agricultural, Environmental and Food Sciences, University of Molise, Italy List of taxa Tortricidae Abstract Subfamily Tortricinae In the paper are reported 37 species to add at the “Catalogue of Lepidoptera Tortricidae of the Italian fauna” published on 2003. Tribe Cochylini After this paper the list of tortricids found in Italy passed from 633 to 670 species. Phtheochroa reisseri Razowski, 1970 GEONEMY. Europe (France, Italy, ex-Yugoslavia, Crete). CHOROTYPE. S-European. DISTRIBUTION IN ITALY. Abruzzo: Rivoli and Aschi, L’Aquila Introduction (Pinzari et al., 2006) BIOLOGICAL NOTES. Adults were collected in May. The “Catalogue of Lepidoptera Tortricidae of the Italian fauna” IDENTIFICATION. Morphology of the adult and genital characters published on 2003 as supplement of the Bollettino di Zoologia are reported by Razowski (2009). agraria e di Bachicoltura, reported 633 species (Trematerra, 2003). In these last years tortricids from the Italian territory received atten- Cochylimorpha scalerciana Trematerra, 2019 tion by both local and foreign entomologists that also studied many GEONEMY. Europe (Italy: Calabria) collections deposited in various museums, increasing the faunistic CHOROTYPE. S-Appenninic. knowledge with the recording and description of new taxa. DISTRIBUTION IN ITALY. Calabria: various locations of the Monti In the present paper are reported 37 species to add at the della Sila, Cosenza (Trematerra, 2019a). “Catalogue”, after this paper the list of tortricids found in Italy BIOLOGICAL NOTES. Adults were found in May.
    [Show full text]
  • Final Report Template
    Native Legumes as a Grain Crop for Diversification in Australia RIRDC Publication No. 10/223 RIRDCInnovation for rural Australia Native Legumes as a Grain Crop for Diversification in Australia by Megan Ryan, Lindsay Bell, Richard Bennett, Margaret Collins and Heather Clarke October 2011 RIRDC Publication No. 10/223 RIRDC Project No. PRJ-000356 © 2011 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-188-4 ISSN 1440-6845 Native Legumes as a Grain Crop for Diversification in Australia Publication No. 10/223 Project No. PRJ-000356 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication.
    [Show full text]
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • Cusick's Lupine (Lupinus Lepidus Var
    Cusick's lupine (Lupinus lepidus var. cusickii) ENDANGERED Flowers (left), habit (center), and habitat (right) of Cusick’s lupine. Photos by Robert Meinke (left and right) and Rebecca Currin (center). If downloading images from this website, please credit the photographer. Family Fabaceae Taxonomic notes Synonyms: Lupinus cusickii, L. aridus var. cusickii, L. lepidus ssp. cusickii The genus Lupinus poses many taxonomic challenges due to the extremely variable nature of the species and intergradations between recognized taxa, a situation that in many instances is likely the result of or complicated by free interbreeding that has obscured species boundaries. Lupine populations designated by the epithet cusickii have been treated in a myriad of ways: as a species, as a variety of L. aridus, and as a subspecies, variety, or synonym of L. lepidus. Plant description Cusick’s lupine is an erect, caespitose perennial 2-11 cm tall. Stems are sparingly branched at the base, with upper stem internodes 1-3 cm long. Upper stem nodes often bear a lateral branch terminating in an inflorescence. Leaves are mainly basal, the petioles 2-6 cm long, the 5-9 oblanceolate leaflets abundantly hairy on both surfaces, 0.7-1.9 cm long by 0.3-0.7 cm wide. Peduncles are 1-6 cm long, subequal to or shorter than the racemes. Racemes are 1-6 cm long, and held at about the height of the vegetative crown when mature. Flowers are crowded and whorled, borne on slender pedicels 0.4-0.5 cm long at anthesis. The calyx is hairy and not saccate or spurred.
    [Show full text]
  • Narrow-Leaf Lupin, EM 8834-E
    Dryland Cropping Systems EM 8834-E • June 2003 $1.00 Narrow-leaf Lupin K. Kettel, B. Tuck, W.A. Payne, C. Chen, S. Machado, and R. Karow History As a crop species, lupin was important to many ancient civilizations and has been cultivated, mostly as a green manure, for at least 3,000 years. Its native range extends through the western parts of North and South America as well as around the Mediterranean, extending into eastern Africa. Of the more than 300 Lupinus species, only five are cultivated (L. albus, L. angustifolius, L. luteus, L. mutabilis, and L. cosentenii). In the 1920s, German plant breeders produced the first low-alkaloid lupin varieties. Like other legumes, lupin fixes atmospheric nitrogen and produces a high-protein seed that is used as a feed and food source throughout the world. In the past, lupin production in Oregon was limited to white lupin varieties (L. albus). White lupin has been grown in the Columbia Gorge region since the late 1980s. Research at the Oregon State University (OSU) Moro Research Station showed excellent yield potential. Although white lupin is well adapted to most growing conditions in Oregon, it has suffered from undetermined disease problems. In 1998, OSU researchers resumed lupin research in response to grower interest. After conferring with Australian researchers, Dr. William Payne became convinced that imported narrow-leaf lupin varieties (L. angustifolius) from Australia would provide resistance to the types of diseases that had troubled white lupin in the past. Because current Oregon lupin research has focused on narrow-leaf varieties, this publication will discuss the agronomic practices of growing the narrow-leaf varieties developed in Australia.
    [Show full text]
  • Big Creek Lepidoptera Checklist
    Big Creek Lepidoptera Checklist Prepared by J.A. Powell, Essig Museum of Entomology, UC Berkeley. For a description of the Big Creek Lepidoptera Survey, see Powell, J.A. Big Creek Reserve Lepidoptera Survey: Recovery of Populations after the 1985 Rat Creek Fire. In Views of a Coastal Wilderness: 20 Years of Research at Big Creek Reserve. (copies available at the reserve). family genus species subspecies author Acrolepiidae Acrolepiopsis californica Gaedicke Adelidae Adela flammeusella Chambers Adelidae Adela punctiferella Walsingham Adelidae Adela septentrionella Walsingham Adelidae Adela trigrapha Zeller Alucitidae Alucita hexadactyla Linnaeus Arctiidae Apantesis ornata (Packard) Arctiidae Apantesis proxima (Guerin-Meneville) Arctiidae Arachnis picta Packard Arctiidae Cisthene deserta (Felder) Arctiidae Cisthene faustinula (Boisduval) Arctiidae Cisthene liberomacula (Dyar) Arctiidae Gnophaela latipennis (Boisduval) Arctiidae Hemihyalea edwardsii (Packard) Arctiidae Lophocampa maculata Harris Arctiidae Lycomorpha grotei (Packard) Arctiidae Spilosoma vagans (Boisduval) Arctiidae Spilosoma vestalis Packard Argyresthiidae Argyresthia cupressella Walsingham Argyresthiidae Argyresthia franciscella Busck Argyresthiidae Argyresthia sp. (gray) Blastobasidae ?genus Blastobasidae Blastobasis ?glandulella (Riley) Blastobasidae Holcocera (sp.1) Blastobasidae Holcocera (sp.2) Blastobasidae Holcocera (sp.3) Blastobasidae Holcocera (sp.4) Blastobasidae Holcocera (sp.5) Blastobasidae Holcocera (sp.6) Blastobasidae Holcocera gigantella (Chambers) Blastobasidae
    [Show full text]
  • Bumble Bee Pollen Foraging on Lupine (Lupinus: Fabaceae)
    BUMBLE BEE POLLEN FORAGING ON LUPINE (LUPINUS: FABACEAE): WITHIN-WHORL DECISIONS by Birgit Semsrott A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Arts In Biology May 2000 BUMBLE BEE POLLEN FORAGING ON LUPINE (LUPINUS: FABACEAE): WITHIN-WHORL DECISIONS by Birgit Semsrott We certify that we have read this study and that it conforms to acceptable standards of scholarly presentation and is fully acceptable, in scope and quality, as a thesis for the degree of Master of Arts. Approved by the Master's Thesis Committee: Michael R. Mesler, Major Professor Michael &mann, Committee Member P. Dawn Goley, Committee Member Casey Lu, Committee Member Milton J. Boyd, Graduate Coordinator Ronald Fritzsche, Dean for Research and Graduate Studies ABSTRACT Bumble bee pollen foraging on lupine (Lupinus: Fabaceae): within-whorl decisions Birgit Semsrott Bumble bees (Bombus: Apidae) can maximize foraging efficiency in a resource-patchy environment by visiting mainly rewarding flowers and avoiding those that are either empty or less rewarding. This study investigated how bumble bees avoid unrewarding flowers of lupine (Lupinus: Fabaceae), a plant in which the pollen is hidden from view. I recorded whether bees left a whorl upon encountering various situations. Bumble bees clearly discriminated against flowers that showed unambiguous visual signs of being unrewarding. In the absence of any visual cues, bees made use of a presumably predictable spatial distribution of pollen within whorls. They were able to assess the amount of pollen collected per flower, and they departed upon encountering one or more unrewarding flowers.
    [Show full text]
  • Oberholzeria (Fabaceae Subfam. Faboideae), a New Monotypic Legume Genus from Namibia
    RESEARCH ARTICLE Oberholzeria (Fabaceae subfam. Faboideae), a New Monotypic Legume Genus from Namibia Wessel Swanepoel1,2*, M. Marianne le Roux3¤, Martin F. Wojciechowski4, Abraham E. van Wyk2 1 Independent Researcher, Windhoek, Namibia, 2 H. G. W. J. Schweickerdt Herbarium, Department of Plant Science, University of Pretoria, Pretoria, South Africa, 3 Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg, South Africa, 4 School of Life Sciences, Arizona a11111 State University, Tempe, Arizona, United States of America ¤ Current address: South African National Biodiversity Institute, Pretoria, South Africa * [email protected] Abstract OPEN ACCESS Oberholzeria etendekaensis, a succulent biennial or short-lived perennial shrublet is de- Citation: Swanepoel W, le Roux MM, Wojciechowski scribed as a new species, and a new monotypic genus. Discovered in 2012, it is a rare spe- MF, van Wyk AE (2015) Oberholzeria (Fabaceae subfam. Faboideae), a New Monotypic Legume cies known only from a single locality in the Kaokoveld Centre of Plant Endemism, north- Genus from Namibia. PLoS ONE 10(3): e0122080. western Namibia. Phylogenetic analyses of molecular sequence data from the plastid matK doi:10.1371/journal.pone.0122080 gene resolves Oberholzeria as the sister group to the Genisteae clade while data from the Academic Editor: Maharaj K Pandit, University of nuclear rDNA ITS region showed that it is sister to a clade comprising both the Crotalarieae Delhi, INDIA and Genisteae clades. Morphological characters diagnostic of the new genus include: 1) Received: October 3, 2014 succulent stems with woody remains; 2) pinnately trifoliolate, fleshy leaves; 3) monadel- Accepted: February 2, 2015 phous stamens in a sheath that is fused above; 4) dimorphic anthers with five long, basifixed anthers alternating with five short, dorsifixed anthers, and 5) pendent, membranous, one- Published: March 27, 2015 seeded, laterally flattened, slightly inflated but indehiscent fruits.
    [Show full text]
  • Growth, Yield and Yield Component Attributes of Narrow-Leafed Lupin
    Tropical Grasslands-Forrajes Tropicales (2019) Vol. 7(1):48–55 48 DOI: 10.17138/TGFT(7)48-55 Research Paper Growth, yield and yield component attributes of narrow-leafed lupin (Lupinus angustifolius L.) varieties in the highlands of Ethiopia Crecimiento, rendimiento y componentes del rendimiento de variedades de lupino dulce de hoja angosta (Lupinus angustifolius L.) en las tierras altas de Etiopía FRIEHIWOT ALEMU1, BIMREW ASMARE2 AND LIKAWENT YEHEYIS3 1Woldiya University, Department of Animal Science, Woldiya, Amhara, Ethiopia. www.wldu.edu.et 2Bahir Dar University, Department of Animal Production and Technology, Bahir Dar, Amhara, Ethiopia. www.bdu.edu/caes 3Amhara Agricultural Research Institute, Bahir Dar, Amhara, Ethiopia. www.arari.gov.et Abstract An experiment was conducted to characterize the growth and yield performance of narrow-leafed sweet blue lupin varieties (Lupinus angustifolius L.) in northwestern Ethiopia. The experiment was laid out in a randomized complete block design with 4 replications and included 7 varieties (Bora, Probor, Sanabor, Vitabor, Haags blaue, Borlu and Boregine). Data on days to flowering and to maturity, flower color, plant height, numbers of leaflets, branches and pods per plant, pod length, number of seeds per pod, forage dry matter (DM) yield, grain yield and 1,000-seed weight were recorded. The results showed that plant height, number of branches per plant, forage DM yield, number of seeds per pod, grain yield and 1,000-seed weight varied significantly (P<0.01) among varieties. The highest forage DM yield at 50% flowering (2.67 t/ha), numbers of pods per plant (16.9) and of seeds per pod (4.15), grain yield (1,900 kg/ha) and 1,000- seed weight (121 g) were obtained from the Boregine variety.
    [Show full text]
  • 18Th EANA Conference European Astrobiology Network Association
    18th EANA Conference European Astrobiology Network Association Abstract book 24-28 September 2018 Freie Universität Berlin, Germany Sponsors: Detectability of biosignatures in martian sedimentary systems A. H. Stevens1, A. McDonald2, and C. S. Cockell1 (1) UK Centre for Astrobiology, University of Edinburgh, UK ([email protected]) (2) Bioimaging Facility, School of Engineering, University of Edinburgh, UK Presentation: Tuesday 12:45-13:00 Session: Traces of life, biosignatures, life detection Abstract: Some of the most promising potential sampling sites for astrobiology are the numerous sedimentary areas on Mars such as those explored by MSL. As sedimentary systems have a high relative likelihood to have been habitable in the past and are known on Earth to preserve biosignatures well, the remains of martian sedimentary systems are an attractive target for exploration, for example by sample return caching rovers [1]. To learn how best to look for evidence of life in these environments, we must carefully understand their context. While recent measurements have raised the upper limit for organic carbon measured in martian sediments [2], our exploration to date shows no evidence for a terrestrial-like biosphere on Mars. We used an analogue of a martian mudstone (Y-Mars[3]) to investigate how best to look for biosignatures in martian sedimentary environments. The mudstone was inoculated with a relevant microbial community and cultured over several months under martian conditions to select for the most Mars-relevant microbes. We sequenced the microbial community over a number of transfers to try and understand what types microbes might be expected to exist in these environments and assess whether they might leave behind any specific biosignatures.
    [Show full text]
  • Podalonia Affinis on the Sefton Coast in 2019
    The status and distribution of solitary bee Stelis ornatula and solitary wasp Podalonia affinis on the Sefton Coast in 2019 Ben Hargreaves The Wildlife Trust for Lancashire, Manchester & North Merseyside October 2019 1 ACKNOWLEDGEMENTS Thanks to Tanyptera Trust for funding the research and to Natural England, National Trust and Lancashire Wildlife Trust for survey permissions. 2 CONTENTS Summary………………………………………………………………………………………………………….4 Introduction…………………………………………………………………………………………………….5 Aims and objectives………………………………………………………………………….6 Methods…………………………………………………………………………………………..6 Results……………………………………………………………………………………………..7 Discussion………………………………………………………………………………………..9 Follow-up work………………………………………………………………………………11 References……………………………………………………………………………………..11 3 SUMMARY The Wildlife Trust for Lancashire, Manchester & North Merseyside (Lancashire Wildlife Trust) were commissioned by Liverpool Museum’s Tanyptera project to undertake targeted survey of Nationally Rare (and regionally rare) aculeate bees and wasps on various sites on the Sefton Coast. Podalonia affinis is confirmed as extant on the Sefton Coast; it is definitely present at Ainsdale NNR and is possibly present at Freshfield Dune Heath. Stelis ornatula, Mimesa bruxellensis and Bombus humilis are not confirmed as currently present at the sites surveyed for this report. A total of 141 records were made (see attached data list) of 48 aculeate species. The majority of samples were of aculeate wasps (Sphecidae, Crabronidae and Pompilidae). 4 INTRODUCTION PRIMARY SPECIES (Status) Stelis ornatula There are 9 records of this species for VC59 between 1975 and 2000. All the records are from the Sefton Coast. The host of this parasitic species is Hoplitis claviventris which is also recorded predominantly from the coast (in VC59). All records are from Ainsdale National Nature Reserve (NNR) and Formby (Formby Point and Ravenmeols Dunes). Podalonia affinis There are 15 VC59 records for this species which includes both older, unconfirmed records and more recent confirmed records based on specimens.
    [Show full text]
  • Recording and Monitoring Rarer Moths in the Yorkshire Dales
    WHITAKER (2015). FIELD STUDIES (http://fsj.field-studies-council.org/) RECORDING AND MONITORING RARER MOTHS IN THE YORKSHIRE DALES TERRY WHITAKER [email protected] Field notes on some of the Yorkshire Dales National Park’s rarer moths, and the activity of the Yorkshire Dales Butterfly and Moth Action Group in increasing our KnoWledge of their distribution and status. RESEARCH SUMMARY Yorkshire Dales Butterfly and Moth Action Group YorKshire Dales Butterfly and Moth Action Group (YDBMAG) started in 2002 as an initiative betWeen Butterfly Conservation, the YorKshire Naturalists’ Union and the YorKshire Dales National ParK Authority (YDNPA). Its aims and objectives are as folloWs: • To advise on habitat action plans affecting Biodiversity Action Plan (BAP) Lepidoptera; • To devise species action plans for Local Biodiversity Action Plan (LBAP) Lepidoptera; • To monitor LBAP lepidopteran species. The folloWing initiatives have been promoted: • Increase public aWareness of LBAP species; • Increase KnoWledge of distribution of LBAP butterfly species; • Set up butterfly monitoring transects for LBAP species. These initiatives have included: • Setting up transects for small pearl-bordered fritillary and northern brown argus butterflies; • Surveys to discover the status and distribution in the YorKshire Dales National ParK (YDNP) of small pearl- bordered fritillary butterfly 2002, 2007-8 and 2013 and northern broWn argus butterfly 2002, 2007 and 2013; • Producing reporting postcards for common blue and green hairstreaK butterflies (2005-2007; 2006-2007); • Producing an identification guide to butterflies in the YDNP, With English Nature (WhitaKer, 2004); • Setting up transects in the small pearl-bordered fritillary and northern brown argus butterfly in the YDNP, by 2003. Currently, (2013), there are six UK butterfly monitoring scheme (UKBMS) transects in the YDNP.
    [Show full text]