Fabric Development, Electrical Conductivity and Graphite Formation in Graphite-Bearing Marbles from the Central Damara Belt, Namibia

Total Page:16

File Type:pdf, Size:1020Kb

Fabric Development, Electrical Conductivity and Graphite Formation in Graphite-Bearing Marbles from the Central Damara Belt, Namibia Fabric Development, Electrical Conductivity and Graphite Formation in graphite-bearing Marbles from the Central Damara Belt, Namibia Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen vorgelegt von Jens Martin Walter aus Windhoek/Namibia Göttingen, 2004 D 7 Referent: Prof. K. Weber Korreferent: Dr. B. Leiss Tag der mündlichen Prüfung: 29.06.2004 ABSTRACT Graphite-bearing marbles occur in crustal-scale dome structures of the central parts of the Damara Belt in north-western Namibia. They have been reported to show significant anomalies of high electrical conductivity in magnetotelluric profiles. This work presents conductivity measurements on a sample scale of different types of these graphite-bearing marbles. As the graphite-bearing marbles also form distinct shear zones along reactivated rims of the dome structures, these different types of graphite-bearing marbles were distinguished by their macro- and microscopic fabric characteristics. The investigation and classification of the different fabrics is the basis for understanding the conductivity potentials of the different types of graphite-bearing marbles. The classification was made using qualitative optical microscopy, cathodoluminescence microscopy (CL), scattered electron microscopy (SEM), bulk and local texture analysis and the quantification of the calcite-graphite ratios. Several studies were made to verify the tectono-metamorphic development of the different fabrics, and to characterise the modes of graphite formation within these marbles. These include Raman spectroscopic measurements, energy dispersive X-ray analysis (EDX) and investigations of the stable isotopes. Fabric investigations and field work show that the graphite-bearing marbles are abnormally coarse- grained. The large grain-size of the marble is according to these investigations related to the regional intrusion of granitic melts into high-grade metamorphic rocks. Calcite-graphite thermometry by carbon isotopes indicates regional peak temperatures of around 760° C. The coarse-grained marbles were subsequently deformed in brittle-ductile shear zones along the reactivated rims of the dome structures, producing complex fabrics. The studied shear zones are composed of a mylonitic core zone and a brittle-ductile deformed boundary zone. Part of the deformation in the shear zones was by pressure solution, which resulted in the formation of graphitic stylolites. The graphitic stylolites form network structures of varying degrees of intensity. On a sample scale, the graphite networks show resistivities of 400 to 540 Ω m. These networks are responsible for the anomalies of high electrical conductivity, measured in the magnetotelluric profiles. Many of the graphitic stylolites are cut by microveins. It is proposed that these veins were generated as tension fractures and hydrofractures during the Cretaceous break-up of Gondwana and the subsequent uplift to surface levels. Graphite was most probably formed during metamorphism, which also lead to the abnormal grain- coarsening of the marbles. The graphite is of uniform high crystallinity across all types of graphite- bearing marbles. Since carbon isotopes of graphite were equilibrated with the calcite marble host rock, no isotopic indications about the origin of the graphite are preserved in the marbles. Qualitative optical microscopy and EDX investigations show, that the graphite is commonly epitaxial-intergrown with mica minerals. The fine-grained graphitic stylolites formed as a residue of pressure solution of calcite. The calcite-graphite ratios indicate, that both calcite and graphite were subject to pressure solution deformation. The calcite textures correspond to so-called ‘low- temperature’ pure shear textures, both in the mylonitic core zones as well as in the brittle-ductile boundary zones. The intensity of lattice-preferred orientations is generally very high and varies strongly with the grain size of the investigated samples. The mylonitic core zones show a complex pattern of different domains of lattice preferred orientation within microscopic scales. Graphite also shows a strong lattice-preferred orientation in the mylonitic core zones with the basal plains oriented parallel to the foliation. The abnormal grain-coarsening resulted from a combination of regional and contact metamorphism. The complex brittle-ductile deformation fabrics were formed subsequently in a seismic-aseismic transition zone with isochronous brittle, ductile and pressure solution deformation. The graphitic stylolites developed during this deformation, are responsible for crustal anomalies of high electrical conductivity in the measured magnetotelluric profiles. CONTENTS ACKNOWLEDGEMENTS . III 1 INTRODUCTION . 1 1.1. AIMS OF THIS WORK . .1 1.2. GEOLOGICAL SETTING . .1 1.3. LOCATION AND DESCRIPTION OF THE FIELD AREAS . 4 2 STRUCTURAL AND TEXTURAL ANALYSIS . 6 2.1. REGIONAL DEFORMATION AND STRUCTURES . 6 2.2. CHARACTERISATION OF THE DIFFERENT TYPES OF MARBLES . .13 2.3. MICROSTRUCTURES . 14 2.3.1. COARSE-GRAINED MARBLE HOST ROCK . 15 2.3.2. BRITTLE-DUCTILE DEFORMED MARBLE . 17 2.3.3. DUCTILE DEFORMED MARBLE . .23 2.3.4. CATHODOLUMINESCENCE INVESTIGATIONS . .25 2.3.5. INVESTIGATIONS BY SCANNING ELECTRON MICROSCOPY . 26 2.3.6. QUANTITATIVE CALCITE-GRAPHITE RATIOS . .28 2.3.6.1. ANALYTICAL TECHNIQUES . 30 2.3.6.2. MEASUREMENTS AND RESULTS . 31 2.4. TEXTURE ANALYSIS . .35 2.4.1. TEXTURE ANALYSIS BY NEUTRON DIFFRACTION . .35 2.4.1.1. ANALYTICAL TECHNIQUE . 35 2.4.1.2. TEXTURE TYPES OF CALCITE . .36 2.4.1.3. SAMPLES AND MEASUREMENTS . 38 2.4.2. TEXTURE ANALYSIS BY ROTATING POLARIZER STAGE . .45 2.4.2.1. ANALYTICAL TECHNIQUE . 46 2.4.2.2. SAMPLES AND MEASUREMENTS . 49 2.5. DISCUSSION . .49 3 GRAPHITE CRYSTALLINITY MEASUREMENTS . 56 3.1. ANALYTICAL TECHNIQUES . .56 3.2. SAMPLES MEASURED . 58 3.3. RESULTS AND QUANTIFICATION . 59 3.4. DISCUSSION . .62 4 CONDUCTIVITY MEASUREMENTS . .64 4.1. PRINCIPALS OF ELECTRICAL CONDUCTIVITY . .64 4.1.1. ELECTRONIC CONDUCTIVITY . 68 4.1.2. IONIC OR ELECTROLYTIC CONDUCTIVITY . .68 4.1.3. ELECTRICAL CONDUCTIVITY OF ROCKS . 70 4.1.4. IMPEDANCE SPECTROSCOPY . 72 4.1.4.1 POLARISATION EFFECTS AND ELECTRICAL CONDUCTIVITY . .72 i 4.1.4.2. THEORY OF COMPLEX IMPEDANCE . .74 4.2. ANALYTICAL TECHNIQUES . .78 4.3. SAMPLES MEASURED . .79 4.4. MEASUREMENTS AND RESULTS . .80 4.5. DISCUSSION . .85 5 STABLE ISOTOPE ANALYSIS . 93 5.1. STABLE ISOTOPES OF MARBLES AND GRAPHITE . 97 5.2. CHARACTERISATION OF THE GRAPHITE-BEARING MARBLES . 100 5.3. CALCITE-GRAPHITE THERMOMETRY . 102 5.4. DISCUSSION . .105 6 MOBILISATION AND PRECIPITATION OF GRAPHITE . .111 6.1. THERMODYNAMICS AND MODELS . .111 6.2. IMPLICATIONS OF CARBON ISOTOPES . 113 6.3. IMPLICATIONS OF GRAPHITE CRYSTALLINITIES . 114 6.4. IMPLICATIONS OF REGIONAL METAMORPHISM . .115 6.4. IMPLICATIONS OF THE SEM DATA . .115 6.6. DISCUSSION . .116 7 REGIONAL IMPLICATIONS . .117 7.1. REGIONAL METAMORPHISM . .117 7.2. DEFORMATIONAL PATH . .118 7.3. DISCUSSION . .119 8 CONCLUSIONS . 121 REFERENCES . 123 APPENDICES . 134 I. STRUCTURAL AND TEXTURAL ANALYSIS . 134 II. GRAPHITE CRYSTALLINITY MEASUREMENTS . 135 III. CONDUCTIVITY MEASUREMENTS . .169 IV. STABLE ISOTOPIC ANALYSIS . ..
Recommended publications
  • GEO 2008 Conference Abstracts, Bahrain GEO 2008 Conference Abstracts
    GEO 2008 conference abstracts, Bahrain GEO 2008 Conference Abstracts he abstracts of the GEO 2008 Conference presentations (3-5 March 2008, Bahrain) are published in Talphabetical order based on the last name of the first author. Only those abstracts that were accepted by the GEO 2008 Program Committee are published here, and were subsequently edited by GeoArabia Editors and proof-read by the corresponding author. Several names of companies and institutions to which presenters are affiliated have been abbreviated (see page 262). For convenience, all subsidiary companies are listed as the parent company. (#117804) Sandstone-body geometry, facies existing data sets and improve exploration decision architecture and depositional model of making. The results of a recent 3-D seismic reprocessing Ordovician Barik Sandstone, Oman effort over approximately 1,800 square km of data from the Mediterranean Sea has brought renewed interest in Iftikhar A. Abbasi (Sultan Qaboos University, Oman) deep, pre-Messinian structures. Historically, the reservoir and Abdulrahman Al-Harthy (Sultan Qaboos targets in the southern Mediterranean Sea have been the University, Oman <[email protected]>) Pliocene-Pleistocene and Messinian/Pre-Messinian gas sands. These are readily identifiable as anomalousbright The Lower Paleozoic siliciclastics sediments of the amplitudes on the seismic data. The key to enhancing the Haima Supergroup in the Al-Haushi-Huqf area of cen- deeper structure is multiple and noise attenuation. The tral Oman are subdivided into a number of formations Miocene and older targets are overlain by a Messinian- and members based on lithological characteristics of aged, structurally complex anhydrite layer, the Rosetta various rock sequences.
    [Show full text]
  • Deformation Mechanisms, Rheology and Tectonics Geological Society Special Publications Series Editor J
    Deformation Mechanisms, Rheology and Tectonics Geological Society Special Publications Series Editor J. BROOKS J/iLl THIS VOLUME IS DEDICATED TO THE WORK OF HENDRIK JAN ZWART GEOLOGICAL SOCIETY SPECIAL PUBLICATION NO. 54 Deformation Mechanisms, Rheology and Tectonics EDITED BY R. J. KNIPE Department of Earth Sciences Leeds University UK & E. H. RUTTER Department of Geology Manchester University UK ASSISTED BY S. M. AGAR R. D. LAW Department of Earth Sciences Department of Geological Sciences Leeds University Virginia University UK USA D. J. PRIOR R. L. M. VISSERS Department of Earth Sciences Institute of Earth Sciences Liverpool University University of Utrceht UK Netherlands 1990 Published by The Geological Society London THE GEOLOGICAL SOCIETY The Geological Society of London was founded in 1807 for the purposes of 'investigating the mineral structures of the earth'. It received its Royal Charter in 1825. The Society promotes all aspects of geological science by means of meetings, speeiat lectures and courses, discussions, specialist groups, publications and library services. It is expected that candidates for Fellowship will be graduates in geology or another earth science, or have equivalent qualifications or experience. Alt Fellows are entitled to receive for their subscription one of the Society's three journals: The Quarterly Journal of Engineering Geology, the Journal of the Geological Society or Marine and Petroleum Geology. On payment of an additional sum on the annual subscription, members may obtain copies of another journal. Membership of the specialist groups is open to all Fellows without additional charge. Enquiries concerning Fellowship of the Society and membership of the specialist groups should be directed to the Executive Secretary, The Geological Society, Burlington House, Piccadilly, London W1V 0JU.
    [Show full text]
  • Mechanical Stratigraphic Controls on Natural Fracture Spacing and Penetration
    Journal of Structural Geology 95 (2017) 160e170 Contents lists available at ScienceDirect Journal of Structural Geology journal homepage: www.elsevier.com/locate/jsg Mechanical stratigraphic controls on natural fracture spacing and penetration * Ronald N. McGinnis a, , David A. Ferrill a, Alan P. Morris a, Kevin J. Smart a, Daniel Lehrmann b a Department of Earth, Material, and Planetary Sciences, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238-5166, USA b Geoscience Department, Trinity University, One Trinity Place, San Antonio, TX 78212, USA article info abstract Article history: Fine-grained low permeability sedimentary rocks, such as shale and mudrock, have drawn attention as Received 20 July 2016 unconventional hydrocarbon reservoirs. Fracturing e both natural and induced e is extremely important Received in revised form for increasing permeability in otherwise low-permeability rock. We analyze natural extension fracture 21 December 2016 networks within a complete measured outcrop section of the Ernst Member of the Boquillas Formation Accepted 7 January 2017 in Big Bend National Park, west Texas. Results of bed-center, dip-parallel scanline surveys demonstrate Available online 8 January 2017 nearly identical fracture strikes and slight variation in dip between mudrock, chalk, and limestone beds. Fracture spacing tends to increase proportional to bed thickness in limestone and chalk beds; however, Keywords: Mechanical stratigraphy dramatic differences in fracture spacing are observed in mudrock. A direct relationship is observed be- Natural fractures tween fracture spacing/thickness ratio and rock competence. Vertical fracture penetrations measured Fracture spacing from the middle of chalk and limestone beds generally extend to and often beyond bed boundaries into Fracture penetration the vertically adjacent mudrock beds.
    [Show full text]
  • The Role of Pressure Solution Seam and Joint Assemblages In
    THE ROLE OF PRESSURE SOLUTION SEAM AND JOINT ASSEMBLAGES IN THE FORMATION OF STRIKE-SLIP AND THRUST FAULTS IN A COMPRESSIVE TECTONIC SETTING; THE VARISCAN OF SOUTHWESTERN IRELAND Filippo Nenna and Atilla Aydin Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305 e-mail: [email protected] scale such as strike-slip faults and thrust-cored folds in Abstract various stages of their development. In this study we focus on the initiation and development of strike-slip The Ross Sandstone in County Clare, Ireland, was faults by shearing of the initial JVs and PSSs and deformed by an approximately north-south compression formation of thrust faults by exploiting weak shale during the end-Carboniferous Variscan orogeny. horizons and the strike-parallel PSSs in the adjacent Orthogonal sets of fundamental structures form the sandstone intervals. initial assemblage; mutually abutting arrays of 170˚ Development of faults from shearing of initial oriented set 1 joints/veins (JVs) and approximately 75˚ fundamental structural elements with either opening or pressure solution seams (PSSs) that formed under the closing modes in a wide range of structural settings has same stress conditions. Orientations of set 2 (splay) JVs been extensively reported. Segall and Pollard (1983), and PSSs suggest a clockwise remote stress rotation of Martel and Pollard (1989) and Martel (1990) have about 35˚ responsible for the contemporaneous described strike-slip faults formed by shearing of shearing of the set 1 arrays. Prominent strike-slip faults thermal fractures in granitic rocks. Myers and Aydin are sub-parallel to set 1 JVs and form by the linkage of (2004) and Flodin and Aydin (2004) reported strike-slip en-echelon segments with broad damage zones faulting formed by shearing of joints formed by an responsible for strike-slip offsets of hundreds of metres.
    [Show full text]
  • Sedimentary Stylolite Networks and Connectivity in Limestone
    Sedimentary stylolite networks and connectivity in Limestone: Large-scale field observations and implications for structure evolution Leehee Laronne Ben-Itzhak, Einat Aharonov, Ziv Karcz, Maor Kaduri, Renaud Toussaint To cite this version: Leehee Laronne Ben-Itzhak, Einat Aharonov, Ziv Karcz, Maor Kaduri, Renaud Toussaint. Sed- imentary stylolite networks and connectivity in Limestone: Large-scale field observations and implications for structure evolution. Journal of Structural Geology, Elsevier, 2014, pp.online first. <10.1016/j.jsg.2014.02.010>. <hal-00961075v2> HAL Id: hal-00961075 https://hal.archives-ouvertes.fr/hal-00961075v2 Submitted on 19 Mar 2014 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. 1 2 Sedimentary stylolite networks and connectivity in 3 Limestone: Large-scale field observations and 4 implications for structure evolution 5 6 Laronne Ben-Itzhak L.1, Aharonov E.1, Karcz Z.2,*, 7 Kaduri M.1,** and Toussaint R.3,4 8 9 1 Institute of Earth Sciences, The Hebrew University, Jerusalem, 91904, Israel 10 2 ExxonMobil Upstream Research Company, Houston TX, 77027, U.S.A 11 3 Institut de Physique du Globe de Strasbourg, University of Strasbourg/EOST, CNRS, 5 rue 12 Descartes, F-67084 Strasbourg Cedex, France.
    [Show full text]
  • Stress and Fluid Control on De Collement Within Competent Limestone
    Journal of Structural Geology 22 (2000) 349±371 www.elsevier.nl/locate/jstrugeo Stress and ¯uid control on de collement within competent limestone Antonio Teixell a,*, David W. Durney b, Maria-Luisa Arboleya a aDepartament de Geologia, Universitat AutoÁnoma de Barcelona, 08193 Bellaterra, Spain bDepartment of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia Received 5 October 1998; accepted 23 September 1999 Abstract The Larra thrust of the Pyrenees is a bedding-parallel de collement located within a competent limestone unit. It forms the ¯oor of a thrust system of hectometric-scale imbrications developed beneath a synorogenic basin. The fault rock at the de collement is a dense stack of mainly bedding-parallel calcite veins with variable internal deformation by twinning and recrystallization. Veins developed as extension fractures parallel to a horizontal maximum compressive stress, cemented by cavity-type crystals. Conditions during vein formation are interpreted in terms of a compressional model where crack-arrays develop at applied stresses approaching the shear strength of the rock and at ¯uid pressures equal to or less than the overburden pressure. The cracks developed in response to high dierential stress, which was channelled in the strong limestone, and high ¯uid pressure in or below the thrust plane. Ductile deformation, although conspicuous, cannot account for the kilometric displacement of the thrust, which was mostly accommodated by slip on water sills constituted by open cracks. A model of cyclic dierential brittle contraction, stress reorientation, slip and ductile relaxation at a rheological step in the limestone is proposed as a mechanism for episodic de collement movement.
    [Show full text]
  • Stylolites: Characteristics and Origin
    • STYLOLITES: CHARACTERISTICS AND ORIGIN Joseph M. Montello A senior thesis submitted to fulfill the requirements for the degree of B.S. in Geology and Mineralogy • Winter Quarter, 1984 The Ohio State University ~2.~r·Thesis Advisor Department of Geology and Mineralogy Abstract • Stylolites are alternating interpenetrating columns of stone that form irregular interlocking partings or sutures in rock strata. They are most common along bedding planes of limestone but some are oblique or even perpendicular to bedding . Although the vast majority of stylolites occur in calcareous rocks, stylolites have been found in sandstone, quartzite and gypsum. The word "stylolite" refers to each individual column of stone. A cross section of a group of stylolites parallel to their length presents a rough, jagged line called a "stylolite seam" that resembles the sutures of a human skull. Stylolites always have a dark colored "clay" cap at the ends of the columns. The sides of the columns are typically discolored with a thin film of clay and show parallel flutings or striations that parallel their length. The shapes of individual stylolites vary greatly from broad flat­ • topped columns to pointed, jagged and tapering forms. After much controversy concerning the origin of stylolites, it is generally believed that they form by a process of chemical solution under pressure in lithified rock along some crack or seam. The interteething is produced because of differential solubilities and pressures within the rock unit. The clay cap on the stylolites is the non-soluble residue of the dissolved rock. Stylolites are only one of the possible end products in the spectrum of limestone responses to stress.
    [Show full text]
  • Neogene and Quaternary Vertebrate Biochronology of the Sperrgebiet
    Communs geol. Surv. Namibia, 12 (2000), 411-419 Neogene and Quaternary vertebrate biochronology of the Sperrgebiet and Otavi Mountainland, Namibia Martin Pickford Chaire de Paléoanthropologie et de Préhistoire Collège de France and Laboratoire de Paléontologie, UMR 8569 du CNRS 8, rue Buffon, 75005, Paris e-mail >[email protected]< Since 1991, the Namibia Palaeontology Expedition has discovered well over 100 fossiliferous localities in Namibia which have provided useful biochronological data. The Otavi karst field has yielded fossiliferous breccias which span the period from late Mid- dle Miocene (ca 13 Ma) to Recent. At several vanadium occurrences, including Berg Aukas and Harasib 3a, it is clear that vanadium mineralisation occurred during the Miocene, whereas at others, such as Rietfontein, mineralisation was taking place as recently as the Pleistocene. The only substantial vanadium deposit that remains undated is Abenab. The diamondiferous proto-Orange terrace deposits are now known to span the period early Miocene to basal Middle Miocene (Auchas, Arrisdrift) while the meso-Orange terraces are of Late Miocene and Plio-Pleistocene age. The raised beach deposits north of Oranjemund are older than previously thought, the earliest (50 m beach) dating from the Pliocene while the youngest ones (sub-10m beaches) are of Late Pleistocene to Recent age. There are boul- ders in some of the beach deposits at Oranjemund that may well represent reworked material from the 90 metre beach, although in situ deposits of this age have not been found in Namibia. The onset of desertification in the Namib dates from the end of the Early Miocene, some 17 Ma.
    [Show full text]
  • Stylolite Compaction and Stress Models
    Geophysical Research Abstracts, Vol. 11, EGU2009-1720, 2009 EGU General Assembly 2009 © Author(s) 2009 Stylolite compaction and stress models D. Koehn (1), M. Ebner (1), F. Renard (2), and R. Toussaint (3) (1) University of Mainz, Department of Geology, Mainz, Germany ([email protected]), (2) LGIT-CNRS-Observatoire, University of Grenoble, France, (3) Institut de Physique du Globe de Strasbourg, University of Strasbourg, France Stylolites are rough dissolution seams that develop during pressure solution in the Earth’s crust. Especially in limestone quarries they exhibit a spectacular roughness with spikes and large columns. They are visible as dark lines of residual clays and other non-dissolvable components in the white limestone. The roughening phenomena seems to be universal since stylolites can also be found in quarzites, mylonites and all kinds of rocks that undergo pressure solution. The genesis of stylolites is not well understood even though they have been used to estimate compaction and to determine the direction of the main compressive stress. We have developed a numerical model to study the dynamic development of the roughness and its dependence on stress. Based on the model we present estimates of finite strain and depth of burial. The numerical stylolites are studied in two ways: the temporal evolution of the roughness on one hand and the fractal characteristics of the roughness on the other hand. In addition we vary the noise in the model and illustrate the importance of the grain size on the roughening process. Surface energies are dominant for small wavelengths and the initial stylolite growth is non-linear and as slow as a diffusive process.
    [Show full text]
  • Whites Writing Landscape in Savannah Africa
    The Art of Belonging: Whites Writing Landscape in Savannah Africa DAVID McDERMOTT HUGHES Department of Human Ecology, Rutgers University Presented to the Program in Agrarian Studies, Yale University, New Haven, Connecticut, 6 October 2006 “I had a farm in Africa …[where] the views were immensely wide. Everything that you saw made for greatness and freedom, and unequally nobility … you woke up in the morning and though: Here I am, where I ought to be.” Isak Dinesen, Out of Africa (1937:3-4). “I have sometimes thought since of the Elkingtons’ tea table – round, capacious, and white, standing with sturdy legs against the green vines of the garden, a thousand miles of Africa receding from its edge. It was a mark of sanity …” Beryl Markham, West with the Night (1942:60) “Their frontier became a heaven and the continent consumed them … And they can never write the landscapes out of their system.” Breyten Breytenbach, The Memory of Birds in Times of Revolution (1996:108) Imperial colonizers do not seize land with guns and plows alone. In order to keep it, especially after imperial dissolution, settlers must establish a credible sense of entitlement. They must propagate the conviction that they belong on the land they have just settled. At the very least – and this may be difficult enough – settlers must convince themselves of their fit with the landscape of settlement. In other words, all the while 1 excluding natives from power, from wealth, and from territory, overseas pioneers must find a way to include themselves in new lands. Two factors interfere with such public and private persuasion: pre-existing peoples and the land itself.
    [Show full text]
  • Stylolites: a Review
    Stylolites: a review Toussaint R.1,2,3*, Aharonov E.4, Koehn, D.5, Gratier, J.-P.6, Ebner, M.7, Baud, P.1, Rolland, A.1, and Renard, F.6,8 1Institut de Physique du Globe de Strasbourg, CNRS, University of Strasbourg, 5 rue Descartes, F- 67084 Strasbourg Cedex, France. Phone : +33 673142994. email : [email protected] 2 International Associate Laboratory D-FFRACT, Deformation, Flow and Fracture of Disordered Materials, France-Norway. 3SFF PoreLab, The Njord Centre, Department of Physics, University of Oslo, Norway. 4Institute of Earth Sciences, The Hebrew University, Jerusalem, 91904, Israel 5School of Geographical and Earth Sciences, University of Glasgow, UK 6University Grenoble Alpes, ISTerre, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, 38000 Grenoble, France 7OMV Exploration & Production GmbH Trabrennstrasse 6-8, 1020 Vienna, Austria 8 The Njord Centre,PGP, Department of Geosciences, University of Oslo, Norway *corresponding author Highlights: . Stylolite formation depends on rock composition and structure, stress and fluids. Stylolite geometry, fractal and self-affine properties, network structure, are investigated. The experiments and physics-based numerical models for their formation are reviewed. Stylolites can be used as markers of strain, paleostress orientation and magnitude. Stylolites impact transport properties, as function of maturity and flow direction. Abstract Stylolites are ubiquitous geo-patterns observed in rocks in the upper crust, from geological reservoirs in sedimentary rocks to deformation zones, in folds, faults, and shear zones. These rough surfaces play a major role in the dissolution of rocks around stressed contacts, the transport of dissolved material and the precipitation in surrounding pores. Consequently, they 1 play an active role in the evolution of rock microstructures and rheological properties in the Earth’s crust.
    [Show full text]
  • The Role of Pressure Solution Creep in the Ductility of the Earth's
    The role of pressure solution creep in the ductility of the earth’s upper crust Jean-Pierre Gratier, Dag Dysthe, Francois Renard To cite this version: Jean-Pierre Gratier, Dag Dysthe, Francois Renard. The role of pressure solution creep in the ductility of the earth’s upper crust. Advances in Geophysics, Elsevier, 2013, 54, pp.47-179. 10.1016/B978-0- 12-380940-7.00002-0. insu-00799131 HAL Id: insu-00799131 https://hal-insu.archives-ouvertes.fr/insu-00799131 Submitted on 11 Mar 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 The role of pressure solution creep in the ductility of the Earth’s upper crust Jean-Pierre Gratier1, Dag K. Dysthe2,3, and François Renard1,2 1Institut des Sciences de la Terre, Observatoire, CNRS, Université Joseph Fourier-Grenoble I, BP 53, 38041 Grenoble, France 2Physics of Geological Processes, University of Oslo, Norway 3Laboratoire Interdisciplinaire de Physique, BP 87, 38041 Grenoble, France The aim of this review is to characterize the role of pressure solution creep in the ductility of the Earth’s upper crust and to describe how this creep mechanism competes and interacts with other deformation mechanisms.
    [Show full text]