Phylogenetic Classification of Cordyceps and the Clavicipitaceous Fungi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Novel <I>Phaeoacremonium</I>
Persoonia 20, 2008: 87–102 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158508X324227 Novel Phaeoacremonium species associated with necrotic wood of Prunus trees U. Damm1,2, L. Mostert1, P.W. Crous1,2, P.H. Fourie1,3 Key words Abstract The genus Phaeoacremonium is associated with opportunistic human infections, as well as stunted growth and die-back of various woody hosts, especially grapevines. In this study, Phaeoacremonium species were Diaporthales isolated from necrotic woody tissue of Prunus spp. (plum, peach, nectarine and apricot) from different stone fruit molecular systematics growing areas in South Africa. Morphological and cultural characteristics as well as DNA sequence data (5.8S pathogenicity rDNA, ITS1, ITS2, -tubulin, actin and 18S rDNA) were used to identify known, and describe novel species. From Togninia β the total number of wood samples collected (257), 42 Phaeoacremonium isolates were obtained, from which 14 Togniniaceae species were identified. Phaeoacremonium scolyti was most frequently isolated, and present on all Prunus species sampled, followed by Togninia minima (anamorph: Pm. aleophilum) and Pm. australiense. Almost all taxa isolated represent new records on Prunus. Furthermore, Pm. australiense, Pm. iranianum, T. fraxinopennsylvanica and Pm. griseorubrum represent new records for South Africa, while Pm. griseorubrum, hitherto only known from humans, is newly reported from a plant host. Five species are newly described, two of which produce a Togninia sexual state. Togninia africana, T. griseo-olivacea and Pm. pallidum are newly described from Prunus armeniaca, while Pm. prunicolum and Pm. fuscum are described from Prunus salicina. Article info Received: 9 May 2008; Accepted: 20 May 2008; Published: 24 May 2008. -
Taxonomy and Pathology of Togninia (Diaporthales) and Its Phaeoacremonium Anamorphs
STUDIES IN MYCOLOGY 54: 1–113. 2006. Taxonomy and Pathology of Togninia (Diaporthales) and its Phaeoacremonium Anamorphs Lizel Mostert1,2, Johannes Z. Groenewald1, Richard C. Summerbell1, Walter Gams1 and Pedro W. Crous1 1Centraalbureau voor Schimmelcultures, P.O. Box 85167, 3508 AD Utrecht, The Netherlands; 2Current address: Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Stellenbosch 7602, South Africa *Correspondence: Lizel Mostert, [email protected] Abstract: The genus Togninia (Diaporthales, Togniniaceae) is here monographed along with its Phaeoacremonium (Pm.) anamorphs. Ten species of Togninia and 22 species of Phaeoacremonium are treated. Several new species of Togninia (T.) are described, namely T. argentinensis (anamorph Pm. argentinense), T. austroafricana (anamorph Pm. austroafricanum), T. krajdenii, T. parasitica, T. rubrigena and T. viticola. New species of Phaeoacremonium include Pm. novae-zealandiae (teleomorph T. novae-zealandiae), Pm. iranianum, Pm. sphinctrophorum and Pm. theobromatis. Species can be identified based on their cultural and morphological characters, supported by DNA data derived from partial sequences of the actin and β-tubulin genes. Phylogenies of the SSU and LSU rRNA genes were used to determine whether Togninia has more affinity with the Calosphaeriales or the Diaporthales. The results confirmed that Togninia had a higher affinity to the Diaporthales than the Calosphaeriales. Examination of type specimens revealed that T. cornicola, T. vasculosa, T. rhododendri, T. minima var. timidula and T. villosa, were not members of Togninia. The new combinations Calosphaeria cornicola, Calosphaeria rhododendri, Calosphaeria transversa, Calosphaeria tumidula, Calosphaeria vasculosa and Jattaea villosa are proposed. Species of Phaeoacremonium are known vascular plant pathogens causing wilting and dieback of woody plants. -
Beta-Tubulin and Actin Gene Phylogeny Supports
A peer-reviewed open-access journal MycoKeys 41: 1–15 (2018) Beta-tubulin and Actin gene phylogeny supports... 1 doi: 10.3897/mycokeys.41.27536 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Beta-tubulin and Actin gene phylogeny supports Phaeoacremonium ovale as a new species from freshwater habitats in China Shi-Ke Huang1,2,3,7, Rajesh Jeewon4, Kevin D. Hyde2, D. Jayarama Bhat5,6, Putarak Chomnunti2,7, Ting-Chi Wen1 1 Engineering and Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, China 2 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3 Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, Chi- na 4 Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius 5 Azad Housing Society, No. 128/1-J, Curca, P.O. Goa Velha 403108, India 6 Formerly, Department of Botany, Goa University, Goa, 403206, India 7 School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand Corresponding author: Ting-Chi Wen ([email protected]) Academic editor: Marc Stadler | Received 15 June 2018 | Accepted 10 September 2018 | Published 11 October 2018 Citation: Huang S-K, Jeewon R, Hyde KD, Bhat DJ, Chomnunti P, Wen T-C (2018) Beta-tubulin and Actin gene phylogeny supports Phaeoacremonium ovale as a new species from freshwater habitats in China. MycoKeys 41: 1–15. https://doi.org/10.3897/mycokeys.41.27536 Abstract A new species of Phaeoacremonium, P. -
Discovery of the Teleomorph of the Hyphomycete, Sterigmatobotrys Macrocarpa, and Epitypification of the Genus to Holomorphic Status
available online at www.studiesinmycology.org StudieS in Mycology 68: 193–202. 2011. doi:10.3114/sim.2011.68.08 Discovery of the teleomorph of the hyphomycete, Sterigmatobotrys macrocarpa, and epitypification of the genus to holomorphic status M. Réblová1* and K.A. Seifert2 1Department of Taxonomy, Institute of Botany of the Academy of Sciences, CZ – 252 43, Průhonice, Czech Republic; 2Biodiversity (Mycology and Botany), Agriculture and Agri- Food Canada, Ottawa, Ontario, K1A 0C6, Canada *Correspondence: Martina Réblová, [email protected] Abstract: Sterigmatobotrys macrocarpa is a conspicuous, lignicolous, dematiaceous hyphomycete with macronematous, penicillate conidiophores with branches or metulae arising from the apex of the stipe, terminating with cylindrical, elongated conidiogenous cells producing conidia in a holoblastic manner. The discovery of its teleomorph is documented here based on perithecial ascomata associated with fertile conidiophores of S. macrocarpa on a specimen collected in the Czech Republic; an identical anamorph developed from ascospores isolated in axenic culture. The teleomorph is morphologically similar to species of the genera Carpoligna and Chaetosphaeria, especially in its nonstromatic perithecia, hyaline, cylindrical to fusiform ascospores, unitunicate asci with a distinct apical annulus, and tapering paraphyses. Identical perithecia were later observed on a herbarium specimen of S. macrocarpa originating in New Zealand. Sterigmatobotrys includes two species, S. macrocarpa, a taxonomic synonym of the type species, S. elata, and S. uniseptata. Because no teleomorph was described in the protologue of Sterigmatobotrys, we apply Article 59.7 of the International Code of Botanical Nomenclature. We epitypify (teleotypify) both Sterigmatobotrys elata and S. macrocarpa to give the genus holomorphic status, and the name S. -
Novel <I>Phaeoacremonium</I> Species Associated with Necrotic Wood of <I>Prunus</I> Trees
Persoonia 20, 2008: 87–102 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158508X324227 Novel Phaeoacremonium species associated with necrotic wood of Prunus trees U. Damm1,2, L. Mostert1, P.W. Crous1,2, P.H. Fourie1,3 Key words Abstract The genus Phaeoacremonium is associated with opportunistic human infections, as well as stunted growth and die-back of various woody hosts, especially grapevines. In this study, Phaeoacremonium species were Diaporthales isolated from necrotic woody tissue of Prunus spp. (plum, peach, nectarine and apricot) from different stone fruit molecular systematics growing areas in South Africa. Morphological and cultural characteristics as well as DNA sequence data (5.8S pathogenicity rDNA, ITS1, ITS2, -tubulin, actin and 18S rDNA) were used to identify known, and describe novel species. From Togninia β the total number of wood samples collected (257), 42 Phaeoacremonium isolates were obtained, from which 14 Togniniaceae species were identified. Phaeoacremonium scolyti was most frequently isolated, and present on all Prunus species sampled, followed by Togninia minima (anamorph: Pm. aleophilum) and Pm. australiense. Almost all taxa isolated represent new records on Prunus. Furthermore, Pm. australiense, Pm. iranianum, T. fraxinopennsylvanica and Pm. griseorubrum represent new records for South Africa, while Pm. griseorubrum, hitherto only known from humans, is newly reported from a plant host. Five species are newly described, two of which produce a Togninia sexual state. Togninia africana, T. griseo-olivacea and Pm. pallidum are newly described from Prunus armeniaca, while Pm. prunicolum and Pm. fuscum are described from Prunus salicina. Article info Received: 9 May 2008; Accepted: 20 May 2008; Published: 24 May 2008. -
Genome Studies on Nematophagous and Entomogenous Fungi in China
Journal of Fungi Review Genome Studies on Nematophagous and Entomogenous Fungi in China Weiwei Zhang, Xiaoli Cheng, Xingzhong Liu and Meichun Xiang * State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing 100101, China; [email protected] (W.Z.); [email protected] (X.C.); [email protected] (X.L.) * Correspondence: [email protected]; Tel.: +86-10-64807512; Fax: +86-10-64807505 Academic Editor: Luis V. Lopez-Llorca Received: 9 December 2015; Accepted: 29 January 2016; Published: 5 February 2016 Abstract: The nematophagous and entomogenous fungi are natural enemies of nematodes and insects and have been utilized by humans to control agricultural and forestry pests. Some of these fungi have been or are being developed as biological control agents in China and worldwide. Several important nematophagous and entomogenous fungi, including nematode-trapping fungi (Arthrobotrys oligospora and Drechslerella stenobrocha), nematode endoparasite (Hirsutella minnesotensis), insect pathogens (Beauveria bassiana and Metarhizium spp.) and Chinese medicinal fungi (Ophiocordyceps sinensis and Cordyceps militaris), have been genome sequenced and extensively analyzed in China. The biology, evolution, and pharmaceutical application of these fungi and their interacting with host nematodes and insects revealed by genomes, comparing genomes coupled with transcriptomes are summarized and reviewed in this paper. Keywords: fungal genome; biological control; nematophagous; entomogenous 1. Introduction Nematophagous fungi infect their hosts using traps and other devices such as adhesive conidia and parasitic hyphae tips [1,2]. Entomogenous fungi are associated with insects, mainly as pathogens or parasites [3]. Both nematophagous and entomogenous fungi are important biocontrol resources [1,3]. -
Cordyceps Yinjiangensis, a New Ant-Pathogenic Fungus
Phytotaxa 453 (3): 284–292 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2020 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.453.3.10 Cordyceps yinjiangensis, a new ant-pathogenic fungus YU-PING LI1,3, WAN-HAO CHEN1,4,*, YAN-FENG HAN2,5,*, JIAN-DONG LIANG1,6 & ZONG-QI LIANG2,7 1 Department of Microbiology, Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China. 2 Institute of Fungus Resources, Guizhou University, Guiyang, Guizhou 550025, China. 3 �[email protected]; https://orcid.org/0000-0002-9021-8614 4 �[email protected]; https://orcid.org/0000-0001-7240-6841 5 �[email protected]; https://orcid.org/0000-0002-8646-3975 6 �[email protected]; https://orcid.org/0000-0002-2583-5915 7 �[email protected]; https://orcid.org/0000-0003-2867-2231 *Corresponding author: �[email protected], �[email protected] Abstract Ant-pathogenic fungi are mainly found in the Ophiocordycipitaceae, rarely in the Cordycipitaceae. During a survey of entomopathogenetic fungi from Southwest China, a new species, Cordyceps yinjiangensis, was isolated from the ponerine. It differs from other Cordyceps species by its ant host, shorter phialides, and smaller septate conidia formed in an imbricate chain. Phylogenetic analyses based on the combined datasets of (LSU+RPB2+TEF) and (ITS+TEF) confirmed that C. yinjiangensis is distinct from other species. The new species is formally described and illustrated, and compared to similar species. Keywords: 1 new species, Cordyceps, morphology, phylogeny, ponerine Introduction The ascomycete genus Cordyceps sensu lato (sl) consists of more than 600 fungal species. -
Cordyceps Yinjiangensis, a New Ant-Pathogenic Fungus
Phytotaxa 453 (3): 284–292 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2020 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.453.3.10 Cordyceps yinjiangensis, a new ant-pathogenic fungus YU-PING LI1,3, WAN-HAO CHEN1,4,*, YAN-FENG HAN2,5,*, JIAN-DONG LIANG1,6 & ZONG-QI LIANG2,7 1 Department of Microbiology, Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China. 2 Institute of Fungus Resources, Guizhou University, Guiyang, Guizhou 550025, China. 3 [email protected]; https://orcid.org/0000-0002-9021-8614 4 [email protected]; https://orcid.org/0000-0001-7240-6841 5 [email protected]; https://orcid.org/0000-0002-8646-3975 6 [email protected]; https://orcid.org/0000-0002-2583-5915 7 [email protected]; https://orcid.org/0000-0003-2867-2231 *Corresponding author: [email protected], [email protected] Abstract Ant-pathogenic fungi are mainly found in the Ophiocordycipitaceae, rarely in the Cordycipitaceae. During a survey of entomopathogenetic fungi from Southwest China, a new species, Cordyceps yinjiangensis, was isolated from the ponerine. It differs from other Cordyceps species by its ant host, shorter phialides, and smaller septate conidia formed in an imbricate chain. Phylogenetic analyses based on the combined datasets of (LSU+RPB2+TEF) and (ITS+TEF) confirmed that C. yinjiangensis is distinct from other species. The new species is formally described and illustrated, and compared to similar species. Keywords: 1 new species, Cordyceps, morphology, phylogeny, ponerine Introduction The ascomycete genus Cordyceps sensu lato (sl) consists of more than 600 fungal species. -
Pleurostomophora, an Anamorph of Pleurostoma (Calosphaeriales), a New Anamorph Genus Morphologically Similar to Phialophora
STUDIES IN MYCOLOGY 50: 387–395. 2004. Pleurostomophora, an anamorph of Pleurostoma (Calosphaeriales), a new anamorph genus morphologically similar to Phialophora Dhanasekaran Vijaykrishna1*, Lizel Mostert2, Rajesh Jeewon1, Walter Gams2, Kevin D. Hyde1 and Pedro W. Crous2 1Centre for Research in Fungal Diversity, Department of Ecology & Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR China; 2Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands *Correspondence: Vijaykrishna Dhanasekaran, [email protected] Abstract: Pleurostoma ootheca (Calosphaeriales) was newly collected, and found to produce a Phialophora-like anamorph in culture, which was morphologically similar to Phialophora (Ph.) repens and Ph. richardsiae. The close relationship among these three species was confirmed on the basis of sequence analysis of the 5.8S nuclear ribosomal RNA gene and its flanking internal transcribed spacers (ITS1 and ITS2). Furthermore, molecular data from partial 18S small subunit (SSU) DNA, revealed these three species were not phylogenetically closely related to the type of Phialophora, Ph. verrucosa, which was nested in the Chaetothyriales clade. A new anamorph genus, Pleurostomophora (P.), was therefore proposed to accom- modate these species. The formation of perithecia from single-ascospore isolates of Pleurostoma (Pl.) ootheca also showed it to have a homothallic mating system. Taxonomic novelties: Pleurostomophora D. Vijaykrishna, L. Mostert, R. Jeewon, W. Gams, K.D. Hyde & Crous gen. nov., Pleurostomophora ootheca D. Vijaykrishna, R. Jeewon & K.D. Hyde sp. nov., Pleurostomophora richardsiae (Nannf.) L. Mostert, W. Gams & Crous comb. nov., Pleurostomophora repens (R.W. Davidson) L. Mostert, W. Gams & Crous comb. nov. Key words: Calosphaeriales, ITS, Phaeoacremonium, phylogeny, Pleurostomophora, Pleurostoma, SSU, systematics, Togninia, 18S. -
Discovered and Re- Evaluation of Pleurophragmium
Fungal Diversity Teleomorph of Rhodoveronaea (Sordariomycetidae) discovered and re- evaluation of Pleurophragmium 1* Martina Réblová 1Department of Plant Taxonomy, Institute of Botany, Academy of Sciences, CZ-252 43 Průhonice, Czech Republic Réblová, M. (2009). Teleomorph of Rhodoveronaea (Sordariomycetidae) discovered and re-evolution of Pleurophragmium. Fungal Diversity 36: 129-139. An undescribed teleomorph was discovered for Rhodoveronaea (Sordariomycetidae), a previously known anamorph genus with the single species R. varioseptata characterized by pigmented, septate conidia and holoblastic-denticulate conidiogenesis. The teleomorph is a lignicolous perithecial ascomycete with nonstromatic, dark perithecia, consisting of a globose immersed venter and stout conical emerging neck; cylindrical long-stipitate asci, nonamyloid apical annulus and fusiform, septate, hyaline ascospores. The fertile conidiophores of R. varioseptata were associated with the perithecia on the natural substratum and they were also obtained in vitro. Because no teleomorph was designated in the protologue of Rhodoveronaea, the new Article 59.7 of the International Code of Botanical Nomenclature is applied in this case and Rhodoveronaea is expanded to holomorphic application by teleomorphic epitypification of the type species R. varioseptata. The name R. varioseptata is fully adopted for the discovered teleomorph. On the basis of detailed morphology, cultivation studies and phylogenetic analyses of ncLSU rDNA sequences, Rhodoveronaea is segregated from the morphologically similar genera Lentomitella and Ceratosphaeria; its relationship with Ceratosphaeria fragilis and C. rhenana is discussed. The relationship of Rhodoveronaea with the morphologically similar Dactylaria parvispora is investigated using morphological features and molecular sequence data. Phylogenetic findings based on ncLSU rDNA sequence data indicate that Dactylaria is polyphyletic. The genus Pleurophragmium is excluded from the synonymy of Dactylaria and is re-evaluated for P. -
Metacordyceps Shibinensis Sp. Nov. from Larvae of Lepidoptera in Guizhou Province, Southwest China
Phytotaxa 226 (1): 051–062 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.226.1.5 Metacordyceps shibinensis sp. nov. from larvae of Lepidoptera in Guizhou Province, southwest China TING-CHI WEN1, LING-SHENG ZHA1,2, YUAN-PIN XIAO1,2, QIANG WANG, JI-CHUAN KANG1* & KEVIN D.HYDE2 1The Engineering and Research Center of Southwest Bio-Pharmaceutical Resource, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China *email: [email protected] 2Institute of Excellence in Fungal Research, and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand Abstract A new entomogenous taxon, Metacordyceps shibinensis sp. nov., associated with a larva of Lepidoptera was found in Yuntai Mountains, Guizhou Province, China. It differs from similar species in its white to faint yellow stromata, short ascomata, and very short asci and ascospores. Combined sequence analyses of 5.8S-ITS rDNA, nrSSU, EF-1α and RPB1 gene-loci also confirmed the distinctiveness of this new species. Key words: Metacordyceps, morphology, new species, phylogenetic analyses Introduction Cordyceps sensu lato is regarded as one of the most important genera of invertebrate pathogens (Hywel-Jones 2001) with more than 540 species (Index Fungorum, 2015). About 140 species have been reported from China (Song et al. 2006, Liang 2007, Li et al. 2008, Gao et al. 2010, Zhang et al. 2010, Yang et al. 2009, Li et al. 2008, Lin et al. 2008, Li et al. 2010, Chen et al. 2011, Chen et al. -
Filamentous Fungi in Biological Control: Current Status and Future Perspectives
REVIEW Filamentous fungi in biological control: current status and future perspectives Noemi Carla Baron1, Everlon Cid Rigobelo1*, and Diego Cunha Zied1 1Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Via de acesso Prof. Paulo Donato Castellane s/n, 14884-900, Jaboticabal, São Paulo, Brasil. *Corresponding author ([email protected]). Received: 25 September 2018; Accepted: 10 January 2019; doi:10.4067/S0718-58392019000200307 ABSTRACT Agriculture is the largest economic sector in the world. The awareness of the current environmental degradation caused by conventional farming practices has allowed the use of entomopathogenic fungi as a biological control technique to become increasingly widespread. Several studies from the laboratory bench to field trials show that fungi can be directly applied or, more recently, can be carried to the target by other biological vectors (i.e., insects), which increases their potential for dispersal and transmission. In addition, studies on the development of formulations have intensified, with the aim to enable their commercialization and reduce costs for the more sustainable management of crops. This review discusses the positive aspects of the use of filamentous fungi in the biological control of pests, specifically in terms of the use of antagonistic fungal plant pathogens and nematophagous fungi. Key words: Biological control, environmental degradation, filamentous fungi, sustainable agriculture. INTRODUCTION Currently, more than two billion tons of pesticides are used every year all over the world. These pesticides include fungicides, bactericides, herbicides, insecticides and others that are used to eliminate undesirable agents, mainly fungi, weeds and insects, which are considered crop pests, with the aim to guarantee a high yield.