Lactobacillus Hello My Name Is

Total Page:16

File Type:pdf, Size:1020Kb

Lactobacillus Hello My Name Is Your guide to new probiotic names: Lactobacillus Hello my name is Probiotic names are important. They indicate a probiotic’s unique L. rhamnosus XYZ identity, which tie it to information about its health bene ts. Your probiotic is named using the Why the change? conventions for all living things. The Probiotic scientists realized the genus name has a genus (plural: genera), then Lactobacillus – a common probiotic genus a species, and in the case of probiotics, a – contained species that were too di erent strain name is also included: from each other genetically. So, they Lactobacillus rhamnosus XYZ changed the genus name to keep the probiotic groups accurate and organized. Often this is abbreviated as Species names and strain designations have L. rhamnosus XYZ, because in the not changed – only the over-arching genus context of probiotics, “L.” usually names have changed. refers to “Lactobacillus” If your probiotic contains this: Its new name is this: But your product may just list it as this: Lactobacillus casei Lacticaseibacillus casei L. casei Lactobacillus paracasei Lacticaseibacillus paracasei L. paracasei Lactobacillus rhamnosus Lacticaseibacillus rhamnosus L. rhamnosus These probiotic Lactobacillus have not Lactobacillus plantarum Lactiplantibacillus plantarum L. plantarum changed names: Lactobacillus brevis Levilactobacillus brevis L. brevis • Lactobacillus Lactobacillus salivarius Ligilactobacillus salivarius L. salivarius acidophilus Lactobacillus fermentum Limosilactobacillus fermentum L. fermentum • Lactobacillus Lactobacillus reuteri Limosilactobacillus reuteri L. reuteri delbrueckii subsp. bulgaricus (aka Lactobacillus What does this mean for you? bulgaricus) Day-to-day, not much! If you currently take a probiotic, those same probiotic • Lactobacillus crispatus bacteria will remain in your supplement or food. They just might be listed under • Lactobacillus gasseri a di erent name on the label or in the probiotic’s accompanying information. • Lactobacillus johnsonii Any changes to product labels may take a year or more to occur. But when you • Lactobacillus see them, you’ll know what the changes are all about. helveticus If you’re wondering about consuming a speci c probiotic strain and are looking up its health e ects, you may want to try searching under both its former name and its new name. For more information visit ISAPPscience.org or follow us on Twitter @ISAPPscience © 2020, International Scienti c Association for Probiotics and Prebiotics.
Recommended publications
  • Aseptic Addition Method for Lactobacillus Casei Assay of Folate Activity in Human Serum
    J Clin Pathol: first published as 10.1136/jcp.19.1.12 on 1 January 1966. Downloaded from J. clin. Path. (1966), 19, 12 Aseptic addition method for Lactobacillus casei assay of folate activity in human serum VICTOR HERBERT From the Department of Haematology, The Mount Sinai Hospital, New York, U.S.A. SYNOPSIS An 'aseptic addition' method is described for microbiological assay with Lactobacillis casei of folate activity in human serum. It has the following advantages over the previously reported 'standard' method. 1 The manipulations involved in the assay are halved, by deleting autoclaving of serum in buffers. 2 The use of 1 g. % ascorbate better preserves serum folates than the lower amounts of ascorbate which are the maximum quantities usable in the standard methods. 3 Only 03 ml. of serum is required (0 1 ml. for one sample; 02 ml. for its duplicate). Herbert, Wasserman, Frank, Pasher, and Baker in or after transfer of blood from syringes to acid-washed 1959 reported that folate deficiency could be screw-top tubes). The clots are 'rimmed' with glass rods measured in man using microbiological assay of or wooden applicator sticks, the tubes centrifuged for serum folate activity with Lactobacillus casei. Many five minutes at 3,000 r.p.m. and the supernatant serum aspirated with acid-washed or disposable pipettes andcopyright. other workers have confirmed this work (see review frozen at -20°C. until assay. On the day of assay, the by Herbert, 1965). Various minor modifications of sera are thawed. A 0-1 ml. and a 0-2 ml.
    [Show full text]
  • The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio In
    microorganisms Review The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease Spase Stojanov 1,2, Aleš Berlec 1,2 and Borut Štrukelj 1,2,* 1 Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; [email protected] (S.S.); [email protected] (A.B.) 2 Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia * Correspondence: borut.strukelj@ffa.uni-lj.si Received: 16 September 2020; Accepted: 31 October 2020; Published: 1 November 2020 Abstract: The two most important bacterial phyla in the gastrointestinal tract, Firmicutes and Bacteroidetes, have gained much attention in recent years. The Firmicutes/Bacteroidetes (F/B) ratio is widely accepted to have an important influence in maintaining normal intestinal homeostasis. Increased or decreased F/B ratio is regarded as dysbiosis, whereby the former is usually observed with obesity, and the latter with inflammatory bowel disease (IBD). Probiotics as live microorganisms can confer health benefits to the host when administered in adequate amounts. There is considerable evidence of their nutritional and immunosuppressive properties including reports that elucidate the association of probiotics with the F/B ratio, obesity, and IBD. Orally administered probiotics can contribute to the restoration of dysbiotic microbiota and to the prevention of obesity or IBD. However, as the effects of different probiotics on the F/B ratio differ, selecting the appropriate species or mixture is crucial. The most commonly tested probiotics for modifying the F/B ratio and treating obesity and IBD are from the genus Lactobacillus. In this paper, we review the effects of probiotics on the F/B ratio that lead to weight loss or immunosuppression.
    [Show full text]
  • The Effect of Selected Herbal Extracts on Lactic Acid Bacteria Activity
    applied sciences Article The Effect of Selected Herbal Extracts on Lactic Acid Bacteria Activity Małgorzata Ziarno 1,* , Mariola Kozłowska 2 , Iwona Scibisz´ 3 , Mariusz Kowalczyk 4 , Sylwia Pawelec 4 , Anna Stochmal 4 and Bartłomiej Szleszy ´nski 5 1 Division of Milk Technology, Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences–SGGW (WULS–SGGW), 02-787 Warsaw, Poland 2 Department of Chemistry, Institute of Food Science, Warsaw University of Life Sciences–SGGW (WULS–SGGW), 02-787 Warsaw, Poland; [email protected] 3 Division of Fruit, Vegetable and Cereal Technology, Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences–SGGW (WULS–SGGW), 02-787 Warsaw, Poland; [email protected] 4 Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; [email protected] (M.K.); [email protected] (S.P.); [email protected] (A.S.) 5 Institute of Horticultural Sciences, Warsaw University of Life Sciences–SGGW (WULS–SGGW), 02-787 Warsaw, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-225-937-666 Abstract: This study aimed to investigate the effect of plant extracts (valerian Valeriana officinalis L., sage Salvia officinalis L., chamomile Matricaria chamomilla L., cistus Cistus L., linden blossom Tilia L., ribwort plantain Plantago lanceolata L., marshmallow Althaea L.) on the activity and growth of lactic acid bacteria (LAB) during the fermentation and passage of milk through a digestive system model. Citation: Ziarno, M.; Kozłowska, M.; The tested extracts were also characterized in terms of their content of polyphenolic compounds and Scibisz,´ I.; Kowalczyk, M.; Pawelec, S.; antioxidant activity.
    [Show full text]
  • Influence of Dietary Fiber Addition on the Properties of Probiotic Yogurt
    International Journal of Chemical Engineering and Applications, Vol. 5, No. 5, October 2014 Influence of Dietary Fiber Addition on the Properties of Probiotic Yogurt T. Ozcan and O. Kurtuldu low energy density, and should promote satiation and satiety, Abstract—In this study, the effects of using dietary fiber and play a role in the control of energy balance. These foods barley and oat β-glucan as a prebiotic on the viability of have the capacity of binding bile acids and metabolites of Bifidobacterium bifidum in probiotic yoghurt and properties of cholesterol that play an important role in digestion and yogurt during storage were investigated. The survival of B. absorption of lipids in the small intestine, lowering blood bifidum was within biotherapeutic level (> 7 log cfu/g) as a result of the prebiotic effect of barley and oat based β-glucan. cholesterol, regulating blood glucose levels for diabetes The addition of β-glucan to yogurt significantly affected management, producing short chain fatty acids and physicochemical properties including pH, titratable acidity promoting the growth of beneficial gut microflora (i.e. as a (LA %), whey seperation, color (L*, a*, b*) and sensorial prebiotic) [18]–[23]. Due to beneficiary health effects the properties of yogurts. In conclusion, β-glucan can be used on recommended daily intake of fiber is about 38 g for men and the development of cereal-based functional dairy products with sufficient viability and acceptable sensory characteristics. 25 g for women [24]. Fiber can be used for improvement of some functional Index Terms—Yoghurt, probiotic, dietary fiber, β-glucan. properties such as texture, water holding capacity, oil holding capacity, emulsification and/or gel formation, bulking agent in reduced-sugar applications, and shelf-life of I.
    [Show full text]
  • Probiotic Sufficiency™ Brochure
    Everybody - Everyday - For Life!TM Everybody Everyday For Life! ® RESEARCH INDICATES THAT: 1. Probiotic bacteria are ESSENTIAL for wellness and prevention. ® The human body contains 90% microorganisms Energy and only 10% human cells. Dietary sufficiency of healthy microorganisms (probiotics) is necessary for Vitality the proper function of the digestive and immune Strength systems and for overall wellness and prevention. Balance Natural Health 2. The Western diet is DANGEROUSLY DEFICIENT in Probiotic bacteria. Purity Research shows that we now consume one millionth of the healthy probiotic bacteria that we did before pesticides, herbicides, and industrial farming. We also kill many of our probiotic bacteria with poor nutrition, prescription drugs, and stress. This PROBIOTIC deficiency of healthy probiotic bacteria is implicated TM as a casual factor in lack of health and vitality and an alarming number of preventable illnesses from SUFFICIENCY infancy to old age. The Innate Human Probiotic Formula 3. The only way to obtain sufficient amounts of Everybody - Everyday - For Life!™ ® healthy probiotic bacteria is through daily How to consume Innate Choice PROBIOTIC SUFFICIENCY™ SUPPLEMENTATION. Please visit www.innatechoice.com for The dietary sources of probiotic bacteria are virtually The World’s Premier Multi-Strain a complete list of references supporting the A Dietary Supplement to Promote unavailable in industrialized society. Our fruits Probiotic Supplement importance of daily probiotic supplementation for Healthy Intestinal Flora and vegetables are sprayed with pesticides, much Adults should consume 2 capsules per day with a meal wellness and prevention. of our food is pasteurized or irradiated, and we do containing raw fruit or vegetables. not consume sufficient amounts of fresh, raw, local foods.
    [Show full text]
  • A Taxonomic Note on the Genus Lactobacillus
    Taxonomic Description template 1 A taxonomic note on the genus Lactobacillus: 2 Description of 23 novel genera, emended description 3 of the genus Lactobacillus Beijerinck 1901, and union 4 of Lactobacillaceae and Leuconostocaceae 5 Jinshui Zheng1, $, Stijn Wittouck2, $, Elisa Salvetti3, $, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola 6 Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9, 10, Koichi Watanabe11, 12, 7 Sander Wuyts2, Giovanna E. Felis3, #*, Michael G. Gänzle9, 13#*, Sarah Lebeer2 # 8 '© [Jinshui Zheng, Stijn Wittouck, Elisa Salvetti, Charles M.A.P. Franz, Hugh M.B. Harris, Paola 9 Mattarelli, Paul W. O’Toole, Bruno Pot, Peter Vandamme, Jens Walter, Koichi Watanabe, Sander 10 Wuyts, Giovanna E. Felis, Michael G. Gänzle, Sarah Lebeer]. 11 The definitive peer reviewed, edited version of this article is published in International Journal of 12 Systematic and Evolutionary Microbiology, https://doi.org/10.1099/ijsem.0.004107 13 1Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key 14 Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, P.R. China. 15 2Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience 16 Engineering, University of Antwerp, Antwerp, Belgium 17 3 Dept. of Biotechnology, University of Verona, Verona, Italy 18 4 Max Rubner‐Institut, Department of Microbiology and Biotechnology, Kiel, Germany 19 5 School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland 20 6 University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy 21 7 Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit 22 Brussel, Brussels, Belgium 23 8 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, 24 Belgium 25 9 Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada 26 10 Department of Biological Sciences, University of Alberta, Edmonton, Canada 27 11 National Taiwan University, Dept.
    [Show full text]
  • Analysis of the Effects of Three Commercially Available Supplements on Performance, Exercise Induced Changes and Bio-Markers in Recreationally Trained Young Males
    Analysis of the effects of three commercially available supplements on performance, exercise induced changes and bio-markers in recreationally trained young males Robert Cooper A thesis is submitted in partial fulfilment of the requirements of the University of Greenwich for the Degree of Doctor of Philosophy This research programme was carried out in collaboration with GlaxoSmithKline Maxinutrition division December 2013 School of Science University of Greenwich, Medway Campus Chatham Maritime, Kent ME4 4TB, UK i DECLARATION “I certify that this work has not been accepted in substance for any degree, and is not concurrently being submitted for any degree other than that of Doctor of Philosophy being studied at the University of Greenwich. I also declare that this work is the result of my own investigations except where otherwise identified by references and that I have not plagiarised the work of others”. Signed Date Mr Robert Cooper (Candidate) …………………………………………………………………………………………………………………………… PhD Supervisors Signed Date Dr Fernando Naclerio (1st supervisor) Signed Date Dr Mark Goss-Sampson (2nd supervisor) ii ACKNOWLEDGEMENTS Thank you to my supervisory team, Dr Fernando Naclerio, Dr Mark Goss Sampson and Dr Judith Allgrove for their support and guidance throughout my PhD. Particular thanks to Dr Fernando Naclerio for his tireless efforts, guidance and support in developing the research and my own research and communication skills. Thank you to Dr Eneko Larumbe Zabala for the statistics support. I would like to take this opportunity to thank my wonderful mother and sister who continue to give me the support and drive to succeed. Also on a personal level thank you to my amazing fiancée, Jennie Swift.
    [Show full text]
  • Flow Cytometric Analysis Reveals Culture-Condition Dependent Variations in Phenotypic Heterogeneity of Limosilactobacillus Reuteri
    Flow Cytometric Analysis Reveals Culture-condition Dependent Variations in Phenotypic Heterogeneity of Limosilactobacillus Reuteri Nikhil Seshagiri Rao Lund University Ludwig Lundberg Swedish University of Agricultural Sciences Shuai Palmkron Lund University Sebastian Håkansson BioGaia Björn Bergenståhl Lund University Magnus Carlquist ( [email protected] ) Lund University Research Article Keywords: Physical stress, heterogeneity, morphology, freeze-thaw, freeze-drying, ow cytometry Posted Date: June 22nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-625422/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/23 Abstract Optimisation of cultivation conditions in the industrial production of probiotics is crucial to reach a high- quality product with retained probiotic functionality. Flow cytometry-based descriptors of bacterial morphology may be used as markers to estimate physiological tness during cultivation, and can be applied for online monitoring to avoid suboptimal growth. In the current study, the effects of temperature, pH and oxygen levels on cell growth and cell size distributions of Limosilactobacillus reuteri DSM 17938 were measured using multivariate ow cytometry. A pleomorphic behaviour was evident from the measurement of light scatter and pulse width distributions. A pattern of high growth yielding smaller cells and less heterogeneous populations could be observed. Analysis of pulse width distributions revealed signicant morphological heterogeneities within the bacterial cell population under non-optimal growth conditions, and pointed towards low temperature, high pH, and high oxygen levels all being triggers for changes in morphology towards cell chain formation. However, cell size did not correlate to survivability after freeze-thaw or freeze-drying stress, indicating that it is not a key determinant for physical stress tolerance.
    [Show full text]
  • Your Gut, Your Health
    By Jill Nussinow, MS, RDN, The Veggie Queen A 2001 report by the Food and Agricultural Organization of the United Nations and the World Health Organization in 2001. The report defined probiotics as “live microorganisms which, when consumed in adequate amounts, confer a health benefit on the host.” YOU are the host The are “good bacteria” I am convinced that probiotic use in most people can enhance their immunity, promote regularity, lessen gas and bloating, and yes, even enhance their sex life! (It might clear up your skin, too) JoAnn Hatner, MPH, RD, author of Gut Insight Probiotics are big business which is why you see so many TV commercials and advertisements for them – people have tummy troubles regularly. Japan has been a leader in this field for more than 50 years. 25% of people report GI disturbance What are probiotics? Do they work? Think of your gut as your immune system's command center — responsible for the regulation of your responses, particularly of inflammation. >70 % of immune function takes place in your gut It makes sense as this is where the body encounters the majority of pathogens. Inflammation serves a protective role responding to tissue injury or infection so that you can heal. We have 10 times the amount of microbial cells than total other cells, with 500+ types of microorganisms which mostly reside in our gut. Your bacteria rules your life. They perform digestive and defensive roles against chronic inflammation and decreasing reactions to allergens plus they help in synthesizing B Vitamins Inhibit the growth of disease causing bacteria A probiotic: is a microbial organism which is not harmful (pathogenic) remains viable (alive) during processing and shelf life of the food must survive digestion and remain viable in the gut is able to bring about a response in the gut is associated with health benefits.
    [Show full text]
  • Chronic Administration of Probiotic L. Rhamnosus Increases Anxiety-Like Behavior in Group-Housed Male Long Evans Rats
    University of Dayton eCommons Honors Theses University Honors Program 4-2018 Chronic Administration of Probiotic L. rhamnosus Increases Anxiety-like Behavior in Group-housed Male Long Evans Rats Parker Maddison Griff University of Dayton Follow this and additional works at: https://ecommons.udayton.edu/uhp_theses Part of the Biology Commons, and the Psychology Commons eCommons Citation Griff, Parker Maddison, "Chronic Administration of Probiotic L. rhamnosus Increases Anxiety-like Behavior in Group-housed Male Long Evans Rats" (2018). Honors Theses. 157. https://ecommons.udayton.edu/uhp_theses/157 This Honors Thesis is brought to you for free and open access by the University Honors Program at eCommons. It has been accepted for inclusion in Honors Theses by an authorized administrator of eCommons. For more information, please contact [email protected], [email protected]. Chronic Administration of Probiotic L. rhamnosus Increases Anxiety-like Behavior in Group-housed Male Long Evans Rats Honors Thesis Parker Maddison Griff Department: Psychology and Biology Advisor: Tracy Butler, Ph.D. and Yvonne Sun, Ph.D. April 2018 Chronic Administration of Probiotic L. rhamnosus Increases Anxiety-like Behavior in Group-housed Male Long Evans Rats Honors Thesis Parker Maddison Griff Department: Psychology and Biology Advisor: Tracy Butler, Ph.D. and Yvonne Sun, Ph.D. April 2018 Abstract Early life stress is a risk factor for later development of alcohol use disorders and anxiety disorders in humans. Using rodent experimental models, we know that rats experiencing social isolation as early-life stress exhibit greater anxiety-like behavior and alcohol consumption than rats housed in groups. Examining potential preventive strategies, we investigated the effects of probiotics, which have previously been shown to decrease rodent anxiety-like behavior, on the relationship between early-life stress and anxiety-like behavior in rats.
    [Show full text]
  • Antifungal Activity of Lactobacillus Pentosus ŁOCK 0979 in the Presence of Polyols and Galactosyl-Polyols
    Probiotics & Antimicro. Prot. https://doi.org/10.1007/s12602-017-9344-0 Antifungal Activity of Lactobacillus pentosus ŁOCK 0979 in the Presence of Polyols and Galactosyl-Polyols Lidia Lipińska1 & Robert Klewicki2 & Michał Sójka2 & Radosław Bonikowski3 & Dorota Żyżelewicz2 & Krzysztof Kołodziejczyk2 & Elżbieta Klewicka 1 # The Author(s) 2017. This article is an open access publication Abstract The antifungal activity of Lactobacillus pentosus Keywords Antifungal activity . Galactosyl-polyols . ŁOCK 0979 depends both on the culture medium and on the Lactobacillus . Metabolites . Polyols . SEM fungal species. In the control medium, the strain exhibited limited antagonistic activity against indicator food-borne molds and yeasts. However, the supplementation of the bac- Introduction terial culture medium with polyols (erythritol, lactitol, maltitol, mannitol, sorbitol, xylitol) or their galactosyl deriva- Filamentous fungi and yeasts are present in almost all types of tives (gal-erythritol, gal-sorbitol, gal-xylitol) enhanced the an- ecosystems due to their high adaptation ability and low nutri- tifungal properties of Lactobacillus pentosus ŁOCK 0979. Its tional requirements. Filamentous fungi are widespread food metabolites were identified and quantified by enzymatic spoilage microorganisms responsible for significant economic methods, HPLC, UHPLC-MS coupled with QuEChERS, losses in the agri-food industry [6]; they are also a major and GC-MS. The presence of polyols and gal-polyols signif- health concern due to mycotoxin production. The most com- icantly affected the acid metabolite profile of the bacterial mon genera of spoilage fungi include Penicillium, Fusarium, culture supernatant. In addition, lactitol and mannitol were Aspergillus, Cladosporium,andRhizopus [21]. Commercial used by bacteria as alternative carbon sources. A number of foodstuffs are usually protected from such microorganisms by compounds with potential antifungal properties were identi- physical and chemical techniques.
    [Show full text]
  • The Impact of Oil Type and Lactic Acid Bacteria on Conjugated Linoleic Acid Production
    JOBIMB, 2016, Vol 4, No 2, 25-29 JOURNAL OF BIOCHEMISTRY, MICROBIOLOGY AND BIOTECHNOLOGY Website: http://journal.hibiscuspublisher.com/index.php/JOBIMB/index The Impact of Oil Type and Lactic Acid Bacteria on Conjugated Linoleic Acid Production Mahmoud A. Al-Saman 1*, Rafaat M. Elsanhoty 1 and Elhadary A. E. 2 1Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 22857/79, Egypt. 2Biochemistry Department, Faculty of Agriculture, Benha University, Egypt. *Corresponding author: Dr. Mahmoud Abd El-Hamid Al-Saman Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 22857/79, Egypt. Email: [email protected] [email protected] HISTORY ABSTRACT This work was conducted to investigate the effect of oil type and lactic acid bacteria on the Received: 27 th October 2016 conjugated linoleic acid (CLA) production in MRS medium. The ability of eight strains of Received in revised form: 2nd December 2016 Accepted: 17th December 2016 lactic acids bacteria; Lactobacillus acidophilus (P2, ATCC 20552), Lactobacillus brevis (P102), Lactobacillus casei (P9, DSMZ 20011), Lactobacillus plantarum (P1), Lactobacillus KEYWORDS pentosus (P4), Lactobacillus rhamnosus (P5, TISTR 541), Bifidobacterium longum (BL) and conjugated linoleic acid (CLA) Bifidobacterium lactis (P7, Bb-12) for the production of CLA in the MRS broth was lactic acid bacteria investigated. Two vegetable oils (sun flower oil & linseed oil) and cod liver oil were used as vegetable oils cod liver oil substrates in MRS media. The oils were added to MRS in concentration of 10 mg/ml and probiotic incubated for three days at 37°C.
    [Show full text]