Fatigue Mechanisms in Al-Based Metallizations in Power Mosfets Roberta Ruffilli

Total Page:16

File Type:pdf, Size:1020Kb

Fatigue Mechanisms in Al-Based Metallizations in Power Mosfets Roberta Ruffilli Fatigue mechanisms in Al-based metallizations in power MOSFETs Roberta Ruffilli To cite this version: Roberta Ruffilli. Fatigue mechanisms in Al-based metallizations in power MOSFETs. Material chem- istry. Université Paul Sabatier - Toulouse III, 2017. English. NNT : 2017TOU30256. tel-01666437v3 HAL Id: tel-01666437 https://tel.archives-ouvertes.fr/tel-01666437v3 Submitted on 23 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THTHESEESE`` En vue de l’obtention du DOCTORAT DE L’UNIVERSITE´ DE TOULOUSE D´elivr´e par : l’Universit´eToulouse 3 Paul Sabatier (UT3 Paul Sabatier) Pr´esent´ee et soutenue le 08/12/2017 par : Roberta RUFFILLI Modes de fatigue des m´etallisations `abase d’aluminium dans les composants MOSFET de puissance Fatigue mechanisms in Al-based metallizations in power MOSFETs JURY Mauro CIAPPA ETH, Zurich Rapporteur Josef LUTZ TU, Chemnitz Rapporteur Marie-Laure LOCATELLI Laboratoire LAPLACE, Toulouse Membre du Jury Michael NELHIEBEL K.A.I - Infineon, Villach Membre du Jury Stephane´ LEFEBVRE SATIE - ENS, Cachan Membre du Jury Mounira BERKANI SATIE - ENS, Cachan Directrice de Th`ese Marc LEGROS CEMES - CNRS, Toulouse Directeur de Th`ese Ecole´ doctorale et sp´ecialit´e: SDM : Physique de la mati`ere - CO090 Unit´edeRecherche: Centre d’Elaboration´ de Mat´eriauxet d’Etudes´ Structurales (CEMES-CNRS, UPR 8011) ABSTRACT This thesis, a collaboration between CEMES-CNRS, Satie laboratory (ENS Cachan) and NXP Semiconductors is motivated by the comprehension of the failure mechanisms of low voltage power MOSFET devices produced for ap- plications in the automotive industry. A limiting factor for the long-term reliability of power modules is the electro- thermal and/or thermo-mechanical aging of the metallic parts of the source: Al metallization and bonding wires. At the temperature reached during the on-off operating cycles (few hundred degrees), the difference in the coefficient of thermal expansion between the metallization and the oxide and semicon- ductor parts induces an inevitable plastic deformation in the metal, which is the softest material in the complex MOSFET architecture. We have characterized the metal microstructure before and after accelerated electro-thermal aging tests, by using specific techniques from the field of the physical metallurgy: electron and ion microscopy, grain orientation and chem- ical composition mapping. For the first time the source metallization has been characterized both away and under the bonding connections, which are one hundred times thicker than the metallization layer. The latter is a critical loca- tion for the reliability assessment because the ultrasonic bonding process may weaken the initial metallization microstructure by adding an important plas- tic deformation prior to aging. This is, however, poorly stated in the literature because of the difficulty to access the metallization under the wires without damaging their bonding, which is known to be particularly weak in case of aged modules. In order to investigate the wire-metallization interface, we have set up origi- nal sample preparations, based on ion polishing, that allowed us to disclose the metallization under the bonding wires without introducing preparation artifacts in the microstructure. The bonding process induces a severe and non- uniform plastic deformation in the metallization under the wires without re- creating a good electrical contact: small cavities and native oxide residues, have been systematically observed at the Al/Al interface, in all the analyzed mod- ules, before and after aging. The main mechanism behind the device failure is the generation and propa- gation of fatigue cracks in the aluminum metallization, associated to a local Al oxidation that prevents these crack from closing. Away and under the wire bonds, they run perpendicularly from the surface down to the silicon substrate following the grain boundaries, due to an enhanced intergranular diffusion of iii aluminum atoms. In the bonding area, the phenomenon of parallel cracking is favored by the initial imperfections in the wire-metallization bonding. Ion to- mography experiments have shown that these cracks are confined to the wire- metal interface and do not propagate in the wire despite its lower strength (pure Al, larger grain structure). Crack propagation along the Al/Al interface can cause a contact reduction between the wire and the source metallization and eventually its failure. Such discontinuities in the metal can explain the lo- cal increase in the device resistance and temperature that accelerates the aging process until failure. This study settled new, dedicated techniques and quantification methods to as- sess the aging of the metal parts of MOSFET devices. The full characterization of the intrinsically defective interface generated by the bonding process and the metallization degradation during electro-thermal aging indicated paths to possible improvements of current technologies and potential developments of new processes. iv RESUMÉ Cette thèse, effectuée en collaboration entre le CEMES-CNRS, le laboratoire Satie (ENS Cachan) et NXP Semiconductors est motivée par la compréhension des mécanismes de défaillance des dispositifs MOSFET pour les applications dans l’industrie automobile. Un facteur limitant de la fiabilité à long terme des modules de puissance basse tension est le vieillissement électrothermique et/ou thermo-mécanique des par- ties métalliques de la source: métallisation en aluminium (ou alliage) et fils de connexion. A cause de la différence de coefficient de dilatation thermique en- tre la métallisation les oxydes et le substrat semi-conducteur, la température atteinte pendant les cycles de fonctionnement (quelques centaines de degrés), induit une déformation plastique inévitable dans le métal, qui est le matériau le plus mou dans l’architecture complexe du MOSFET. Nous avons caractérisé la microstructure métallique avant et après les tests de vieillissement électrothermique accélérés, en utilisant des techniques spéci- fiques du domaine de la métallurgie physique: microscopie électronique et ion- ique, cartographie d’orientation de grains et de la composition chimique. Pour la première fois, la métallisation de la source a été caractérisée sous les fils de connexion, qui sont cent fois plus épais que la métallisation. Cet emplace- ment est critique pour la fiabilité du composant, car le processus de soudure par ultrasons induit une déformation plastique importante qui peut affaiblir la métallisation initiale avant le vieillissement. Ceci est peu étudié dans la lit- térature en raison de la difficulté à accéder à la métallisation sous les fils sans altérer leur interface, souvent endommagée et fragilisée dans les modules vieil- lis. Nous avons mis en place des méthodes de préparation d’échantillon, basées sur le polissage ionique, pour étudier cette interface, sans introduire d’artefacts de préparation. Le processus de soudure à froid induit une déformation plas- tique sévère et non uniforme dans la métallisation sous les fils sans parvenir à recréer un bon contact électrique: de petites cavités et des résidus d’oxyde natif, ont été systématiquement observés à l’interface Al / Al, dans tous les modules analysés, avant et après vieillissement. Le mécanisme principal de défaillance des modules est la génération et la propagation de fissures de fatigue dans l’aluminium, associée à une oxydation locale qui empêche la fermeture de ces fissures. Sous et en dehors des fils de connexion, ces fissures traversent la métallisation perpendiculairement à la surface jusqu’au substrat en silicium en suivant les joints de grains. Cette fissur- v ation est due à la diffusion intergranulaire accélérée des atomes d’aluminium. Dans la zone de soudure, le phénomène de fissuration parallèle à l’interface est favorisé par les imperfections initiales (cavités, oxyde). Les expériences de tomographie ionique ont montré que ces fissures sont confinées à l’interface fil-métal et ne se propagent pas dans le fil malgré sa plus faible résistance mé- canique (Al pur, structure à grains plus grands). La propagation de la fissure le long de l’interface Al/Al peut provoquer une diminution du contact entre le fil et la métallisation de la source et éventuellement son décollement. Les fissures dans le métal source peuvent expliquer l’augmentation locale de la résistance et de la température du module qui accélère le processus de vieil- lissement jusqu’à l’échec. Cette étude a établi de nouvelles techniques dédiées et des méthodes de quan- tification pour évaluer le vieillissement des parties métalliques des modules MOSFET. La caractérisation complète de l’interface soudée, intrinsèquement défectueuse et la dégradation de la métallisation pendant le vieillissement électrothermique ouvrent la voie à l’amélioration possible les technologies actuelles et au développement potentiel de nouveaux procédés. vi ACKNOWLEDGEMENTS I had the chance to do my phd at the CEMES laboratory and NXP Semicon- ductors thanks to an e-mail sent by Andrea Falqui, the head of the laboratory where I worked in Italy, to the former director of the CEMES, Alain Claverie. I have to thank Andrea to have supported my desire to progress, and Alain Claverie to put me in contact with my PhD supervisor, Marc Legros. When I moved to Toulouse for the first time I only knew all the things I was leaving in Italy, I was scared of my first job experience abroad, I did not speak French...and I had never eaten duck in my life! Despite these (huge!) cultural gaps, it took me really a short time to find my routine in the lab...and day after day with my grains of aluminum, FIB and TEM sessions, time flew and gave me good experiences, satisfaction and new friends.
Recommended publications
  • Evaluation of Passivation Process for Stainless Steel Hypotubes Used in Coronary Angioplasty Technique
    coatings Article Evaluation of Passivation Process for Stainless Steel Hypotubes Used in Coronary Angioplasty Technique Lucien Reclaru 1,2 and Lavinia Cosmina Ardelean 2,3,* 1 Scientific Independent Consultant Biomaterials and Medical Devices, 103 Paul-Vouga, 2074 Marin-Neuchâtel, Switzerland; [email protected] 2 Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania 3 Department of Technology of Materials and Devices in Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania * Correspondence: [email protected] Abstract: In the manufacturing of hypotubes for coronary applications, austenitic steels of types 304, 304, or 316 L are being used. The manufacturing process involves bending steel strips into tubes and the continuous longitudinal welding of the tubes. Manufacturing also includes heat treatments and stretching operations to achieve an external/internal diameter of 0.35/0.23 mm, with a tolerance of +/− 0.01 mm. Austenitic steels are sensitive to localized corrosion (pitting, crevice, and intergranular) that results from the welding process and various heat treatments. An extremely important step is the cleaning and the internal and external passivation of the hypotube surface. During patient interventions, there is a high risk of metal cations being released in contact with human blood. The aim of this study was to evaluate the state of passivation and corrosion resistance by using electrochemical methods and specific intergranular corrosion tests (the Strauss test). There were difficulties in passivating the hypotubes and assessing the corrosion phenomena in the interior of the tubes.
    [Show full text]
  • Automotive Grade DO-218 Load Dump TVS Series
    Issue Number │001 May 2019 New Product Announcement DM5WxxAQ DM6WxxAQ DM8WxxAQ Automotive-Grade DO-218 Load Dump TVS Series Diodes Incorporated introduces a series of new high-temperature automotive-compliant load-dump transient voltage suppressors (TVS) packaged in DO-218. The devices are designed to protect sensitive semiconductors in electronic modules from load- dump surge transients, as defined in ISO16750-2, that generate if the battery is disconnected from the vehicle while the alternator charges. Featuring a choice of reverse stand-off voltage from 10V to 36V (or 43V for the DM8WxxAQ series), these new automotive- The Diodes Advantage compliant TVS devices are offered as unidirectional devices . AEC-Q101 Qualified and PPAP Supported and are able to dissipate up to These devices are qualified to high reliability qualification standards in 3600W (DM5WxxAQ), 4600W accordance with AEC-Q101 and supported by a production part approval (DM6WxxAQ), and 6600W procedure (PPAP). (DM8WxxAQ) per 10/1000µs . ISO 16750-2 Compliance pulse transient. These parts are suitable to protect sensitive automotive circuits against load- All devices are rated to +175ºC, dump surge defined in ISO16750-2 (Pulse A and B). and comply with the automotive . ISO 7637-2 Compliance standard ISO7637-2 (pulses 1, These parts are suitable to protect sensitive automotive circuits against surges 2a, 2b, 3) and load dump ISO defined in ISO7637-2 (pulses 1,2a, 2b and 3). 16750-2 (pulse A and B). High Forward Surge Current Capability and Excellent Clamping Capability The case material is composed of halogen-free “green” molding The high forward surge overload rating ensures more rugged applications and compound for protection of the improves device reliability.
    [Show full text]
  • Si Passivation and Chemical Vapor Deposition of Silicon Nitride: Final Technical Report, March 18, 2007
    A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Si Passivation and Chemical Subcontract Report NREL/SR-520-42325 Vapor Deposition of Silicon Nitride November 2007 Final Technical Report March 18, 2007 H.A. Atwater California Institute of Technology Pasadena, California NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Si Passivation and Chemical Subcontract Report NREL/SR-520-42325 Vapor Deposition of Silicon Nitride November 2007 Final Technical Report March 18, 2007 H.A. Atwater California Institute of Technology Pasadena, California NREL Technical Monitor: R. Matson/F. Posey-Eddy Prepared under Subcontract No. AAT-2-31605-01 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle Contract No. DE-AC36-99-GO10337 This publication was reproduced from the best available copy Submitted by the subcontractor and received no editorial review at NREL NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.
    [Show full text]
  • Designing a Nanoelectronic Circuit to Control a Millimeter-Scale Walking Robot
    Designing a Nanoelectronic Circuit to Control a Millimeter-scale Walking Robot Alexander J. Gates November 2004 MP 04W0000312 McLean, Virginia Designing a Nanoelectronic Circuit to Control a Millimeter-scale Walking Robot Alexander J. Gates November 2004 MP 04W0000312 MITRE Nanosystems Group e-mail: [email protected] WWW: http://www.mitre.org/tech/nanotech Sponsor MITRE MSR Program Project No. 51MSR89G Dept. W809 Approved for public release; distribution unlimited. Copyright © 2004 by The MITRE Corporation. All rights reserved. Gates, Alexander Abstract A novel nanoelectronic digital logic circuit was designed to control a millimeter-scale walking robot using a nanowire circuit architecture. This nanoelectronic circuit has a number of benefits, including extremely small size and relatively low power consumption. These make it ideal for controlling microelectromechnical systems (MEMS), such as a millirobot. Simulations were performed using a SPICE circuit simulator, and unique device models were constructed in this research to assess the function and integrity of the nanoelectronic circuit’s output. It was determined that the output signals predicted for the nanocircuit by these simulations meet the requirements of the design, although there was a minor signal stability issue. A proposal is made to ameliorate this potential problem. Based on this proposal and the results of the simulations, the nanoelectronic circuit designed in this research could be used to begin to address the broader issue of further miniaturizing circuit-micromachine systems. i Gates, Alexander I. Introduction The purpose of this paper is to describe the novel nanoelectronic digital logic circuit shown in Figure 1, which has been designed by this author to control a millimeter-scale walking robot.
    [Show full text]
  • Analysis of the Silicon Dioxide Passivation and Forming Gas
    &RQIHUHQFH3URFHHGLQJV 6RODU:RUOG&RQJUHVV Daegu, Korea, 08 – 12 November 2015 Analysis of the Silicon Dioxide Passivation and Forming Gas Annealing in Silicon Solar Cells Izete Zanesco and Adriano Moehlecke Solar Energy Technology Nucleus (NT-Solar), Faculty of Physics, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre (Brazil) Abstract The passivation of silicon solar cells by the deposition of SiNx anti-reflection coating is usual in the industry. However, materials such as SiO2, TiO2 and Al2O3 may be a cost-effective alternative and its analysis is mainly reported in silicon wafers. The goal of this paper is to present the development and analysis of silicon solar cells passivated with a thin layer of SiO2 as well as the evaluation of the effectiveness of the annealing step in forming gas. The dry oxidation was performed before the TiO2 anti-reflection coating deposition and the annealing in forming gas was performed in the same furnace. The temperature and time of the oxidation and the annealing step were experimentally optimized. The efficiency of 15.9 %was achieved. The highest average efficiency was found in the oxidation temperature range from 750 ºC to 800 ºC, during 7 minutes, caused by the increasing of open circuit voltage and fill factor. At short wavelengths, the internal quantum efficiency decreases slightly with the increasing of the oxidation temperature. The minority carrier diffusion length (LD) of the solar cells processed with the oxidation temperature of 800 °C was around 1890 Pm. The open circuit voltage shows a slight trend of increasing with the oxidation time. The annealing step in forming gas did not improve the average efficiency of the solar cells.
    [Show full text]
  • H2O2 Hydrogen Peroxide Passivation Procedure
    Solvaytechnical Chemicals PUBLICATION H2O2 Passivation Procedure Introduction Hydrogen peroxide is a strong chemical oxidant which decomposes into water and oxygen in the presence of a catalytic quantity of any transition metal (e.g., iron, copper, nickel, etc.). The primary concern with decomposition is the buildup of pressure which can lead to pressure Prepare for passivation by roping off the work area bursts. To prevent this from occurring, any metal surface that comes in and posting warning signs. All open lights and tools contact with hydrogen peroxide must be degreased, pickled and which may spark must be removed from the passivated, even if only used once. The degreasing and pickling steps passivation area. Smoking is prohibited within the chemically clean the metal surfaces. The passivating step oxidizes the passivation area. Prior to preparation of the chemical metal surface. The thin oxide coating, which forms on the metal surface solutions, determine how to dispose of the spent during passivation, renders the surface nonreactive to hydrogen peroxide chemicals. These chemicals must be disposed of in and prevents the metal from decomposing the peroxide. a safe and environmentally sound manner that is consistent with all applicable federal, state, and The passivation procedure consists of: local regulations. 1. Grinding to remove weld spatter and smooth out scratches. 2. Degreasing to remove oil and grease films. Application methods 3. Pickling to chemically clean the surface. The chemical solutions may be applied to the metal surfaces by the four different methods listed below. 4. Passivating with nitric acid to form an oxide film. • The metal surfaces may be sprayed with the 5.
    [Show full text]
  • Advanced MOSFET Structures and Processes for Sub-7 Nm CMOS Technologies
    Advanced MOSFET Structures and Processes for Sub-7 nm CMOS Technologies By Peng Zheng A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Tsu-Jae King Liu, Chair Professor Laura Waller Professor Costas J. Spanos Professor Junqiao Wu Spring 2016 © Copyright 2016 Peng Zheng All rights reserved Abstract Advanced MOSFET Structures and Processes for Sub-7 nm CMOS Technologies by Peng Zheng Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences University of California, Berkeley Professor Tsu-Jae King Liu, Chair The remarkable proliferation of information and communication technology (ICT) – which has had dramatic economic and social impact in our society – has been enabled by the steady advancement of integrated circuit (IC) technology following Moore’s Law, which states that the number of components (transistors) on an IC “chip” doubles every two years. Increasing the number of transistors on a chip provides for lower manufacturing cost per component and improved system performance. The virtuous cycle of IC technology advancement (higher transistor density lower cost / better performance semiconductor market growth technology advancement higher transistor density etc.) has been sustained for 50 years. Semiconductor industry experts predict that the pace of increasing transistor density will slow down dramatically in the sub-20 nm (minimum half-pitch) regime. Innovations in transistor design and fabrication processes are needed to address this issue. The FinFET structure has been widely adopted at the 14/16 nm generation of CMOS technology.
    [Show full text]
  • Effect of the Electrochemical Passivation on the Corrosion Behaviour of Austenitic Stainless Steel
    Effect of the electrochemical passivation on the corrosion behaviour of austenitic stainless steel A. Barbucci, M.Delucchi, M. Panizza, G, Farné, G. Cerisola DICheP, University of Genova, P.le Kennedy 1, 16129 Genova, Italy tel: +390103536030, e-mail: [email protected] Abstract: Cold rolled SS is also fruitfully used in deep drawing however the presence of scales or oxides on the surface reduces the life of the tools and emphasises creep phenomena of the material. Then a cleaning of the SS surface from these impurities is necessary. Oxides can be formed during the hot rolling preceding the cold one, or during the annealing performed between the several steps of thickness reduction. The annealing helps to decrease the work hardening occurring during the process. Normally this heat treatment is performed in reducing atmosphere of pure hydrogen (bright annealing), but even in this conditions oxides are formed on the SS surface. To avoid this uncontrolled oxide growth one method recently applied is an electrochemical cleaning performed in an electrolytic solution containing chrome, generally called electrochemical passivation. The electrochemical passivation allows the dissolution of the contaminating hard particles on the strips. Few scientific contributions are available in literature, which explain in detail the process mechanism. The aim of this work is to investigate if the electrochemical passivated surface acts in a different way with regard to corrosion phenomena with respect to conventional SS. Electrochemical measurements like polarisations, chronoamperometries and surface analysis were used to investigate the corrosion behaviour of electrochemically passivated AISI 304L and AISI 305. The effect of some process parameters were considered, too.
    [Show full text]
  • Outline MOS Gate Dielectrics Incorporation of N Or F at the Si/Sio
    MOS Gate Dielectrics Outline •Scaling issues •Technology •Reliability of SiO2 •Nitrided SiO2 •High k dielectrics araswat tanford University 42 EE311 / Gate Dielectric Incorporation of N or F at the Si/SiO2 Interface Incorporating nitrogen or fluorine instead of hydrogen strengthens the Si/SiO2 interface and increases the gate dielectric lifetime because Si-F and Si-N bonds are stronger than Si-H bonds. Nitroxides – Nitridation of SiO2 by NH3 , N2O, NO Poly-Si Gate – Growth in N2O – Improvement in reliability – Barrier to dopant penetration from poly-Si gate Oxide N or F – Marginal increase in K – Used extensively Si substrate Fluorination – Fluorination of SiO2 by F ion implantation – Improvement in reliability – Increases B penetration from P+ poly-Si gate – Reduces K – Not used intentionally – Can occur during processing (WF6 , BF2) araswat tanford University 43 EE311 / Gate Dielectric 1 Nitridation of SiO2 in NH3 H • Oxidation in O2 to grow SiO2. • RTP anneal in NH3 maximize N at the interface and minimize bulk incorporation. • Reoxidation in O2 remove excess nitrogen from the outer surface • Anneal in Ar remove excess hydrogen from the bulk • Process too complex araswat tanford University 44 EE311 / Gate Dielectric Nitridation in N2O or NO Profile of N in SiO2 Stress-time dependence of gm degradation of a NMOS SiO2 Ref. Bhat et.al IEEE IEDM 1994 (Ref: Ahn, et.al., IEEE Electron Dev. Lett. Feb. 1992) •The problem of H can be circumvented by replacing NH3 by N2O or NO araswat tanford University 45 EE311 / Gate Dielectric 2 Oxidation of Si in N2O N2O → N2 + O N2O + O → 2NO Ref: Okada, et.al., Appl.
    [Show full text]
  • Automotive Electronics
    Automotive Electronics Amphenol Advanced Sensors Advanced Driver Assistance Systems (ADAS) Automotive Ethernet Body Control, Safety, Security, and Comfort Telematics, Multimedia, Infotainment, GPS, Navigation, and Camera Head & Interior LED Lighting Battery Management Systems and EV Charging Stations Enabling the Automotive Industry with our Connection Innovation and High Speed Technology 1 ABOUT AMPHENOL ICC AUTOMOTIVE Amphenol ICC brings a broad array of innovative technology and solutions to support the growth in the automotive industry, particularly in plating, signal integrity performance, and power management. As automobiles become more ADAS rich and head towards being a total autonomous operation, the key differentiator between suppliers will be their capabilities, and performance. Amphenol ICC's capable engineering team develops connector solutions according to customer needs, even during the design phase of application. INDUSTRY LEADER TECHNOLOGIES & SOLUTIONS CUSTOMER CAPABILITIES EXPERT SATISFACTION • Products accommodate standards like Open • Leverage in deploying • Automotive offerings in • Meet short lead time Alliance, USCAR, LV214, new solutions for WTB, BTB, I/O, and requirements ISO 8092, Kojiri,and Automotive applications: FFC/FPC • Advocate value-added SAE J 2223 - Signal integrity: • Strength of existing custom solutions • Solutions enable HS Signal Transmission portfolio in modular wherever possible signaling technologies and EMC BTB & WTB • Better value like LVDS and Ethernet - Power contact • Focus on new standard • Close proximity to • Leader in Automotive design and simulation IO connectors and customers’ location Ethernet and capabilities integration of new committed to Open - Contact and connector standard consumer Alliance TC2 / TC9 with miniaturization electronics IO 100 BASE-T1 (100 Mbps) - PCB contact • Interconnect solutions and 1000 BASE-T1 technologies for High Speed (1 Gbps).
    [Show full text]
  • Why Passivate Stainless Steel and What Happens If You Don't
    Technical Article Page 1 of 4 Why Passivate Stainless Steel and What Happens If You Don’t By: Patrick H. Banes, Astro Pak Corporation To insure having the maximum corrosion resistance that austenitic stainless steel has to offer, the stainless steel surface must be in a passive state. The passive condition on the surface of the stainless steel is obtained by formation of a chromium oxide film on the metal‘s surface. This is accomplished by passivating the metal. Chemical passivation procedures using alkalines, wetting agents, chelants, and organic or inorganic acids are used to clean the metal surface thoroughly and in conjunction with an oxygen rich atmosphere, a uniform chromium oxide film forms. The key is to have a uniform chromium oxide film with an acceptable chrome to iron ratio (typically>1) and thickness (20-50) angstroms. Passivation is required to restore or enhance the chromium oxide film on the stainless steel surface when it has been manipulated by surface finishing, welding, grinding, external contamination, etc. Mechanical finishing of stainless steel surfaces allows for a very smooth surface and is a prerequisite for sub- sequent electro-polishing. The mechanical action disrupts the existing passive surface and results in a surface with a low chrome to iron ratio. The possibility of surface contamination getting pushed or smeared into the metal surface or sub-surface also exists. Welding stainless steel is one of the primary reasons for passivating. The metal surface is altered and free iron is released from the alloy. The chrome to iron ratio is also lowered in the heat affected zone of the weld.
    [Show full text]
  • Current Catalog
    YorkELECTRONIC Electronics SERVICE CENTRE Mobile Automotive Electronic Accessory Specialists Aftermarket Product Guide [email protected] 1-888-650-YORK (9675) www.yorkelec.com Press 1, 1 for Client Call Center Version:MMXXI YorkELECTRONIC Electronics SERVICE CENTRE Factory Navigation Upgrade • Available for most 2013 and up GM vehicles • Vehicles must be equipped with MyLink/Intellilink/CUE • Use factory GM parts to upgrade to Navigation NAVGM20 Kenwood Navigation • 6.8” WVGA Monitor • Apple CarPlay™ & Android Auto™ Ready • Garmin GPS built in with 3D Terrain View • Built in Bluetooth (Dual phone connection) & HD Radio • Sirius/XM ready with optional module • Dual USB, Audio/Video, mini jack inputs • 3 camera inputs • Dash Camera ready • DVD/CD/MP3/DIVX/MPEG/VCD compatible • Add or retain a backup camera, call for details NAVG20 XM Add On • Add XM (Subscription required) to your factory radio via USB • Vehicle applications may vary USBXM20 Dual USB Charger • Add USB charging to any vehicle • Charges two devices at one time • Dual 2.5A charge ports USBCH10 [email protected] 1-888-650-YORK (9675) www.yorkelec.com 1 Press 1, 1 for Client Call Center Version:MMXXI YorkELECTRONIC Electronics SERVICE CENTRE Advent Overhead DVD • Full colour monitor with built in DVD player • Available in black, pewter or shale colours Add extra headphones • Play audio through vehicle stereo to any video system • LED dome lights 1ch HP100 • 2 wireless headphones 2ch HP200 • Wireless remote controls • AUX input • Side load DVD mechanism • Available in 9”, 10” or
    [Show full text]