ON SPACES VIA DENSE SETS and SMPC FUNCTIONS 1. Definitions and Preliminaries

Total Page:16

File Type:pdf, Size:1020Kb

ON SPACES VIA DENSE SETS and SMPC FUNCTIONS 1. Definitions and Preliminaries Kyungpook Malhemalical J ou m꾀 Vol.34, No. l, 109- 11 6, June 1994 ON SPACES VIA DENSE SETS AND SMPC FUNCTIONS D. A. Rose a nd R. A. Mabmoud Density is one of t he basic propcrt ies in topological spaces. So, some spac않 sucb as hyperconnected space, submaximal spacc and all resolvabil­ ity spaces have been defined via lhis properly. Therefore, we devoled this paper for the study and investigated of new properties of these types of spaces. Also, a strong M-precontinuous function (abbrivaled as: SMPC) was characterized by using some previolls spaces. Finall y, some effects of SMP C on olher spaces are studied. 1. Definitions and preliminaries Topological spaces used here will not include any separation properties wh ich are assumed unless they arc otherwise needed in which case lhey will be explicilly staled. Given a lopological space (X, T), for any A 드 X , we denote the interior and the c1 0sure of A with respecl lo T , by IntA and CIA, respectively. A is called preopen [1] if A IntCIA, and PO(X,T) means the collection of all preopen sets in (X, r). For any space (X, r) let 감 be the smallest tO]lolgy on X containing PO(X, T). The topolgy r O [2] is PO(X, r ) n SO(X, T) where A E SO(X, T) iff A is semi-open [3] . i.e. O A 드 CllntA. Thus, for any space (X, T), T 드 T 드 PO(X ,T) 드 Tp ' II is also known thal PO(X, T''')'= PO(X, r) (Coroll ary 1 of [4]). For any topology T on X , the semi l'eg ulal'ization of r is t he topol ogy 감 having fo r a basis lhe set of regular open subsets of (X , r ). The semiregular c1 ass of T is the set [T] , of a ll topologies on X having the same semiregularizalion as T. A topological property P is a semiregular property if il is shared by a ll members of [r]s when possessed by any one Received June 9, 1992 Rev ised March 20 , 1994 109 110 D. A. Rose and R. A. Mahmoud member. This is equivalent to saying that (X,T ) and (X, T.) both have P whenever either does [5]. An a -topological property is any topologi­ cal property shared by aU members of the a-class when possessed by any one member of the a-class. In particular, it is any topological property possessed by both (X, T) and (X, T") when possessed by either [5] . A space (X, T) is called hyperconnected [6] if each nonempty open set is dense. (X , T) is resolvable [7] if there is a dense subset D 드 X for which X - D is also dense. A space whi ch is not resolvable is called irresolvable A subset of X is resolvable (irresolvable) if it is resolvable (irresolvable) as a subspace. A space is hered itaril y irresolvable if each of its nonempty subsets is irresolvahle. (X,T) is submaximal [8] if each of its dense subsets are open. Al so, (X, T) is strongly ∞ mpact (strongly Lindelöf) [9] if for each preopen cover of X , there is a finite (countible) subcover. Spaces pre낀 (i 0,1,2) are defined likewise the spacés T; (i = 0,1,2) except that the open sets are replaced by preopen sets [10] A function f : (X, T) • (Y, a) is said to be precontinuous [1 ], preirres­ 이 ute [11] and strongly M-precontinuous [12] (SMP C) if the inverse image 。 f each open, preopen and preopen in (Y,a) is preopen , preopen and open in (X , T), respectively Resolvable spaces An important res ult related to the resolvable spaces which would be called the Hewitt-representation of (X, T) in [13] Theorem 1 [13]. Every space (X,T) can be represented uniquelly as a disjoint union X = F U G where F is c/osed and π so/va ble and G is open and hereditari/ν 11γ'e so/vab/e. Hence (X ,T) 상 reso/vable iJJ G = 0 and (X, T) is heπ ditaπly iπ'eso/v­ able 퍼 F= 0. x Lemma 1. (Corollary 5 of [7]) If (X, T) is resolvable th en Tp = 2 . Proof Let D) and D 2 be disjoint dense subsets of X and let x E X. Then D) U {x} and D 2 U {x} are dense and hence preopen. Thus {x} = (C) U {x}) n (D2 U {x}) E 강 · Other properties of resolvable spaces have studied in [6] by using an anti-operation due to Bankston Now, we give the condition under which that is property of being a resolvable space is hereditrary. On spaces via dense sets and SMPC functions 111 Theorem 2. Each semi-open subset of a resolvable spaée is resolvable. Proof Let A E SO(X,T) , i.e. A 드 ClIntA 드 X and X be resolvable Then IntA is resolvable and A-IntA is nowhere dense in (A, TjA). Thus, if Dl U Dz is a disjoint union of dense subsets of IntA then Do = D1 U (A-IntA) and Dz are disjoint and also are dense in A. It is obvious that every subspace of a hereditarily irresolvable space is heredi tarily irresolvable, whereas the converse follows nextly. Theorem 3. If(X , T) is a space, X = X,U Xz and X,n xz = 0 and X 1 is c/osed th en ifboth (X1 ,TjX1) and (XZ ,TjXZ) are hereditarily irresolvable th en (X , T) is h e re d i ta π Iy i1"1'esolvable. Proof Suppose that ø ¥ A 드 X and (A , T / A) is reso lvahle. Then there exist di sjoint, dense in A, subsets Dl and Dz with A = D, U D2 . Suppose that D1 n X z # 0 and Dz n x 2 # 0. Then since Xz is open in X , D1 n X z and Dz n Xz are di sjoint and dense in A n X 2 . For if x E D 2 n X z and V is open wi th x E V , since D 1 is dense in A, V n A n D, 폼 0. lf U is open in X and x E U then, for V = U n X z, V E T and x E V so that U n A n (D, n X z) ¥ 0. Thus, D, n Xz and similarly Dz n X 2 are dense in A n X 2 and di sjoint. T hus, A n X 2 is a resolvable subspace of X 2 which contradicts X 2 being hereditarily irresolvable. Apparently, either Dl n X 2 = ø or D2 n X z = 0. But in either case A n x 1 contains a dense set in A. Thus, CIA(A n X t} = A 드 An X, 드 X, sin ce X! is closed. Thus A is a resolvable subspace of X1 whi ch cannot be sin ce X 1 is hereditarily irresolvable. This fin al contradiction proves that (X , T) is heredi tarily irresolvable. Theorem 4 [5J. Let f : (X,T) • (Y, 0") be a bijection . Th en f is a se mihomeomorphism ifJ f is an a-homeomorphism Where a bijection f (X, T) • (Y,O") is said to be a semihomeo morphism [14J if both f and f -' preserve semiopen sets. Any property transmitted by semihomeomorphisms is called semitopological [1 4J By a previous result, a property P is semitopological if and only if P is an a -topological property and it is clear that the laUer holds if and only if X and X " both have P whenever either does [5J . Since it is obviously that spaces (X , T) and (X , T"' ) share the same family of dense subsets, also resolvability is one of the a-topologi cal and hence semitopological properties. This illustrates our belief that gener all y the best way to demonstrate that a property P is semitopological 112 D. A. Rose and R. A. Mahmoud is to show that it is a-topological. Whereas serniregular properties are a-topological [15J. Hence as the following example shows that semitopo logical properties are not semiregular. In particular, resolvability space. Example 1. Let (X, T) be the two-point Sierpinski space. Then (X, T) is not resolvable whereas the indiscrete semiregularization (X, Ts ) is resolv able. 3. Hyperconnected and submaximal spaces Lemma 2. (Proposition 1 of [7]) A E PO(X, T) iff A = U n D f0 1" some U E T and de η se D 드 X Proof A E PO(X,T) • A 드 IntCIA = U E T. L.et D = X - (U - A) = (X -U)UA. Then D is dense since X = CIAU(X - CIA) 드 CIAU(X - U) = ClD. Also. A = U n D. Conversely, if A = U n D with U E T and D dense, A 드 U ç IntClU = IntCl(A) so that A E PO(X,T) Theorem 5. A space (X, T) is hyperconnecled iff the class of dense sets Of(X,T) is Tp - {Ø}. Proof Follow directly by using previous lemma and the fact that T 드 Tp • Lemma 3. If(X , 꺼T ) is submaxiη7πmí Proof Clearly T 드 PO(X , 끼).T N‘ o아、w A E PO(X , 서)T • A = U n D for some U E T and dense D 드 X. Therefore, if (X, T) is submaximal, D E T • A E T.
Recommended publications
  • Some Results on Fuzzy Hyperconnected Spaces
    Songklanakarin J. Sci. Technol. 39 (5), 619-624, Sep - Oct. 2017 http://www.sjst.psu.ac.th Original Article Some results on fuzzy hyperconnected spaces Jayasree Chakraborty*, Baby Bhattacharya, and Arnab Paul Department of Mathematics, NIT Agartala, Tripura, 799046 India Received: 29 April 2016; Revised: 8 August 2016; Accepted: 15 August 2016 Abstract This paper is a prolongation of the study of fuzzy hyperconnectedness. After studying the characteristic of fuzzy hyperconnectedness concerned with different concepts we ascertain an extension of one essential result of Park et al. (2003). In particular, we obtain one result based on fuzzy hyperconnectedness which points out a comparison between the fuzzy topological spaces and the general topological spaces. A necessary and sufficient condition for a fuzzy semicontinuous function to be a fuzzy almost continuous function is established while the said two continuities are independent to each other shown by Azad (1981). Keywords: fuzzy hyperconnected space, fuzzy regular open set, fuzzy nowhere dense set, fuzzy semicontinuity, fuzzy almost continuity 1. Introduction 2. Preliminariesd The concept of hyperconnectedness in topological Throughout this paper, simply by X and Y we shall spaces has been introduced by Steen and Seebach (1978). denote fts’s (,)X and (,)Y respectively and f : X Y Then Ajmal et al. (1992) have studied some of the charac- will mean that f is a function from a fts (,)X to another fts (,)Y . For a fuzzy set of X, cl , int() and 1 terizations and basic properties of hyperconnected space. X Thereafter several authors have devoted their work to (or c ) will denote the closure of , the interior of and the investigate the various properties of hyperconnectedness in complement of respectively, whereas the constant fuzzy sets taking on the values 0 and 1 on are denoted by 0 and general topology.
    [Show full text]
  • Soft Somewhere Dense Sets on Soft Topological Spaces
    Commun. Korean Math. Soc. 33 (2018), No. 4, pp. 1341{1356 https://doi.org/10.4134/CKMS.c170378 pISSN: 1225-1763 / eISSN: 2234-3024 SOFT SOMEWHERE DENSE SETS ON SOFT TOPOLOGICAL SPACES Tareq M. Al-shami Abstract. The author devotes this paper to defining a new class of generalized soft open sets, namely soft somewhere dense sets and to in- vestigating its main features. With the help of examples, we illustrate the relationships between soft somewhere dense sets and some celebrated generalizations of soft open sets, and point out that the soft somewhere dense subsets of a soft hyperconnected space coincide with the non-null soft β-open sets. Also, we give an equivalent condition for the soft cs- dense sets and verify that every soft set is soft somewhere dense or soft cs-dense. We show that a collection of all soft somewhere dense subsets of a strongly soft hyperconnected space forms a soft filter on the universe set, and this collection with a non-null soft set form a soft topology on the universe set as well. Moreover, we derive some important results such as the property of being a soft somewhere dense set is a soft topological property and the finite product of soft somewhere dense sets is soft some- where dense. In the end, we point out that the number of soft somewhere dense subsets of infinite soft topological space is infinite, and we present some results which associate soft somewhere dense sets with some soft topological concepts such as soft compact spaces and soft subspaces.
    [Show full text]
  • Turkish Journal of Computer and Mathematics Education Vol.12 No.9
    Turkish Journal of Computer and Mathematics Education Vol.12 No.9 (2021),946-950 Research Article An Elementary Approach on Hyperconnected Spaces a b D.Sasikala , and M.Deepa a,b Assistant Professor, Department of Mathematics, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu, India. Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 20 April 2021 Abstract: This paper aims to establish a new notion of hyperconnected spaces namely semi j hyperconnected spaces by using semi j open sets. The relation between the existing spaces are also discussed. We also investigate some elementary properties of semi j hyperconnected spaces. Keywords: semi j open set, semi j closed set, semi j regular open, semi j interior, semi j closure 1. Introduction The notion of hyperconnected space was introduced and studied by many authors[1],[7],[10]. N.Levine[8] introduced D space i.,e every non empty open set of X is dense in X. In 1979, Takashi Noiri[10] initiated the concept of hy- perconnected sets in a topological space by using semi open sets. In 1995, T.Noiri[11] formulated various properties of hyperconnected space using semi pre open sets. In 2011, Bose and Tiwari[6] found ω hyperconnectedness in topological space. In 2015, the concept of S* hyperconnectedness in supra topological spaces was studied by Adithya K.Hussain[1]. In 2016, I.Basdouri, R.Messoud, A.Missaoui[5] discussed about connectedness and hyperconnect- edness in generalised topological space. A.K.Sharma[13] determined that D spaces are equivalent to hyperconnected spaces.
    [Show full text]
  • Properties of Hyperconnected Spaces, Their Mappings Into Hausdorff Spaces and Embeddings Into Hyperconnected Spaces
    Acta Math. Hung. 60 (1-2) (1992), 41-49. PROPERTIES OF HYPERCONNECTED SPACES, THEIR MAPPINGS INTO HAUSDORFF SPACES AND EMBEDDINGS INTO HYPERCONNECTED SPACES N. AJMAL and J. K. KOHLI (Delhi) 1. Introduction Professor Levine calls a space X a D-space [5] if every nonempty open subset of X is dense in X, or equivalently every pair of nonempty open sets in X intersect. In the literature D-spaces are frequently referred to as hyperconnected spaces (see for example [9], [10]). In this paper we extend the concept of hyperconnectedness to pointwise hyperconnectedness and use it to study the properties of hyperconnected spaces. We shall call a space X pointwise hyperconnected at z in X if each open set containing z is dense in X. It is immediate that a space X is hyperconnected if and only if it is pointwise hyperconnected at each of its points. It is clear from the definition that the property of being a hyperconnected space is open hereditary. In fact every subset of a hyperconnected space having a nonempty interior is hyperconnected in its relative topology. In particular, every/~-subset [6] of a hyperconnected space is hyperconnected. However, in the sequel, Example 2.3 shows that hyperconnectedness is not even closed hereditary. This corrects an error in [5] where it is erroneously stated that hyperconnectedness is hereditary (see [5, Theorem 2(1)]). More generally we shall show that every topological space can be realized as a closed subspace of a hyperconnected space (see Theorem 3.1). Section 2 is devoted to the properties of (pointwise) hyperconnected spaces.
    [Show full text]
  • Some Properties of Generalized Fuzzy Hyperconnected Spaces
    Annals of Fuzzy Mathematics and Informatics Volume 12, No. 5, (November 2016), pp. 659{668 @FMI ISSN: 2093{9310 (print version) c Kyung Moon Sa Co. ISSN: 2287{6235 (electronic version) http://www.kyungmoon.com http://www.afmi.or.kr Some properties of generalized fuzzy hyperconnected spaces J. Chakraborty, B. Bhattacharya, A. Paul Received 7 March 2016; Revised 29 April 2016; Accepted 20 May 2016 Abstract. The aim of this paper is to introduce the notion of gen- eralized fuzzy hyperconnected space and to study the basic difference of it with generalized hyperconnected space due to Ekici [10]. It is proved that, 0X and 1X are the only fuzzy gX -regular open sets in the new space. We also study the applications of generalized fuzzy hyperconnectedness by using some functions and establish the interrelationships among them. 2010 AMS Classification: 54A40, 54CO5, 54C08 Keywords: Generalized fuzzy hyperconnected space, Fuzzy gX -regular open set, Fuzzy gX -dense set, Fuzzy gX -nowhere dense set, Fuzzy feebly (gX ,gY )-continuity. Corresponding Author: J. Chakrabortyr ([email protected]) 1. Introduction The concept of hyperconnectedness in a topological space was introduced by Steen and Seebach [16] in 1978. Then in 1992, Ajmal et al. [1] studied some of the characterizations and basic properties of the hyperconnected space. Thereafter, several authors devoted their work to study more properties of hyperconnectedness in a topological space [7, 11, 12]. In 2002, Cs´asz´ar [8] introduced the notions of gen- eralized neighborhood systems and generalized topological space (in short, GTS). Moreover, Palani Chetty [13] extended the concept of generalized topological space in fuzzy setting and named it generalized fuzzy topological space (in short, GFTS), in 2008.
    [Show full text]
  • Arxiv:1908.11693V1 [Math.GN] 30 Aug 2019 Xlso Oml.Frtogvnfiiennmt Sets Nonempty finite Given Two Well-Kno for the of Formula
    CARDINALITY ESTIMATIONS OF SETS WITH INTERVAL UNCERTAINTIES IN FINITE TOPOLOGICAL SPACES J.F. PETERS AND I.J. DOCHVIRI Abstract. In this paper, we have established boundaries of car- dinal numbers of nonempty sets in finite non-T1 topological spaces using interval analysis. For a finite set with known cardinality, we give interval estimations based on the closure and interior of the set. In this paper, we give new results for the cardinalities of non- empty semi-open sets in non-T1 topological spaces as well as in extremely disconnected and hyperconnected topological spaces. 1. Introduction In the point-set topology trends of last five decades are connected with investigations of topological spaces and their relations with infinite cardi- nal functions (see e.g. [8]). Most of modern topological papers are con- cerned with infinity type cardinal functions, but many interesting prop- erties of finite topological spaces are in the shadow. In the same time discrete mathematics and combinatorics uses finite sets for naturally ap- peared analytical questions (see e.g. [7], [10], [1], [5], [6]). Here we should mention well-known theory developed by the P. Erdös, C. Ko and R. Rado, where the main thing is cardinality counting problem in the given finite set. Also, importantly, characterizations of finite sets are widely used in the computer science [13], [3] and probability theory [14]. Historically, cardinality counting problems in discrete mathematics and combinatorics began after the introduction of the well-known inclusion- arXiv:1908.11693v1 [math.GN] 30 Aug 2019 exclusion formula. For two given finite nonempty sets A, B, we have 2010 Mathematics Subject Classification.
    [Show full text]
  • Planetmath: Topological Space
    (more info) Math for the people, by the people. Encyclopedia | Requests | Forums | Docs | Wiki | Random | RSS Advanced search topological space (Definition) "topological space" is owned by djao. [ full author list (2) ] (more info) Math for the people, by the people. Encyclopedia | Requests | Forums | Docs | Wiki | Random | RSS Advanced search compact (Definition) "compact" is owned by djao. [ full author list (2) ] Dense set 1 Dense set In topology and related areas of mathematics, a subset A of a topological space X is called dense (in X) if any point x in X belongs to A or is a limit point of A.[1] Informally, for every point in X, the point is either in A or arbitrarily "close" to a member of A - for instance, every real number is either a rational number or has one arbitrarily close to it (see Diophantine approximation). Formally, a subset A of a topological space X is dense in X if for any point x in X, any neighborhood of x contains at least one point from A. Equivalently, A is dense in X if and only if the only closed subset of X containing A is X itself. This can also be expressed by saying that the closure of A is X, or that the interior of the complement of A is empty. The density of a topological space X is the least cardinality of a dense subset of X. Density in metric spaces An alternative definition of dense set in the case of metric spaces is the following. When the topology of X is given by a metric, the closure of A in X is the union of A and the set of all limits of sequences of elements in A (its limit points), Then A is dense in X if Note that .
    [Show full text]
  • On Functionally Θ-Normal Spaces
    Applied General Topology c Universidad Polit´ecnica de Valencia @ Volume 6, No. 1, 2005 pp. 1-14 On functionally θ-normal spaces J. K. Kohli and A. K. Das Abstract. Characterizations of functionally θ-normal spaces in- cluding the one that of Urysohn’s type lemma, are obtained. Interrela- tions among (functionally) θ-normal spaces and certain generalizations of normal spaces are discussed. It is shown that every almost regular (or mildly normal ≡ κ-normal) θ-normal space is functionally θ-normal. Moreover, it is shown that every almost regular weakly θ-normal space is mildly normal. A factorization of functionally θ-normal space is given. A Tietze’s type theorem for weakly functionally θ-normal space is obtained. A variety of situations in mathematical literature wherein the spaces encountered are (functionally) θ-normal but not normal are illustrated. 2000 AMS Classification: Primary: 54D10, 54D15, 54D20; Secondary: 14A10. Keywords: θ-closed (open) set, regularly closed (open) set, zero set, reg- ular Gδ-set, (weakly) (functionally) θ-normal space, (weakly) θ-regular space, almost regular space, mildly normal (≡ κ-normal) space, almost normal space, δ-normal space, δ-normally separated space, Zariski topology, (distributive) lattice, complete lattice, affine algebraic variety, projective variety. 1. INTRODUCTION Normality is an important topological property and hence it is of significance both from intrinsic interest as well as from applications view point to obtain factorizations of normality in terms of weaker topological properties. First step in this direction was taken by Viglino [18] who defined seminormal spaces, fo- llowed by the work of Singal and Arya [13] who introduced the class of almost normal spaces and proved that a space is normal if and only if it is both a semi- normal space and an almost normal space.
    [Show full text]
  • A Short Note on Fuzzy -Baire Spaces
    International Journal of Fuzzy Mathematics and Systems. ISSN 2248-9940 Volume 4, Number 2 (2014), pp. 237-243 © Research India Publications http://www.ripublication.com A Short Note on Fuzzy -Baire Spaces G. Thangaraj and E. Poongothai Department of Mathematics, Thiruvalluvar University Vellore-632 115, Tamilnadu, India Department of Mathematics, Shanmuga Industries Arts and Science College, Tiruvannamalai-606601, Tamilnadu, India. Abstract In this paper several characterizations of fuzzy -Baire spaces are studied and the conditions under which a fuzzy topological space becomes a fuzzy -Baire space are investigated. KEY WORDS: Fuzzy -set, Fuzzy -set, fuzzy dense, fuzzy nowhere dense, fuzzy -nowhere dense, fuzzy P-space, fuzzy hyperconnected space, fuzzy Baire space. 2000 AMS CLASSIFICATION: 54 A 40, 03 E 72. INTRODUCTION The fundamental concept of a fuzzy set introduced by Zadeh [11] in 1965, provides a natural foundation for building new branches of fuzzy mathematics. After the discovery of the fuzzy sets, many attempts have been made to extend various branches of mathematics to the fuzzy setting. Fuzzy topological spaces as a very natural generalization of topological spaces were first put forward in the literature by Chang [3] in 1968. Many authors used Chang’s definition in many direction to obtain some results which are compatible with results in general topology. The concept of-nowhere dense set was introduced and studied by Jiling Cao and Sina Greenwood [4]. The concept of -nowhere dense set in fuzzy setting was introduced by the authors and by means of fuzzy-nowhere dense sets, the concept of fuzzy-Baire spaces was introduced and studied in [9].
    [Show full text]
  • On Hyperconnected Spaces Via M-Structures
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS { N. 42{2019 (290{300) 290 On hyperconnected spaces via m-structures Hanan Al-Saadi Umm Al-Qura University Faculty of Applied Sciences Department of Mathematics P.O. Box 11155 Makkah 21955 Saudi Arabia [email protected] Ahmad Al-Omari∗ Al al-Bayt University Faculty of Sciences Department of Mathematics P.O. Box 130095, Mafraq 25113 Jordan [email protected] Takashi Noiri 2949-1 Shiokita-cho Hinagu, Yatsushiro-shi Kumamoto-ken, 869-5142 Japan [email protected] Abstract. In this paper, we introduce and investigate the notion of m-hyperconnec- tedness in a topological space (X; τ) with a minimal structure mX on X. Several characterizations and preservation theorems of m-hyperconnectedness are obtained. Keywords: m-structure, m-hyperconnected, semi-mX -open, semi-mX -interior, some- where dense. 1. Introduction A subfamily mX of the power set P(X) of a nonempty set X is called a minimal structure [11] if ϕ 2 mX and X 2 mX . In [2], the present authors introduced and investigated the notion of m∗-connected spaces, m-separated sets and m- connected sets in a topological space (X; τ) with a minimal structure mX . In this paper, we introduced the notion of m-hyperconnectedness in a topological space (X; τ) with a minimal structure mX . We obtain several characterizations and preservation theorems of m-hyperconnectedness. And also, we investigate the ∗. Corresponding author On hyperconnected spaces via m-structures 291 relationship between m-hyperconnectedness and hyperconnectedness. Recently papers [3, 4, 12] have introduced some new classes of sets via m-structures.
    [Show full text]
  • Graph Minor from Wikipedia, the Free Encyclopedia Contents
    Graph minor From Wikipedia, the free encyclopedia Contents 1 2 × 2 real matrices 1 1.1 Profile ................................................. 1 1.2 Equi-areal mapping .......................................... 2 1.3 Functions of 2 × 2 real matrices .................................... 2 1.4 2 × 2 real matrices as complex numbers ............................... 3 1.5 References ............................................... 4 2 Abelian group 5 2.1 Definition ............................................... 5 2.2 Facts ................................................. 5 2.2.1 Notation ........................................... 5 2.2.2 Multiplication table ...................................... 6 2.3 Examples ............................................... 6 2.4 Historical remarks .......................................... 6 2.5 Properties ............................................... 6 2.6 Finite abelian groups ......................................... 7 2.6.1 Classification ......................................... 7 2.6.2 Automorphisms ....................................... 7 2.7 Infinite abelian groups ........................................ 8 2.7.1 Torsion groups ........................................ 9 2.7.2 Torsion-free and mixed groups ................................ 9 2.7.3 Invariants and classification .................................. 9 2.7.4 Additive groups of rings ................................... 9 2.8 Relation to other mathematical topics ................................. 10 2.9 A note on the typography ......................................
    [Show full text]
  • Almost Cl-Supercontinuous Functions
    Applied General Topology c Universidad Polit´ecnica de Valencia @ Volume 10, No. 1, 2009 pp. 1-12 Almost cl-supercontinuous functions J. K. Kohli and D. Singh Abstract. Reilly and Vamanamurthy introduced the class of ‘clopen maps’ (≡ ‘cl-supercontinuous functions’). Subsequently gen- eralizing clopen maps, Ekici defined and studied almost clopen maps (≡ almost cl-supercontinuous functions). Continuing in the spirit of Ekici, here basic properties of almost clopen maps are studied. Behav- ior of separation axioms under almost clopen maps is elaborated. The interrelations between direct and inverse transfer of topological prop- erties under almost clopen maps are investigated. The results obtained in the process generalize, improve and strengthen several known results in literature including those of Ekici, Singh, and others. 2000 AMS Classification: Primary: 54C05, 54C10; Secondary: 54D10, 54D15, and 54D 20. Keywords: almost clopen map, almost cl-supercontinuous function, (almost) z-supercontinuous function, clopen almost closed graphs, almost zero dimen- sional space, hyperconnected space. 1. Introduction Variants of continuity occur in almost all branches of mathematics and ap- plications of mathematics. The strong variants of continuity with which we shall be dealing in this paper include strongly continuous functions introduced by Levine [13], perfectly continuous functions considered by Noiri ([18], [19]), clopen maps (≡ cl-supercontinuous functions) defined by Reilly and Vamana- murthy [21], and studied by Singh [26], z-supercontinuous functions initiated by Kohli and Kumar [12], and supercontinuous functions introduced by Munshi and Bassan [16]. The variants of continuity which are independent of continu- ity and will be dealt with in this paper include regular set connected functions (≡ almost perfectly continuous functions) defined by Dontchev, Ganster and Reilly [3], almost clopen maps (≡ almost cl-supercontinuous functions) studied by Ekici [4], almost z-supercontinuous functions [11] and δ-continuous func- tions defined by Noiri [17].
    [Show full text]