Review the Conservation Status of West Indian Palms

Total Page:16

File Type:pdf, Size:1020Kb

Review the Conservation Status of West Indian Palms Oryx Vol 41 No 3 July 2007 Review The conservation status of West Indian palms (Arecaceae) Scott Zona, Rau´l Verdecia, Angela Leiva Sa´nchez, Carl E. Lewis and Mike Maunder Abstract The conservation status of 134 species, sub- ex situ and in situ conservation projects in the region’s species and varieties of West Indian palms (Arecaceae) botanical gardens. We recommend that preliminary is assessed and reviewed, based on field studies and conservation assessments be made of the 25 Data current literature. We find that 90% of the palm taxa of Deficient taxa so that conservation measures can be the West Indies are endemic. Using the IUCN Red List implemented for those facing imminent threats. categories one species is categorized as Extinct, 11 taxa as Critically Endangered, 19 as Endangered, and 21 as Keywords Arecaceae, Caribbean, Palmae, palms, Red Vulnerable. Fifty-seven taxa are classified as Least List, West Indies. Concern. Twenty-five taxa are Data Deficient, an indica- tion that additional field studies are urgently needed. The 11 Critically Endangered taxa warrant immediate This paper contains supplementary material that can conservation action; some are currently the subject of only be found online at http://journals.cambridge.org Introduction Recent phylogenetic work has changed the status of one genus formerly regarded as endemic: Gastrococos is now The islands of the West Indies (the Caribbean Islands shown to be part of the widespread genus Acrocomia sensu Smith et al., 2004), comprising the Greater and (Gunn, 2004). Taking these changes into consideration, Lesser Antilles, along with the Bahamas Archipelago, endemism at the generic level is 14%. Several other the Turks and Caicos Islands, and Cayman Islands, are genera, such as Pseudophoenix, Roystonea, Acoelorraphe recognized as a hotspot of biological diversity with and Thrinax, are near-endemics to the West Indies, also .50% endemism in the flora (Biodiversity Hotspots, occurring in southern Florida, the Yucata´n Peninsula, 2004; Smith et al., 2004). Palms (family Arecaceae or the Atlantic coast of Central America, or the northern Palmae) are among some of the most conspicuous plants coast of South America. The remaining genera are in the region. In terms of ecosystem function, palms are shared with North, Central or South America. The West keystone species (Terbough, 1986); moreover, palms are Indian endemic palm genera have few species, a pattern some of the most economically important wild plants, consistent with most endemic seed plant genera in the providing extractable resources (fibre, wood, sugar/ region (Francisco-Ortega et al., unpubl. data). There are alcohol, and animal feed) for people in the region (Read, 134 taxa of palms in the West Indies. A few, such as 1988; Horst, 1997). Palms are also an important part of Acrocomia aculeata, Desmoncus polyacanthos and Sabal every tourist’s image of a tropical vacation paradise. palmetto, are widespread, with ranges extending well There are 21 genera of palms in the West Indies. Of beyond the West Indian region. Most species, however, these, Zombia, Hemithrinax and Calyptronoma are endemic. are endemic or near-endemic (reaching continental coasts). We recognize 118 taxa as strictly endemic to Scott Zona (Corresponding author), Carl E. Lewis and Mike Maunder IUCN/ the West Indies. SSC Palm Specialist Group, Center for Tropical Plant Conservation, Fairchild The status of West Indian palms has been assessed Tropical Botanic Garden, 11935 Old Cutler Road, Coral Gables, Miami, Florida before, either globally or by country. The first regional 33156, USA. E-mail [email protected] assessment was that of Dransfield et al. (1988), based on Rau´ l Verdecia IUCN/SSC Palm Specialist Group, Jardı´n Bota´nico Las Tunas, data amassed in the IUCN Threatened Plants Unit Las Tunas, Cuba. database. At that time the taxonomy of several West Angela Leiva Sa´ nchez IUCN/SSC Palm Specialist Group, Jardı´n Bota´nico Indian genera was poorly understood. Consequently, Nacional, Carr. El Rocı´o, Km. 3 ½, Calabazar, CP 19230, La Habana, Cuba. many of the taxa in Dransfield et al. (1988) are no longer Received 17 April 2006. Revision requested 14 August 2006. recognized, and the names on that list are difficult to Accepted 6 October 2006. reconcile with those on current floristic lists. The second 300 ª 2007 FFI, Oryx, 41(3), 300–305 doi:10.1017/S0030605307000404 Printed in the United Kingdom Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.180, on 05 Oct 2021 at 13:24:35, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0030605307000404 West Indian palms 301 conservation assessment was Johnson & the IUCN/SSC Results Palm Specialist Group (1996), a global assessment that Our Red List assessments for each taxon are presented listed only those palms thought to be highly threatened; in the Appendix with, for comparison, the Red List it did not assign a conservation assessment to other assessments of Dransfield et al. (1988), Johnson & the species. More recently, several publications have IUCN/SSC Palm Specialist Group (1996), and the cur- addressed the conservation status of palms within rent global Red List status (IUCN, 2006). The number of a particular geopolitical region (Henderson et al., 1990; taxa in each Red List category by island or island group Moya & Leiva, 2000; Zona et al., 2003; Berzaı´n et al., 2005; and overall, summarized from our assessments in the Galeano & Bernal, 2005). Appendix, and also the number of taxa and endemic Threats to native palms in the West Indies include land taxa by island or island group, are presented in Table 1. clearing for agriculture and construction, overexploita- The 134 taxa are not uniformly distributed throughout tion for timber, thatch or other products, anthropogenic the region. Of the 11 taxa that we assess as Critically fires, habitat degradation, livestock, competition from Endangered nine occur in Cuba, which also has the introduced exotic plants, and introduced pathogens and greatest number of palm species, and two in Haiti. There pests. Of these, land clearing poses the greatest threat. are 118 (88%) taxa strictly endemic to the West Indies. Assessing the conservation status of palms in the West One hundred and nineteen taxa (89%) occur in only one Indies is a critical first step in prioritizing conservation of the island areas considered in this assessment but of resources and activities. The need for an up to date, these, six (or 4% of the total West Indian taxa) also occur complete global assessment of the West Indian palms in areas outside the West Indies. A significant propor- was the impetus for this paper. tion of the remaining 113 island taxa are probably point endemics, i.e. with a restricted geographic range. The exact number of point endemics cannot be determined Methods without further taxonomic study. The islands included in this assessment are the Bahamas Archipelago (including the Turks & Caicos Islands), Discussion Cayman Islands, Cuba, Hispaniola, Jamaica, the Lesser Extinct and Critically Endangered species Antilles, and Puerto Rico and the Virgin Islands (Fig. 1). We have used the taxonomy of the World Checklist of Only one West Indian palm, Roystonea stellata, is catego- Palms (Govaerts & Dransfield, 2005), along with the rized as Extinct. This palm was endemic to the Meseta genera recognized by Dransfield et al. (2005), as these de Maisı´, in extreme eastern Guanta´namo Province, are the most up to date and are widely regarded as the Cuba. It was described from a single specimen by arbiter of palm taxonomy. We included only those Brother Leo´n in 1943 but repeated exploration for the palms believed to be native to the region; introduced palm has failed to relocate it (Zona, 1991). In September or naturalized species were excluded. We also consid- 2005 RV searched for this palm and distributed photo- ered one taxon, Zombia antillarum var. gonzalezii of graphs among many local people of the characteristic the Dominican Republic, that was not included in fruits of R. stellata but without success. R. stellata is not Govaerts & Dransfield (2005) either as a recognized known to be in cultivation. taxon or synonym. We believe that, until its taxonomic Attalea crassispatha is endemic to Haiti, where ,30 adult status can be resolved, this taxon should not be palms persist in severely degraded habitats (Henderson excluded from assessment. One taxon listed by Govaerts et al., 1990; Timyan & Reep, 1994). These palms are & Dransfield (2005), Copernicia x escarzana, was not occasionally felled, and children eat the immature seeds. included in our assessment, as we believe it to be Seedlings are over-browsed by livestock. Conservation synonymous with C.xburretiana. Copernicia yarey var. measures, including ex situ cultivation in Haiti and other robusta was treated as a synonym of C. yarey by Govaerts countries, and livestock exclosures around mature palms, & Dransfield (2005) but we recognize and evaluate it as have been initiated (Timyan & Reep, 1994), but long-term a distinct variety. success cannot yet be evaluated. We used the IUCN Red List Categories and Criteria Pseudophoenix lediniana is endemic to a limited area in version 3.1 (IUCN, 2001, 2006) to assess the conservation Departement de l’Ouest, Haiti, where ,50 adults sur- status of each taxon. Our sources of data are published vive (Henderson et al., 1990; Zona, 2002). The site is accounts of the palm flora, along with personal obser- traditionally respected by the local people but lacks any vations made during field work since 1985. Field work legal protection. The palm fruits are gathered for animal in Cuba was by RV and ALS; field work elsewhere in the feed (Read, 1968), and therefore the species’ long-term West Indies was by the remaining authors. viability is in doubt.
Recommended publications
  • A Conservation Framework for the Critically Endangered Endemic Species of the Caribbean Palm Coccothrinax
    A conservation framework for the Critically Endangered endemic species of the Caribbean palm Coccothrinax B RETT J ESTROW,BRÍGIDO P EGUERO,FRANCISCO J IMÉNEZ,RAÚL V ERDECIA L ISBET G ONZÁLEZ-OLIVA,CELIO E. MOYA,WILLIAM C INEA,M.PATRICK G RIFFITH A LAN W. MEEROW,MIKE M AUNDER and J AVIER F RANCISCO-ORTEGA Abstract With threatened species ( categorized as plant exploration initiatives, taxonomic revisions, outreach, Critically Endangered and as Endangered, sensu IUCN), and fundraising. The ultimate aim of this review is to provide Coccothrinax (c. species) is the flagship palm genus for baseline information that will develop conservation synergy conservation in the Caribbean Island Biodiversity Hotspot. among relevant parties working on Coccothrinax conserva- Coccothrinax has its centre of taxonomic diversity in these tion in Cuba, Haiti and the Dominican Republic. Such colla- islands, with c. endemic species. We present a conservation borations could also benefit through partnerships with framework for the Critically Endangered species, found botanists working in other countries. in Cuba, Haiti or the Dominican Republic. Only two species Keywords Antilles, Arecaceae, IUCN, plant biodiversity, (C. jimenezii, C. montana) occur in more than one country red lists, taxonomy, tropical islands (Haiti and the Dominican Republic). Immediate threats include oil drilling and nickel mining, intrusion of saline water into soil, urban and agricultural development, low population recruitment, uncontrolled fires, interspecific hy- Introduction bridization, and unsustainable ethnobotanical practices. Coccothrinax bermudezii, C. borhidiana, C. crinita ssp. crini- alms are an iconic feature of the Caribbean landscape ta, C. leonis and C. spissa are not conserved in protected areas. Pand are associated with strong folk and ethnobotani- Coccothrinax bermudezii, C.
    [Show full text]
  • Acrocomia Media 68
    Acrocomia media O.F. Cook Corozo Palmae Familia de las palmas John K. Francis Acrocomia media O.F. Cook, conocido como corozo en Clima español y como “prickly palm” en inglés, es una palma El corozo crece y se reproduce en los bosques húmedos de atractiva y de tamaño mediano (fig. 1) nativo a las áreas tierras bajas que reciben entre 1000 y 1900 mm de costeras y la base de los cerros en Puerto Rico y St. Thomas, precipitación anual promedio (observación personal del Islas Vírgenes de los Estados Unidos. La fruta y el meollo de autor). Aunque menos común, la especie también ocurre de las semillas son comestibles y tienen un alto contenido de manera natural en las áreas con más de 1900 mm de aceite, pero son rara vez usados. A pesar de su tronco espinoso, precipitación anual promedio. En las áreas con menos de 1000 el corozo se ha vuelto popular como una planta de ornamento mm de precipitación, las palmas de corozo se encuentran para uso en la decoración del paisaje. confinadas al curso de las corrientes de agua, los arroyos intermitentes y los micrositios que reciben aguas de desagüe. HABITAT Suelos y Topografía Area de Distribución Natural y de Naturalización Los hábitats más favorables para la reproducción del corozo que proveen a su vez de una ventaja competitiva en el El corozo es nativo a Puerto Rico y St. Thomas, en las crecimiento son las arenas costeras húmedas. Estas son are- Islas Vírgenes de los Estados Unidos (fig. 2) y ha sido nas y arenas margosas con unos pH de entre 6.5 y 8.5 que se introducido como una especie de ornamento a St.
    [Show full text]
  • Species Delimitation and Hybrid Identification of Acrocomia Aculeata
    Species delimitation and hybrid identification of Acrocomia aculeata and A. totai by genetic population approach Brenda D´ıaz1, Maria Zucchi2, Alessandro Alves-Pereira1, Joaquim Azevedo-Filho2, Mariana Sanit´a2, and Carlos Colombo2 1State University of Campinas 2Instituto Agronomico October 9, 2020 Abstract To the Neotropical genus Acrocomia (Arecaceae) is attributed eight species with a wide distribution in America. A. aculeata and A. totai are the most important species because of their high economic potential for oil production. However, there is no consensus in their classification as different taxons and their distinctiveness is particularly challenging due to morphological similarities with large plasticity of the traits. In addition, there is doubt about the occurrence of interspecific hybrids between both species. In this study, we applied a genetic population approach to assessing the genetic boundaries, diversity and to identify interspecific hybrids of A. aculeata and A. totai. Thirteen loci of simple sequence repeat (SSR) were employed to analyze twelve populations representing a wide distribution of species, from Minas Gerais, Brazil to Formosa, Argentina. Based on the Bayesian analysis (STRUCTURE and NewHybrids) and Discriminant Analysis of Principal Components (DAPC), our study supports the recognition of A. aculeata and A. totai as two species and the estimates of genetic parameters revealed more genetic diversity in A. totai (HE=0.551) than in A. aculeata (HE=0.466). We obtained evidence of hybridization between the species and that admixed individuals were assigned as F2 hybrids. In conclusion, this study showed the usefulness of microsatellite markers to elucidate the genetic boundaries of A. aculeata and A. totai, supporting their classification as different species and increase our knowledge about genetic diversity at the level of populations and species.
    [Show full text]
  • Red Ring Disease of Coconut Palms Is Caused by the Red Ring Nematode (Bursaphelenchus Cocophilus), Though This Nematode May Also Be Known As the Coconut Palm Nematode
    1 Red ring disease of coconut palms is caused by the red ring nematode (Bursaphelenchus cocophilus), though this nematode may also be known as the coconut palm nematode. This disease was first described on coconut palms in 1905 in Trinidad and the association between the disease and the nematode was reported in 1919. The vector of the nematode is the South American palm weevil (Rhynchophorus palmarum), both adults and larvae. The nematode parasitizes the weevil which then transmits the nematode as it moves from tree to tree. Though the weevil may visit many different tree species, the nematode only infects members of the Palmae family. The nematode and South American palm weevil have not yet been observed in Florida. 2 Information Sources: Brammer, A.S. and Crow, W.T. 2001. Red Ring Nematode, Bursaphelenchus cocophilus (Cobb) Baujard (Nematoda: Secernentea: Tylenchida: Aphelenchina: Aphelenchoidea: Bursaphelechina) formerly Rhadinaphelenchus cocophilus. University of Florida, IFAS Extension. EENY236. Accessed 11-27-13 http://edis.ifas.ufl.edu/in392 Griffith, R. 1987. “Red Ring Disease of Coconut Palm”. The American Pathological Society Plant Disease, Volume 71, February, 193-196. accessed 12/5/2013- http://www.apsnet.org/publications/plantdisease/ba ckissues/Documents/1987Articles/PlantDisease71n02_193.PDF Griffith, R., R. M. Giblin-Davis, P. K. Koshy, and V. K. Sosamma. 2005. Nematode parasites of coconut and other palms. M. Luc, R. A. Sikora, and J. Bridges (eds.) In Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. C.A.B. International, Oxon, UK. Pp. 493-527. 2 The host trees susceptible to the red ring nematode are usually found in the family Palmae.
    [Show full text]
  • Review the Conservation Status of West Indian Palms (Arecaceae)
    Oryx Vol 41 No 3 July 2007 Review The conservation status of West Indian palms (Arecaceae) Scott Zona, Rau´l Verdecia, Angela Leiva Sa´nchez, Carl E. Lewis and Mike Maunder Abstract The conservation status of 134 species, sub- ex situ and in situ conservation projects in the region’s species and varieties of West Indian palms (Arecaceae) botanical gardens. We recommend that preliminary is assessed and reviewed, based on field studies and conservation assessments be made of the 25 Data current literature. We find that 90% of the palm taxa of Deficient taxa so that conservation measures can be the West Indies are endemic. Using the IUCN Red List implemented for those facing imminent threats. categories one species is categorized as Extinct, 11 taxa as Critically Endangered, 19 as Endangered, and 21 as Keywords Arecaceae, Caribbean, Palmae, palms, Red Vulnerable. Fifty-seven taxa are classified as Least List, West Indies. Concern. Twenty-five taxa are Data Deficient, an indica- tion that additional field studies are urgently needed. The 11 Critically Endangered taxa warrant immediate This paper contains supplementary material that can conservation action; some are currently the subject of only be found online at http://journals.cambridge.org Introduction Recent phylogenetic work has changed the status of one genus formerly regarded as endemic: Gastrococos is now The islands of the West Indies (the Caribbean Islands shown to be part of the widespread genus Acrocomia sensu Smith et al., 2004), comprising the Greater and (Gunn, 2004). Taking these changes into consideration, Lesser Antilles, along with the Bahamas Archipelago, endemism at the generic level is 14%.
    [Show full text]
  • Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands
    SMITHSONIAN INSTITUTION Contributions from the United States National Herbarium Volume 52: 1-415 Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands Editors Pedro Acevedo-Rodríguez and Mark T. Strong Department of Botany National Museum of Natural History Washington, DC 2005 ABSTRACT Acevedo-Rodríguez, Pedro and Mark T. Strong. Monocots and Gymnosperms of Puerto Rico and the Virgin Islands. Contributions from the United States National Herbarium, volume 52: 415 pages (including 65 figures). The present treatment constitutes an updated revision for the monocotyledon and gymnosperm flora (excluding Orchidaceae and Poaceae) for the biogeographical region of Puerto Rico (including all islets and islands) and the Virgin Islands. With this contribution, we fill the last major gap in the flora of this region, since the dicotyledons have been previously revised. This volume recognizes 33 families, 118 genera, and 349 species of Monocots (excluding the Orchidaceae and Poaceae) and three families, three genera, and six species of gymnosperms. The Poaceae with an estimated 89 genera and 265 species, will be published in a separate volume at a later date. When Ackerman’s (1995) treatment of orchids (65 genera and 145 species) and the Poaceae are added to our account of monocots, the new total rises to 35 families, 272 genera and 759 species. The differences in number from Britton’s and Wilson’s (1926) treatment is attributed to changes in families, generic and species concepts, recent introductions, naturalization of introduced species and cultivars, exclusion of cultivated plants, misdeterminations, and discoveries of new taxa or new distributional records during the last seven decades.
    [Show full text]
  • Herbariet Publ 2010-2019 (PDF)
    Publikationer 2019 Amorim, B. S., Vasconcelos, T. N., Souza, G., Alves, M., Antonelli, A., & Lucas, E. (2019). Advanced understanding of phylogenetic relationships, morphological evolution and biogeographic history of the mega-diverse plant genus Myrcia and its relatives (Myrtaceae: Myrteae). Molecular phylogenetics and evolution, 138, 65-88. Anderson, C. (2019). Hiraea costaricensis and H. polyantha, Two New Species Of Malpighiaceae, and circumscription of H. quapara and H. smilacina. Edinburgh Journal of Botany, 1-16. Athanasiadis, A. (2019). Carlskottsbergia antarctica (Hooker fil. & Harv.) gen. & comb. nov., with a re-assessment of Synarthrophyton (Mesophyllaceae, Corallinales, Rhodophyta). Nova Hedwigia, 108(3-4), 291-320. Athanasiadis, A. (2019). Amphithallia, a genus with four-celled carpogonial branches and connecting filaments in the Corallinales (Rhodophyta). Marine Biology Research, 15(1), 13-25. Bandini, D., Oertel, B., Moreau, P. A., Thines, M., & Ploch, S. (2019). Three new hygrophilous species of Inocybe, subgenus Inocybe. Mycological Progress, 18(9), 1101-1119. Baranow, P., & Kolanowska, M. (2019, October). Sertifera hirtziana (Orchidaceae, Sobralieae), a new species from southeastern Ecuador. In Annales Botanici Fennici (Vol. 56, No. 4-6, pp. 205-209). Barboza, G. E., García, C. C., González, S. L., Scaldaferro, M., & Reyes, X. (2019). Four new species of Capsicum (Solanaceae) from the tropical Andes and an update on the phylogeny of the genus. PloS one, 14(1), e0209792. Barrett, C. F., McKain, M. R., Sinn, B. T., Ge, X. J., Zhang, Y., Antonelli, A., & Bacon, C. D. (2019). Ancient polyploidy and genome evolution in palms. Genome biology and evolution, 11(5), 1501-1511. Bernal, R., Bacon, C. D., Balslev, H., Hoorn, C., Bourlat, S.
    [Show full text]
  • Historical Biogeography of Endemic Seed Plant Genera in the Caribbean: Did Gaarlandia Play a Role?
    Received: 18 May 2017 | Revised: 11 September 2017 | Accepted: 14 September 2017 DOI: 10.1002/ece3.3521 ORIGINAL RESEARCH Historical Biogeography of endemic seed plant genera in the Caribbean: Did GAARlandia play a role? María Esther Nieto-Blázquez1 | Alexandre Antonelli2,3,4 | Julissa Roncal1 1Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada Abstract 2Department of Biological and Environmental The Caribbean archipelago is a region with an extremely complex geological history Sciences, University of Göteborg, Göteborg, and an outstanding plant diversity with high levels of endemism. The aim of this study Sweden was to better understand the historical assembly and evolution of endemic seed plant 3Gothenburg Botanical Garden, Göteborg, Sweden genera in the Caribbean, by first determining divergence times of endemic genera to 4Gothenburg Global Biodiversity Centre, test whether the hypothesized Greater Antilles and Aves Ridge (GAARlandia) land Göteborg, Sweden bridge played a role in the archipelago colonization and second by testing South Correspondence America as the main colonization source as expected by the position of landmasses María Esther Nieto-Blázquez, Biology Department, Memorial University of and recent evidence of an asymmetrical biotic interchange. We reconstructed a dated Newfoundland, St. John’s, NL, Canada. molecular phylogenetic tree for 625 seed plants including 32 Caribbean endemic gen- Emails: [email protected]; menietoblazquez@ gmail.com era using Bayesian inference and ten calibrations. To estimate the geographic range of the ancestors of endemic genera, we performed a model selection between a null and Funding information NSERC-Discovery grant, Grant/Award two complex biogeographic models that included timeframes based on geological Number: RGPIN-2014-03976; MUN’s information, dispersal probabilities, and directionality among regions.
    [Show full text]
  • Sfps Fall 2011 Sale Plant List
    SFPS FALL 2011 SALE PLANT LIST PLANTS VENDOR # Palms Acanthophoenix rubra 35 Acoelorrhaphe wrightii 26, 67 Acrocomia aculeata 50, 67 Actinokentia divaricata 35, 57, 66, 68, 72 Actinorhytis calapparia 72 Adonidia merrillii 31, 57, 66, 89 Adonidia merrillii var. "Golden Form" 35 Aiphanes aculeata = Aiphanes horrida - Aiphanes caryotifolia = Aiphanes horrida - Aiphanes erosa = Aiphanes minima - Aiphanes horrida 35, 68, 72 Aiphanes minima 68 Aiphanes vincentiana = Aiphanes minima - Allagoptera arenaria 57, 66, 67, 68, 72 Allagoptera campestris 67 Allagoptera leucocalyx 57 Alloschmidia glabrata = Basselinia glabrata - Alsmithia longipes = Heterospathe longipes - Archontophoenix cunninghamiana var. 'Illawara' 68 Archontophoenix maxima 67, 72 Archontophoenix myolensis 50, 66, 67, 68 Archontophoenix purpurea 57, 66, 72 Archontophoenix tuckeri 66, 68 Areca aliceae = Areca triandra - Areca camarinensis 57, 68 Areca catechu 57, 67, 72 Areca catechu var. 'Dwarf' 35, 50 Areca hutchinsoniana 68 Areca ipot 67 Areca latiloba = Areca montana - Areca macrocalyx var. 'Red Form' 35, 57, 68 Areca macrocarpa 68 Areca montana 57 Areca triandra 68, 72 Areca vestiaria 25, 35, 57, 67, 68 Areca vestiaria var. 'Orange Form' 25, 57, 67, 72 Areca vestiaria var. 'Maroon Leaf' 35, 57, 67 Areca vestiaria var. 'Red Leaf' 57, 67, 72 Areca sp. 'Yellow Crownshaft' 25 Arenga ambong = Arenga undulatifolia - Arenga brevipes 57 Arenga caudata 66 Arenga engleri 31, 66, 68, 72 Arenga hookeriana 35, 57, 66, 72 Arenga microcarpa 26, 66 Arenga obtusifolia 57, 66 PLANTS VENDOR # Arenga pinnata 50, 57, 66, 67, 68 Arenga porphyrocarpa 66 Arenga tremula 26, 57, 66, 68, 72 Arenga undulatifolia 35, 57, 66, 67 Arenga westerhoutii 68 Asterogyne martiana 57, 68, 72 Astrocaryum acaule 72 Astrocaryum alatum 35, 50, 57, 67 Astrocaryum mexicanum 72 Astrocaryum murumuru 72 Attalea butyracea 57, 67, 72 Attalea cohune 35 Attalea phalerata 50, 91 Attalea rostrata 68 Attalea speciosa 50, 66 Bactris bidentula 72 Bactris gasipaes 67 Bactris gasipaes var.
    [Show full text]
  • Acrocomia Crispa Fruits Lipid Extract Prevents LPS-Induced Acute Lung Injury in Mice
    BOLETÍN LATINOAMERICANO Y DEL CARIBE DE PLANTAS MEDICINALES Y AROMÁTICAS 18 (1): 16 - 26 (2019) © / ISSN 0717 7917 / www.blacpma.usach.cl Artículo Original | Original Article Acrocomia crispa fruits lipid extract prevents LPS-induced acute lung injury in mice [Extracto lipídico de los frutos de Acrocomia crispa previene el daño pulmonar agudo inducido por LPS en ratones] Licet Mena, Roxana Sierra, Maikel Valle, Vivian Molina, Sandra Rodriguez, Nelson Merino, Zullyt Zamora, Victor González & Jose Alberto Medina Pharmacology Department, Centre of Natural Products, National Centre for Scientific Research, Havana City, Cuba Contactos | Contacts: Vivian MOLINA - E-mail address: [email protected] Abstract: The aim of this study was to evaluate the effects of single oral doses of D-005 (a lipid extract obtained from the fruit oil of Acrocomia crispa) on LPS-induced acute lung injury (ALI) in mice. D-005 batch composition was: lauric (35.8%), oleic (28.4%), myristic (14.2%), palmitic (8.9%), stearic (3.3%), capric (1.9%), caprylic (1.2%), and palmitoleic (0.05%) acids, for a total content of fatty acids of 93.7%. D-005 (200 mg/kg) significantly reduced lung edema (LE) (≈ 28% inhibition) and Lung Weight/Body Weight ratio (LW/BW) (75.8% inhibition). D-005 (25, 50, 100 and 200 mg/kg) produced a significant reduction of Histological score (59.9, 56.1, 53.5 and 73.3% inhibition, respectively). Dexamethasone, as the reference drug, was effective in this experimental model. In conclusion, pretreatment with single oral doses of D-005 significantly prevented the LPS-induced ALI in mice.
    [Show full text]
  • Forest Inventory and Analysis National Core Field Guide
    National Core Field Guide, Version 5.1 October, 2011 FOREST INVENTORY AND ANALYSIS NATIONAL CORE FIELD GUIDE VOLUME I: FIELD DATA COLLECTION PROCEDURES FOR PHASE 2 PLOTS Version 5.1 National Core Field Guide, Version 5.1 October, 2011 Changes from the Phase 2 Field Guide version 5.0 to version 5.1 Changes documented in change proposals are indicated in bold type. The corresponding proposal name can be seen using the comments feature in the electronic file. • Section 8. Phase 2 (P2) Vegetation Profile (Core Optional). Corrected several figure numbers and figure references in the text. • 8.2. General definitions. NRCS PLANTS database. Changed text from: “USDA, NRCS. 2000. The PLANTS Database (http://plants.usda.gov, 1 January 2000). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. FIA currently uses a stable codeset downloaded in January of 2000.” To: “USDA, NRCS. 2010. The PLANTS Database (http://plants.usda.gov, 1 January 2010). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. FIA currently uses a stable codeset downloaded in January of 2010”. • 8.6.2. SPECIES CODE. Changed the text in the first paragraph from: “Record a code for each sampled vascular plant species found rooted in or overhanging the sampled condition of the subplot at any height. Species codes must be the standardized codes in the Natural Resource Conservation Service (NRCS) PLANTS database (currently January 2000 version). Identification to species only is expected. However, if subspecies information is known, enter the appropriate NRCS code. For graminoids, genus and unknown codes are acceptable, but do not lump species of the same genera or unknown code.
    [Show full text]
  • Las Palmeras En El Marco De La Investigacion Para El
    REVISTA PERUANA DE BIOLOGÍA Rev. peru: biol. ISSN 1561-0837 Volumen 15 Noviembre, 2008 Suplemento 1 Las palmeras en el marco de la investigación para el desarrollo en América del Sur Contenido Editorial 3 Las comunidades y sus revistas científicas 1he scienrific cornmuniries and their journals Leonardo Romero Presentación 5 Laspalmeras en el marco de la investigación para el desarrollo en América del Sur 1he palrns within the framework ofresearch for development in South America Francis Kahny CésarArana Trabajos originales 7 Laspalmeras de América del Sur: diversidad, distribución e historia evolutiva 1he palms ofSouth America: diversiry, disrriburíon and evolutionary history Jean-Christopbe Pintaud, Gloria Galeano, Henrik Balslev, Rodrigo Bemal, Fmn Borchseníus, Evandro Ferreira, Jean-Jacques de Gran~e, Kember Mejía, BettyMillán, Mónica Moraes, Larry Noblick, FredW; Staufl'er y Francis Kahn . 31 1he genus Astrocaryum (Arecaceae) El género Astrocaryum (Arecaceae) . Francis Kahn 49 1he genus Hexopetion Burret (Arecaceae) El género Hexopetion Burret (Arecaceae) Jean-Cbristopbe Pintand, Betty MiJJány Francls Kahn 55 An overview ofthe raxonomy ofAttalea (Arecaceae) Una visión general de la taxonomía de Attalea (Arecaceae) Jean-Christopbe Pintaud 65 Novelties in the genus Ceroxylon (Arecaceae) from Peru, with description ofa new species Novedades en el género Ceroxylon (Arecaceae) del Perú, con la descripción de una nueva especie Gloria Galeano, MariaJosé Sanín, Kember Mejía, Jean-Cbristopbe Pintaud and Betty MiJJán '73 Estatus taxonómico
    [Show full text]