United 'Statesdpatent Office
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BAUER GRU™ BAUER Solutions for Biogas
BAUER GRU™ BAUER Solutions for Biogas WORLDWIDE QUALITY INNOVATION RELIABILITY BAUER COMPRESSORS BIOGAS SOLUTIONS | CONTENTS | 3 CONTENTS PURELY THE RIGHT CHOICE THE CASE FOR BIOGAS › The Problem ..................................................................... 4 › The Solution: Generating Biogas As An Alternative Clean Energy Source ................... 5 › Complete Solutions .............................................................. 6 TURNKEY SOLUTIONS FOR BIOGAS › 75 Years Of Experience In Gas Compression And Processing ............................ 8 › Turnkey Solutions For Biogas Generation ............................................. 9 BAUER GRU™ Biogas Recovery Compressors For Injection Into PSA or Membrane Gas Conditioning Systems › BAUER GRU™ Overview .............................................................................................................. 10 › BAUER GRU™ Micro. .................................................................................................................. 12 › BAUER GRU™ 3 .......................................................................................................................... 13 › BAUER GRU™ 6. ......................................................................................................................... 14 › BAUER GRU™ 9. ......................................................................................................................... 15 › BAUER GRU™ 15. ...................................................................................................................... -
Appendix 10C Routing Analysis Report, Missouri River Crossing Options Routing Analysis
NORTHERN NATURAL GAS - South Sioux City to Sioux Falls A-line Replacement Project REPORT NO. 10 ALTERNATIVES Appendix 10C Routing Analysis Report, Missouri River Crossing Options Routing Analysis South Sioux City to Sioux Falls A-Line Replacement Project Missouri River Crossing Options Dixon County, Nebraska Prepared for: Northern Natural Gas Company Prepared by: Stantec Consulting Services, Inc. July 30, 2019 ROUTING ANALYSIS SOUTH SIOUX CITY TO SIOUX FALLS A-LINE REPLACEMENT PROJECT MISSOURI RIVER CROSSING OPTIONS DIXON COUNTY, NEBRASKA Table of Contents 1.0 INTRODUCTION ................................................................................................................ 1 2.0 FEASIBILITY STUDY METHODS ........................................................................................... 1 3.0 FEASIBILITY STUDY RESULTS .............................................................................................. 3 3.1 PREFERRED ROUTE SELECTION ........................................................................................... 3 4.0 CONCLUSION .................................................................................................................. 4 5.0 REFERENCES...................................................................................................................... 5 APPENDIX A – TABLE 1 APPENDIX B – FIGURES • Figure 1 Project Location and Topography • Figure 2 National Wetlands Inventory, National Hydrography Dataset, Public Waters and Impaired Streams • Figure 3 NRCS Soil Survey Data APPENDIX -
Prediction of Producer Gas Composition for Small Scale Commercial Downdraft Gasifiers
PREDICTION OF PRODUCER GAS COMPOSITION FOR SMALL SCALE COMMERCIAL DOWNDRAFT GASIFIERS H Roesch*, J Dascomb, B Greska, A Krothapalli *Corresponding Author email: [email protected] *Corresponding Author phone: +18504967682 Energy and Sustainability Center, Florida State University 2525 Pottsdamer St, #229A, Tallahassee, Fl 32310 ABSTRACT: The goal of this study was to produce a model predicting the composition and heating value of producer gas made from a small scale (20-250 kWth), down-draft gasifier. Due the non-ideal conditions in this type of gasifier, classical thermodynamic equilibrium models are inaccurate. A more reliable prediction model for gas produced in a system of this size and type is needed. Eight biomass feedstocks were gasified and analyzed for this study. The pelletized feedstocks chosen were; alfalfa, algae, field grass, hemp, miscanthus, peanut shells, pine, and municipal solid waste. The feedstocks were chosen for their wide ranging availability and low costs. The commercial downdraft gasifier used was an Ankur Scientific WBG-20. This air-fed gasifier is capable of producing synthesis gas at a rate of up to 60 Nm3/hr (50 kWth). Each feedstock was first characterized by proximate and ultimate analysis, and then the synthesis gas was analyzed by gas chromatography. The large variation of reaction temperatures and equivalence ratios occurring in the economic downdraft gasifier reduced the accuracy of the conventional thermodynamic equilibrium simulation. The synthesis gas produced in these tests was used to create a more applicable model for estimating composition and heating value for this type of system. The model developed from these tests estimates the heating value of the synthesis gas produced from the ultimate and proximate analysis of the feedstock with an average error of 5% over all feedstocks tested. -
Cleaning Ucg Synthesis
Underground Coal Gasification (UCG), its Potential Prospects and its Challenges Dr. Duncan Seddon, FRACI, CChem, MSPE, Duncan Seddon & Associates Pty Ltd Email: [email protected] Dr. Mike Clarke, FIEAust, CPEng, FAusIMM, RPEQ, M.E.T.T.S. Pty Ltd Email: [email protected] Abstract: Coal is widely available in most parts of the world. Underground Coal Gasification (UCG) gives the promise of turning many poor quality coal resources into exploitable reserves by delivering energy in the form of synthesis gas, potentially at very low cost. The synthesis gas can be used for generation of electricity and the production of fuels and chemicals by commercially proven technology. Furthermore, any carbon present in the synthesis gas not used for downstream products could be easily separated and geo-sequestrated. This could extend the Fossil Fuel Age by providing low cost energy for developing and developed countries alike. Unfortunately, as Australian experience has shown, UCG also comes with technical and environmental challenges that are still not fully resolved. The paper outlines key developments in UCG and issues raised by Australian experience, particularly in regard to the contamination of acquifers. The paper discusses the quality of UCG synthesis gas and its potential use in downstream applications. The clean-up steps required for various downstream applications are described. A key hurdle to up-take of UCG is the overall cost of clean-up which has to be added to the cost of UCG production. This cost is discussed and the potential of UCG as a major new feedstock described. 1.0 Introduction Underground Coal Gasification (UCG) as a source of synthesis gas (syn-gas) for power generation, liquid fuels production and/or chemicals and fertiliser manufacture has been made to look beguilingly simple and straightforward by many of it proponents. -
Challenges and Opportunities of Biomethane for Pipeline Injection In
CHALLENGES & OPPORTUNITIES OF BIOMETHANE FOR PIPELINE INJECTION IN CALIFORNIA Valentino Tiangco, Ph.D. ER&D Department 15th Annual LMOP Conference and Project Expo Hilton Baltimore Hotel Baltimore, MD January 17-19, 2012 Powering forward. Together. Overview: • SMUD • Benefits • Challenges • Overcoming Challenges • SMUD’s Renewable Energy Mix • Strategic Approach www.smud.org • Opportunities • Summary SMUD – Owned By Customers • Not for Profit, Publicly Owned Utility • Sacramento County (small part of Placer County) • Almost 600,000 Customers; 1.4 Million Population • 6th Largest in U.S. • 7 Member Board of Directors • Elected by Ratepayers • Not a Part of City or County • Manage Balancing Authority in Northern California (BANC) • Low Rates, Innovative & Green! 3 Benefits of Biomethane • Unlike wind and solar, generation from biomethane is not intermittent and can be dispatched to fill-in the gaps and promote system reliability. • Reduces GHG emissions by displacing natural gas and reducing release of methane to the atmosphere. • Increases productive development and use of renewable resources from organic wastes. • Biomethane from renewable sources like dairy digesters and landfills can be a reliable source of renewable fuel that can power the cleanest and most efficient electricity generation facilities in the California. • Biomethane flexibility of use because of transportation and storage capabilities, • The opportunity to use a low cost renewable fuel (biomethane) when firing combined cycle generators thus producing renewable electrons at highest efficiencies, and • Biogas has very low carbon footprint, rated as the lowest carbon producing fuel through the CEC’s proceedings for the Low Carbon Fuel Standard. • Creates local jobs by keeping local power plants operating and keeping electricity costs lower, which helps local businesses to prosper and add jobs. -
Producer Gas
Scholars' Mine Bachelors Theses Student Theses and Dissertations 1895 Producer gas Edward P. Dwyer Follow this and additional works at: https://scholarsmine.mst.edu/bachelors_theses Part of the Chemistry Commons, and the Metallurgy Commons Department: Chemistry; Materials Science and Engineering Recommended Citation Dwyer, Edward P., "Producer gas" (1895). Bachelors Theses. 344. https://scholarsmine.mst.edu/bachelors_theses/344 This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Bachelors Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. Thesis FOR DEGREE OF BACHELOR OF SCIENCE CHEMISTRY AND METALLURGY 1895 E. P. Dwyer - Producer Gas Here in I have discussed but, the principle producers on the market and they are respectively upon the following pages. Siemens Gas Producer 14-19. Wellmans “ “ 19-21 Daubers “ “ 21-22 Langdons “ “ 22-25 Loomises “ 25-29 Sweets “ “ 29-32 Taylors. “ “ 32-39. Goetzs. No. 4. - Producer Gas Producer gas, so named owing to being produced in special forms of apparatus known as Producers. The fuel is decomposed into combustible gases, whereby most of the C is burnt to CO, whilst the H. either remains free, or is converted into carburretted Hydrogen. Directly above the grate carbonic anhydride is formed but thus is rapidly converted into carbonic oxide; reaction as follows: C 02 + C = 2CO. Amongst these heavy carburetted hydrogen (C2H4) is that which principally increases the value of the gas as fuel and the drier the fuel used the more of the gas is produced. -
Small Scale Liquefaction & Distribution
SMALL SCALE LIQUEFACTION & DISTRIBUTION - Biomethane and Natural Gas CLEAN ENERGY SMALL SCALE LIQUEFACTION & DISTRIBUTION Biomethane and Natural Gas 1 The Cryostar Group Specialising in equipment and expertise for industrial gas, LNG, hydrocarbons and clean energy, Cryostar is an international company exporting more than 90% of its products and serving customers worldwide. Founded in 1966, Cryostar is present on all continents, supported by its business centres and subsid- iaries. Today the company combines the resources and competencies of a local network with decen- tralised teams and its management and research headquarters in France. Cryostar delivers pumps, turbines, compressors, heat exchangers, automatic filling and refuelling stations, natural gas liquefaction/regasification plants and power plants to customers with the most demanding requirements. Cryostar’s innovative solutions have a proven track record of improving customers’ process performance. Cryostar has always been at the forefront of cryogenic technology. In 1967, it was the first company in Europe to produce cryogenic distribution pumps for liquefied air gases. It is in this spirit of consistently bringing innovative solution to customers that Cry- ostar has developed packaged solutions from small scale natural gas liquefaction to distribution. Headquarters and production facility Hésingue, France Think global, act local To stay close to its customers around the globe, Cryostar has established several Business & Service Centres and collaborates with experienced local agents and distributors. CRYOSTAR United Kingdom CRYOSTAR France CRYOSTAR Automation CRYOSTAR USA East CRYOSTAR USA West CRYOSTAR China CRYOSTAR India CRYOSTAR Singapore CRYOSTAR Brazil CRYOSTAR BUSINESS CENTRES GLOBAL CRYOSTAR AGENTS 2 SMALL SCALE LIQUEFACTION & DISTRIBUTION - Biomethane and Natural Gas Safety Safety is an integral part of Cryostar’s management and manufacturing commitments. -
Module Electric Power Generation
Copyright © 2011 Revised 2018 Center for Energy Workforce Development MODULE 3 ELECTRIC POWER GENERATION STUDENT GUIDE REVISED 06/2018 © 2011 – Revised 2018 Center for Occupational Research and Development Center for Energy Workforce Development Educational providers and their respective instructors have the right to duplicate and use these materials for instructional purposes. ISBN 978-1-1-57837-649-1 Neither the Center for Occupational Research and Development nor the Center for Energy Workforce Development assume any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process described in this publication. For questions or additional information regarding these materials, please contact Julie Strzempko at [email protected]. This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA. MODULE 3 ELECTRIC POWER GENERATION Table of Contents Unit A: Conventional Electric Power Generation Systems ....................................................... 7 Unit B: Overview of Generation Fuel Sources ...................................................................... 43 Unit C: Overview of Emerging and Alternative Generation Technologies ............................... 72 Unit A: Conventional Electric Power Generation Systems Energy Industry Fundamentals — Module 3 7 Energy Industry Fundamentals — Module 3 8 UNIT A: CONVENTIONAL ELECTRIC POWER GENERATION SYSTEMS Electric Power Generation As mentioned in Module 1, most electricity is generated by electromechanical generators that are driven by mechanical energy forces. The most common electricity generation mechanical force source is what is referred to as a “steam-electric cycle.” Water (in liquid form) is heated in a furnace to produce steam. -
The Potential of Sustainable Biomass Producer Gas As a Waste-To-Energy Alternative in Malaysia
sustainability Review The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia Jun Sheng Teh 1, Yew Heng Teoh 1,* , Heoy Geok How 2, Thanh Danh Le 3,*, Yeoh Jun Jie Jason 2, Huu Tho Nguyen 4 and Dong Lin Loo 1 1 Engineering Campus, School of Mechanical Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia; [email protected] (J.S.T.); [email protected] (D.L.L.) 2 Department of Engineering, School of Engineering, Computing and Built Environment, UOW Malaysia KDU Penang University College, 32 Jalan Anson, Georgetown 10400, Penang, Malaysia; [email protected] (H.G.H.); [email protected] (Y.J.J.J.) 3 Faculty of Mechanical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao Street, Ward 4, Go Vap District, Ho Chi Minh City 71408, Vietnam 4 Department of Mechatronics Engineering Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan Street, Tan Phu District, Ho Chi Minh City 760310, Vietnam; tho.nh@hufi.edu.vn * Correspondence: [email protected] or [email protected] (Y.H.T.); [email protected] (T.D.L.) Abstract: It has been widely accepted worldwide, that the greenhouse effect is by far the most challenging threat in the new century. Renewable energy has been adopted to prevent excessive greenhouse effects, and to enhance sustainable development. Malaysia has a large amount of biomass residue, which provides the country with the much needed support the foreseeable future. This investigation aims to analyze potentials biomass gases from major biomass residues in Malaysia. -
Combustion of Coal Combustion Is a Rapid Chemical Reaction Between Fuel and Oxygen
Combustion of Coal Combustion is a rapid chemical reaction between fuel and oxygen. When combustible elements of fuel combine with O2, heat energy comes out. During combustion combustible elements like Carbon, Sulfur, Hydrogen etc combine with oxygen and produce respective oxides. The source of oxygen in fuel combustion is air. By volume there is 21% of Oxygen presents in air and by weight it is 23.2%. Although there is 79% (by volume) nitrogen in air but it plays no role in combustion. Actually Nitrogen carries heat produced during combustion to steam boiler stack. As per combustion theory the quantity of air required for combustion is that which provides sufficient O2 to completely oxidize combustible elements of fuel. This quantity of air is normally known as STOICHIOMETRIC AIR requirement. Different types of coal combustion techniques Combustion of Coal Combustion may be defined as the rapid high temperature complicated chemical reaction of oxygen with carbon, hydrogen and sulphur of coal. These reactions follow mainly four steps 1. Formation of coal-oxygen complexes with evolution of heat. 2. Decomposition of these complexes with the generation of CO2 and H2O molecules and formation of carboxyl (COOH), carbonyl (C=O) and phenolic -OH groups along with more heat generation. 3. Decomposition of these groups to produce CO, CO2, H2, H2O and hydrocarbons such as ethane, ethylene, propylene etc. 4. Decomposition of aliphatic structure (relating to or denoting organic compounds in which carbon atoms form open chains (as in the alkanes), not aromatic rings.) with the formation of CO, CO2 and H2O. In low temperatures, the first step is developed faster than others. -
Department of Homeland Security
Vol. 77 Thursday, No. 110 June 7, 2012 Part III Department of Homeland Security Coast Guard 46 CFR Parts 25, 27, 28, et al. Carbon Dioxide Fire Suppression Systems on Commerical Vessels; Final Rule VerDate Mar<15>2010 18:52 Jun 06, 2012 Jkt 226001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\07JNR2.SGM 07JNR2 tkelley on DSK3SPTVN1PROD with RULES2 33860 Federal Register / Vol. 77, No. 110 / Thursday, June 7, 2012 / Rules and Regulations DEPARTMENT OF HOMELAND call Renee V. Wright, Program Manager, mandates regulations, including fire SECURITY Docket Operations, telephone 202–366– protection regulations, for vessels 9826. carrying liquid bulk dangerous cargoes; Coast Guard SUPPLEMENTARY INFORMATION 46 U.S.C. 4102 authorizes regulations, after consultation with the Towing 46 CFR Parts 25, 27, 28, 31, 34, 35, 62, Table of Contents for Preamble Safety Advisory Committee (TSAC), for 71, 76, 78, 91, 95, 97, 107, 108, 112, 115, I. Abbreviations fire protection and suppression 118, 119, 122, 131, 132, 147, 162, 167, II. Regulatory History measures on towing vessels; 46 U.S.C. 169, 176, 181, 182, 185, 189, 190, 193, III. Basis and Purpose 4302 authorizes safety equipment 194, and 196 IV. Background regulations for recreational vessels; and V. Discussion of Comments and Changes 46 U.S.C. 4502 mandates fire [USCG–2006–24797] VI. Incorporation by Reference VII. Regulatory Analyses extinguisher regulations for some RIN 1625–AB44 A. Regulatory Planning and Review uninspected commercial fishing vessels B. Small Entities and authorizes safety equipment Carbon Dioxide Fire Suppression C. Assistance for Small Entities regulations for certain other Systems on Commercial Vessels D. -
Performance of a Pilot Scale Biomass Gasification and Producer
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Performance of a pilot scale biomass gasification and producer gas combustion system using feedstock with controlled nitrogen content Sharan Sethuraman Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mechanical Engineering Commons Recommended Citation Sethuraman, Sharan, "Performance of a pilot scale biomass gasification and producer gas combustion system using feedstock with controlled nitrogen content" (2010). Graduate Theses and Dissertations. 11725. https://lib.dr.iastate.edu/etd/11725 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Performance of a pilot scale biomass gasification and producer gas combustion system using feedstock with controlled nitrogen content by Sharan Sethuraman A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Mechanical Engineering Program of Study Committee: Song-Charng Kong, Major Professor Terrence Meyer Gap Yong Kim Iowa State University Ames, Iowa 2010 ii TABLE OF CONTENTS LIST OF FIGURES ..................................................................................................................................