The Infrared Tully-Fisher Relation in the Ursa Major Cluster

Total Page:16

File Type:pdf, Size:1020Kb

The Infrared Tully-Fisher Relation in the Ursa Major Cluster The Infrared Tully-Fisher Relation in the Ursa Major Cluster R. F. Peletier Kapteyn Laboratorium, Postbus 800, 9700 AV Groningen, The Netherlands and European Southern Observatory, K. Schwarzschildstr. 2, D-8046 Garching bei M¨unchen, Germany and S. P. Willner Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 USA Accepted for publication in The Astrophysical Journal, 1993 December 1. Abstract We present new magnitudes derived from 1.65 µm images for 23 galax- ies in the Ursa Major cluster. Magnitudes now exist for all but one spiral meeting our criteria for cluster membership and having H i velocity width arXiv:astro-ph/9307021v1 13 Jul 1993 greater than 187km s−1 and inclination greater than 45◦. These spirals fit a Tully-Fisher relation with dispersion in intrinsic magnitudes (after known ob- servational uncertainties and the effect of cluster depth are removed) of 0.36 and a slope of 10.2 ± 0.6. The magnitude dispersion is smaller than found in the Virgo cluster but still significantly larger than claimed by some authors. We find a hint that the Tully-Fisher relation may turn over at the bright end. Adding the central surface brightness of the disk as a third parameter flattens the slope of the Tully-Fisher relation and may give a distance esti- mate with slightly less dispersion, but the significance of the decrease must be tested on an independent sample. Page 2 Peletier and Willner 1. Introduction 2. Sample Selection The Tully-Fisher relation (Tully & Selection of the sample to be studied Fisher 1977) is one of the most useful is crucial both to avoid biases in the mag- ways to measure distances to spiral gal- nitudes, which could lead to bias in derived axies (e.g., Jacoby et al. 1992). However, distances (Teerikorpi 1984, 1987; Kraan- the amount of scatter in the Tully-Fisher Korteweg, Cameron, & Tammann 1988; relation is still a key issue, one of impor- Bottinelli et al. 1988), and to calculate the tance not only for estimating the distance correct dispersion in the derived magni- uncertainties but also because the amount tudes (Paper 1). An ideal sample would of scatter is crucial in estimating the bias in be selected without any reference whatever the distances themselves (Teerikorpi 1984, to galaxy magnitudes. Although the ideal 1987, Bottinelli et al. 1987). Several au- is impossible, for such nearby clusters as thors have found remarkably small disper- Ursa Major a close approximation to the sions (e.g., Freedman 1990, review by Ja- ideal can be achieved. coby et al. 1992), but Fouqu´eet al. (1990) There are two methods commonly and Peletier and Willner (1991, hereinafter used to define cluster membership. The Paper 1) have found intrinsic dispersions first is based on a nearest-neighbor anal- among Virgo cluster spirals near 0.5 mag- ysis (e.g., Huchra and Geller 1982), while nitudes in the blue and 0.4 magnitudes in the second is simply to establish posi- the infrared. tion and velocity limits. In the nearest- The natural question is whether the neighbor or “tree” analysis, a list of gal- large dispersions are a property of just the axies with positions, velocities, and magni- Virgo cluster or are inherent in the Tully- tudes is somehow sorted according to the Fisher relation itself. An ideal test case is presumed “closeness” of the various galax- the Ursa Major cluster. It lies at nearly the ies. A density threshold is then established, same redshift as Virgo, has plenty of spi- and any section of the list having density ral galaxies, and earlier studies (Pierce & above the threshold is taken to be a group. Tully 1988, hereinafter PT) have indicated This method assumes no a priori knowl- a smaller Tully-Fisher dispersion than in edge of cluster locations, but practical im- Virgo. plementations (e.g., Tully 1987) often have an explicit dependence on galaxy magni- This paper presents magnitudes de- tudes. rived from infrared images for a nearly com- plete sample of Ursa Major spirals. The The second method is necessarily primary aim is to investigate the disper- somewhat empirical. The position limits sion, but we also examine how best to de- are usually expressed as a cluster center rive magnitudes and inclinations for Tully- and radius, and minimum and maximum Fisher purposes. Sample selection is given velocity limits are established. The ad- considerable attention. vantage of this method is that there is no explicit dependence on galaxy magnitudes, Ursa Major Tully-Fisher Page 3 though a dependence could arise if the orig- explicit magnitude dependence in selecting inal list is seriously incomplete at fainter this sample, or indeed any requirement that magnitudes. Incompleteness is not a prob- magnitudes be known, but galaxies must lem for this study, however, because cata- have been cataloged and had redshifts mea- logs contain galaxies fainter than 15th mag- sured. This will introduce some incom- nitude (though they are not complete at pleteness, but this probably becomes seri- this limit, of course) while most of the spi- ous only below magnitude 14. rals in the Ursa Major cluster are brighter From the initial list, we have excluded than 12th in B. 15 galaxies that are not spirals (keeping For this study, we examined data com- only galaxies with T > 0 according to the piled for the CfA Redshift Survey (Huchra RC3—de Vaucouleurs et al. 1991). Only et al. 1983 and unpublished). An initial ex- reasonably edge-on galaxies can give use- amination in Right Ascension-Declination- ful velocity widths, so we have excluded Redshift space found distinct groupings at 13 galaxies with axis ratio less than 1.40 −1 −1 ◦ Vh < 400 km s , 625 < Vh < 825 km s , corresponding to inclination less than 45 −1 825 <Vh < 1025km s , and 1100 <Vh < (Paper 1). Finally, we have excluded 1300km s−1. The last group seems to be 17 galaxies that lack H i observations or separated from the others in position, while have inclination-corrected velocity widths c −1 the first three are separated mainly in ve- ∆V20 < 187.5 km s , an arbitrary limit re- locity. The position centroid of those gal- flecting the completeness of our photomet- −1 axies in the range 600 <Vh < 1050km s ric observations. Many of the excluded gal- is approximately 11H 54M , 48◦ 53′, which axies are faint, but it is possible that better we have adopted as the cluster center.1 The H i observations would allow some of them surface density of galaxies falls off beyond to be used for Tully-Fisher purposes. Ta- 7◦ from this position, so we have adop- ble 2 lists all the excluded galaxies. ted this as the cluster radius even though The remaining cluster sample contains there are undoubtedly cluster galaxies be- 29 galaxies listed in Table 1. In prac- yond this radius. Finally, we have slightly tice, an almost identical sample would have extended the velocity limits to 550 <Vh < −1 been obtained from nearest-neighbor anal- 1150km s in order to make our definition ysis simply by adopting group “12-1” from correspond more closely to previous work. All galaxies meeting these requirements are 2 two are cataloged galaxies for which po- listed in either Table 1 or 2. There is no sitions and other data can be found in 1 ◦ ′ the NASA Extragalactic Database (NED). Compare with 11H 54M , +49 30 found 115400+4836 (KDG 310A) is a companion by Biviano et al. (1990). PT used the same south preceding NGC 3985 (KDG 310B). center coordinates as Biviano et al. along ◦ We do not know of published data on with a cluster radius of 7.5 and effective −1 115640+5059. These two galaxies are velocity limits 628 <V < 1138 km s . h among the ones excluded from our Tully- 2 All galaxies in Tables 1 and 2 except Fisher sample and were not observed. Page 4 Peletier and Willner Tully (1987).3 This group has 57 mem- March used a two-lens reimaging optical bers, and other authors of nearest-neighbor system giving a scale of 1 .′′641 per pixel, analyses (Geller and Huchra 1983, Huchra while those in 1992 March used a three- and Geller 1982, Turner and Gott 1976) lens optical system giving 1 .′′757 per pixel. consider it a sub-group of their somewhat Sky frames were observed along with each larger groups. The difference seems to arise galaxy, separated from object frames by because the latter authors are interested >3 arcmin depending on the galaxy size. in larger structures and accordingly have Data calibration began by removing set their density thresholds lower. For this dark current and star images from sky study, we need to be sure all the galaxies frames and averaging sky frames to create are at the same distance, so the most re- a flat field. Each object frame, including strictive definition is appropriate. those for standard stars, was divided by a Two of the galaxies in Table 1 lack in- flat field frame. The observations of stan- frared magnitudes. UGC 6917 has a bright dard stars showed a variation of up to 30% star superposed on the galaxy, rendering peak-to-peak in 1991 and 20% in 1992 de- the current observations useless, and we pending on where the standard star fell on failed to observe NGC 4218. A total of 27 the object frame. The variation was re- galaxies are thus available for analysis. peatable and mostly in the East-West di- rection. We attribute it to the incomplete 3. Observations long-wavelength blocking of the 1.65 µm bandpass filter; the sky frames thus con- All of the observations were made with tain a component at ∼5 µm, while the the 1.2-m telescope at Mt.
Recommended publications
  • 1 Introduction
    Iranian Journal of Astronomy and Astrophysics Iranian Journal of Vol. 1, No. 1, 2013 Astronomy and © Available online at http://journals.du.ac.ir Astrophysics Evaluation of New MOND Interpolating Function with Rotation Curves of Galaxies Hosein Haghi1 ·Hamed Ghasemi2 ·HongSheng Zhao3 1 Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), P.O. Box 11365-9161, Zanjan, Iran; email: [email protected] 2 Department of Physics, Zanjan University, Zanjan, Iran 3 SUPA, School of Physics and Astronomy, University of St. Andrews, KY16 9SS, UK Abstract. The rotation curves of a sample of 46 low- and high-surface brightness galaxies are considered in the context of Milgrom's modified dynamics (MOND) to test a new interpolating function proposed by Zhao et al. (2010) [1] and compare with the results of simple interpolating function. The predicted rotation curves are calculated from the total baryonic matter based on the B-band surface photometry, and the observed distribution of neutral hydrogen, in which the one adjustable parameter is the stellar mass-to-light ratio. The predicted rotation curves generally agree with the observed curves for both interpolating functions. We show that the fitted M=L in the B-band correlates with B-V color in the sense expected from what we know about stellar population synthesis models. Moreover, the mass-to-light ratios of MOND with new interpolating function is in consistent with scaled Salpeter's initial mass function of the SPS scheme, while those of MOND with simple interpolating function favor Kroupa IMF. Keywords: ISM: molecules, ISM: structure, instabilities 1 Introduction The rotation curves of spiral galaxies provide an accurate determination of the radial force distribution in spiral galaxies.
    [Show full text]
  • Radio Sources in Low-Luminosity Active Galactic Nuclei
    A&A 392, 53–82 (2002) Astronomy DOI: 10.1051/0004-6361:20020874 & c ESO 2002 Astrophysics Radio sources in low-luminosity active galactic nuclei III. “AGNs” in a distance-limited sample of “LLAGNs” N. M. Nagar1, H. Falcke2,A.S.Wilson3, and J. S. Ulvestad4 1 Arcetri Observatory, Largo E. Fermi 5, Florence 50125, Italy 2 Max-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, 53121 Bonn, Germany e-mail: [email protected] 3 Department of Astronomy, University of Maryland, College Park, MD 20742, USA Adjunct Astronomer, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA e-mail: [email protected] 4 National Radio Astronomy Observatory, PO Box 0, Socorro, NM 87801, USA e-mail: [email protected] Received 23 January 2002 / Accepted 6 June 2002 Abstract. This paper presents the results of a high resolution radio imaging survey of all known (96) low-luminosity active galactic nuclei (LLAGNs) at D ≤ 19 Mpc. We first report new 2 cm (150 mas resolution using the VLA) and 6 cm (2 mas resolution using the VLBA) radio observations of the previously unobserved nuclei in our samples and then present results on the complete survey. We find that almost half of all LINERs and low-luminosity Seyferts have flat-spectrum radio cores when observed at 150 mas resolution. Higher (2 mas) resolution observations of a flux-limited subsample have provided a 100% (16 of 16) detection rate of pc-scale radio cores, with implied brightness temperatures ∼>108 K. The five LLAGNs with the highest core radio fluxes also have pc-scale “jets”.
    [Show full text]
  • Spiral Galaxy HI Models, Rotation Curves and Kinematic Classifications
    Spiral galaxy HI models, rotation curves and kinematic classifications Theresa B. V. Wiegert A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements of the degree of Doctor of Philosophy Department of Physics & Astronomy University of Manitoba Winnipeg, Canada 2010 Copyright (c) 2010 by Theresa B. V. Wiegert Abstract Although galaxy interactions cause dramatic changes, galaxies also continue to form stars and evolve when they are isolated. The dark matter (DM) halo may influence this evolu- tion since it generates the rotational behaviour of galactic disks which could affect local conditions in the gas. Therefore we study neutral hydrogen kinematics of non-interacting, nearby spiral galaxies, characterising their rotation curves (RC) which probe the DM halo; delineating kinematic classes of galaxies; and investigating relations between these classes and galaxy properties such as disk size and star formation rate (SFR). To generate the RCs, we use GalAPAGOS (by J. Fiege). My role was to test and help drive the development of this software, which employs a powerful genetic algorithm, con- straining 23 parameters while using the full 3D data cube as input. The RC is here simply described by a tanh-based function which adequately traces the global RC behaviour. Ex- tensive testing on artificial galaxies show that the kinematic properties of galaxies with inclination > 40 ◦, including edge-on galaxies, are found reliably. Using a hierarchical clustering algorithm on parametrised RCs from 79 galaxies culled from literature generates a preliminary scheme consisting of five classes. These are based on three parameters: maximum rotational velocity, turnover radius and outer slope of the RC.
    [Show full text]
  • Astronomy Magazine Special Issue
    γ ι ζ γ δ α κ β κ ε γ β ρ ε ζ υ α φ ψ ω χ α π χ φ γ ω ο ι δ κ α ξ υ λ τ μ β α σ θ ε β σ δ γ ψ λ ω σ η ν θ Aι must-have for all stargazers η δ μ NEW EDITION! ζ λ β ε η κ NGC 6664 NGC 6539 ε τ μ NGC 6712 α υ δ ζ M26 ν NGC 6649 ψ Struve 2325 ζ ξ ATLAS χ α NGC 6604 ξ ο ν ν SCUTUM M16 of the γ SERP β NGC 6605 γ V450 ξ η υ η NGC 6645 M17 φ θ M18 ζ ρ ρ1 π Barnard 92 ο χ σ M25 M24 STARS M23 ν β κ All-in-one introduction ALL NEW MAPS WITH: to the night sky 42,000 more stars (87,000 plotted down to magnitude 8.5) AND 150+ more deep-sky objects (more than 1,200 total) The Eagle Nebula (M16) combines a dark nebula and a star cluster. In 100+ this intense region of star formation, “pillars” form at the boundaries spectacular between hot and cold gas. You’ll find this object on Map 14, a celestial portion of which lies above. photos PLUS: How to observe star clusters, nebulae, and galaxies AS2-CV0610.indd 1 6/10/10 4:17 PM NEW EDITION! AtlAs Tour the night sky of the The staff of Astronomy magazine decided to This atlas presents produce its first star atlas in 2006.
    [Show full text]
  • Flat Galaxy - Above 30 Deg
    Flat Galaxy - Above 30 Deg. DEC A B C D E F G H I J K L 1 Const. Object ID Other ID RA Dec Size (arcmin) Mag Urano. Urano. Millennium Notes 2 RFGC NGC hh mm ss dd mm ss.s Major Minor 1st Ed. 2nd Ed. 3 CVn 2245 NGC 4244 12 17 30 +37 48 31 19.4 2.1 10.2 107 54 633 Vol II Note: 4 Com 2335 NGC 4565 12 36 21 +25 59 06 15.9 1.9 10.6 149 71 677 Vol II Note: Slightly asymmetric dust lane 5 Dra 2946 NGC 5907 15 15 52 +56 19 46 12.8 1.4 11.3 50 22 568 Vol II Note: 6 Vir 2315 NGC 4517 12 32 46 +00 06 53 11.5 1.5 11.3 238 110 773 Vol II Note: Dust spots 7 Vir 2579 NGC 5170 13 29 49 -17 57 57 9.9 1.2 11.8 285 130 842 Vol II Note: Eccentric dust lane 8 UMa 2212 NGC 4157 12 11 05 +50 29 07 7.9 1.1 12.2 47 37 592 Vol II Note: 9 Vir 2449 MCG-3-33-30 13 03 17 -17 25 23 8.0 1.1 12.5 284 130 843 Vol II Note: Four knots in the centre 10 CVn 2495 NGC 5023 13 12 12 +44 02 17 7.3 0.8 12.7 75 37 609 Vol II Note: 11 Hya 2682 IC 4351 13 57 54 -29 18 57 6.1 0.8 12.9 371 148 888 Vol II Note: Dust lane.
    [Show full text]
  • Astronomy 2008 Index
    Astronomy Magazine Article Title Index 10 rising stars of astronomy, 8:60–8:63 1.5 million galaxies revealed, 3:41–3:43 185 million years before the dinosaurs’ demise, did an asteroid nearly end life on Earth?, 4:34–4:39 A Aligned aurorae, 8:27 All about the Veil Nebula, 6:56–6:61 Amateur astronomy’s greatest generation, 8:68–8:71 Amateurs see fireballs from U.S. satellite kill, 7:24 Another Earth, 6:13 Another super-Earth discovered, 9:21 Antares gang, The, 7:18 Antimatter traced, 5:23 Are big-planet systems uncommon?, 10:23 Are super-sized Earths the new frontier?, 11:26–11:31 Are these space rocks from Mercury?, 11:32–11:37 Are we done yet?, 4:14 Are we looking for life in the right places?, 7:28–7:33 Ask the aliens, 3:12 Asteroid sleuths find the dino killer, 1:20 Astro-humiliation, 10:14 Astroimaging over ancient Greece, 12:64–12:69 Astronaut rescue rocket revs up, 11:22 Astronomers spy a giant particle accelerator in the sky, 5:21 Astronomers unearth a star’s death secrets, 10:18 Astronomers witness alien star flip-out, 6:27 Astronomy magazine’s first 35 years, 8:supplement Astronomy’s guide to Go-to telescopes, 10:supplement Auroral storm trigger confirmed, 11:18 B Backstage at Astronomy, 8:76–8:82 Basking in the Sun, 5:16 Biggest planet’s 5 deepest mysteries, The, 1:38–1:43 Binary pulsar test affirms relativity, 10:21 Binocular Telescope snaps first image, 6:21 Black hole sets a record, 2:20 Black holes wind up galaxy arms, 9:19 Brightest starburst galaxy discovered, 12:23 C Calling all space probes, 10:64–10:65 Calling on Cassiopeia, 11:76 Canada to launch new asteroid hunter, 11:19 Canada’s handy robot, 1:24 Cannibal next door, The, 3:38 Capture images of our local star, 4:66–4:67 Cassini confirms Titan lakes, 12:27 Cassini scopes Saturn’s two-toned moon, 1:25 Cassini “tastes” Enceladus’ plumes, 7:26 Cepheus’ fall delights, 10:85 Choose the dome that’s right for you, 5:70–5:71 Clearing the air about seeing vs.
    [Show full text]
  • The Outermost Hii Regions of Nearby Galaxies
    THE OUTERMOST HII REGIONS OF NEARBY GALAXIES by Jessica K. Werk A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Astronomy and Astrophysics) in The University of Michigan 2010 Doctoral Committee: Professor Mario L. Mateo, Co-Chair Associate Professor Mary E. Putman, Co-Chair, Columbia University Professor Fred C. Adams Professor Lee W. Hartmann Associate Professor Marion S. Oey Professor Gerhardt R. Meurer, University of Western Australia Jessica K. Werk Copyright c 2010 All Rights Reserved To Mom and Dad, for all your love and encouragement while I was taking up space. ii ACKNOWLEDGMENTS I owe a deep debt of gratitude to a long list of individuals, institutions, and substances that have seen me through the last six years of graduate school. My first undergraduate advisor in Astronomy, Kathryn Johnston, was also my first Astronomy Professor. She piqued my interest in the subject from day one with her enthusiasm and knowledge. I don’t doubt that I would be studying something far less interesting if it weren’t for her. John Salzer, my next and last undergraduate advisor, not only taught me so much about observing and organization, but also is responsible for convincing me to go on in Astronomy. Were it not for John, I’d probably be making a lot more money right now doing something totally mind-numbing and soul-crushing. And Laura Chomiuk, a fellow Wesleyan Astronomy Alumnus, has been there for me through everything − problem sets and personal heartbreak alike. To know her as a friend, goat-lover, and scientist has meant so much to me over the last 10 years, that confining my gratitude to these couple sentences just seems wrong.
    [Show full text]
  • And Ecclesiastical Cosmology
    GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc.
    [Show full text]
  • The Properties of Early-Type Galaxies in the Ursa Major Cluster
    MNRAS 445, 630–647 (2014) doi:10.1093/mnras/stu1722 The properties of early-type galaxies in the Ursa Major cluster Mina Pak,1‹ Soo-Chang Rey,1‹ Thorsten Lisker,2 Youngdae Lee,1 Suk Kim,1 Eon-Chang Sung,3 Helmut Jerjen4 and Jiwon Chung1 1Department of Astronomy and Space Science, Chungnam National University, 99 Daehak-ro, Daejeon 305-764, Korea 2Astronomisches Rechen-Institut, Zentrum fur¨ Astronomie der Universitat¨ Heidelberg, Monchhofstraße¨ 12-14, D-69120 Heidelberg, Germany 3Korea Astronomy and Space Science Institute, Daejeon 305-348, Korea 4Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611, Australia Accepted 2014 August 20. Received 2014 June 24; in original form 2014 March 5 Downloaded from ABSTRACT Using SDSS-DR7 and NASA/IPAC Extragalactic Database spectroscopic data, we identify 166 galaxies as members of the Ursa Major cluster with Mr < −13.5 mag. We morphological classify all galaxies by means of carefully inspecting g-, r-, i-band colour and monochromatic http://mnras.oxfordjournals.org/ images. We show that the Ursa Major cluster is dominated by late-type galaxies, but also contains a significant number of early-type galaxies, particularly in the dwarf regime. We present further evidence for the existence of several subgroups in the cluster, consistent with previous findings. The early-type fraction is found to correlate with the mass of the subgroup. We also investigate environmental effects by comparing the properties of the Ursa Major early- type dwarf galaxies to those of the Virgo cluster. In contrast to the Virgo, the red sequence of the Ursa Major cluster is only sparsely populated in the optical and ultraviolet colour–magnitude at The Australian National University on January 28, 2015 relations.
    [Show full text]
  • Classification of Galaxies Using Fractal Dimensions
    UNLV Retrospective Theses & Dissertations 1-1-1999 Classification of galaxies using fractal dimensions Sandip G Thanki University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Thanki, Sandip G, "Classification of galaxies using fractal dimensions" (1999). UNLV Retrospective Theses & Dissertations. 1050. http://dx.doi.org/10.25669/8msa-x9b8 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • 1987Apj. . .320. .2383 the Astrophysical Journal, 320:238-257
    .2383 The Astrophysical Journal, 320:238-257,1987 September 1 © 1987. The American Astronomical Society. AU rights reserved. Printed in U.S.A. .320. 1987ApJ. THE IRÁS BRIGHT GALAXY SAMPLE. II. THE SAMPLE AND LUMINOSITY FUNCTION B. T. Soifer, 1 D. B. Sanders,1 B. F. Madore,1,2,3 G. Neugebauer,1 G. E. Danielson,4 J. H. Elias,1 Carol J. Lonsdale,5 and W. L. Rice5 Received 1986 December 1 ; accepted 1987 February 13 ABSTRACT A complete sample of 324 extragalactic objects with 60 /mi flux densities greater than 5.4 Jy has been select- ed from the IRAS catalogs. Only one of these objects can be classified morphologically as a Seyfert nucleus; the others are all galaxies. The median distance of the galaxies in the sample is ~ 30 Mpc, and the median 10 luminosity vLv(60 /mi) is ~2 x 10 L0. This infrared selected sample is much more “infrared active” than optically selected galaxy samples. 8 12 The range in far-infrared luminosities of the galaxies in the sample is 10 LQ-2 x 10 L©. The far-infrared luminosities of the sample galaxies appear to be independent of the optical luminosities, suggesting a separate luminosity component. As previously found, a correlation exists between 60 /¿m/100 /¿m flux density ratio and far-infrared luminosity. The mass of interstellar dust required to produce the far-infrared radiation corre- 8 10 sponds to a mass of gas of 10 -10 M0 for normal gas to dust ratios. This is comparable to the mass of the interstellar medium in most galaxies.
    [Show full text]
  • The Medusa Merger in High Resolution 12CO 2–1 Maps
    A&A 569, A6 (2014) Astronomy DOI: 10.1051/0004-6361/201423548 & c ESO 2014 Astrophysics Molecular tendrils feeding star formation in the Eye of the Medusa The Medusa merger in high resolution 12CO 2–1 maps S. König1,S.Aalto2, L. Lindroos2,S.Muller2, J. S. Gallagher III3,R.J.Beswick4, G. Petitpas5, and E. Jütte6 1 Institut de Radioastronomie Millimétrique, 300 rue de la Piscine, Domaine Universitaire, 38406 Saint Martin d’Hères, France e-mail: [email protected] 2 Chalmers University of Technology, Department of Earth and Space Sciences, Onsala Space Observatory, 43992 Onsala, Sweden 3 Department of Astronomy, University of Wisconsin, 475 N. Charter Street, Madison, WI 53706, USA 4 University of Manchester, Jodrell Bank Centre for Astrophysics, Oxford Road, Manchester, M13 9PL, UK 5 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 6 Astronomisches Institut Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany Received 31 January 2014 / Accepted 23 June 2014 ABSTRACT Studying molecular gas properties in merging galaxies gives us important clues to the onset and evolution of interaction-triggered starbursts. NGC 4194 (the Medusa merger) is particularly interesting to study, since its FIR-to-CO luminosity ratio rivals that of ultraluminous galaxies (ULIRGs), despite its lower luminosity compared to ULIRGs, which indicates a high star formation efficiency (SFE) that is relative to even most spirals and ULIRGs. We study the molecular medium at an angular resolution of 0.65 × 0.52 (∼120 × 98 pc) through our observations of 12CO 2−1 emission using the Submillimeter Array (SMA). We compare our 12CO 2−1 maps with the optical Hubble Space Telescope and high angular resolution radio continuum images to study the relationship between molecular gas and the other components of the starburst region.
    [Show full text]