Radioastronomers Take Aim at the Universe's First Billion Years

Total Page:16

File Type:pdf, Size:1020Kb

Radioastronomers Take Aim at the Universe's First Billion Years INTO THE DARK AGES Radioastronomers take aim at the Universe’s first billion years. BY DAVIDE CASTELVECCHI o get an idea of what the Universe looks time when the Universe was just one-thirtieth like from Earth’s perspective, picture a big of its current age of 13.8 billion years. Beyond T watermelon. Our Galaxy, the Milky Way, is those, at the thin, green outer layer of the water- one of the seeds, at the centre of the fruit. The melon skin, lies something primeval from space around it, the pink flesh, is sprinkled with before the time of stars. This layer represents countless other seeds. Those are also galaxies the Universe when it was a mere 380,000 years that we — living inside that central seed — can old, and still a warm, glowing soup of sub atomic observe through our telescopes. particles. We know about that period because its Because light travels at a finite speed, we see light still ripples through space — although it other galaxies as they were in the past. The seeds has stretched so much over the eons that it now farthest from the centre of the watermelon are exists as a faint glow of microwave radiation. the earliest galaxies seen so far, dating back to a The most mysterious part of the observable 298 | NATURE | VOL 572 | 15 AUGUST 2019 ©2019 Spri nger Nature Li mited. All ri ghts reserved. ©2019 Spri nger Nature Li mited. All ri ghts reserved. FEATURE NEWS A night view of part Universe is another electromagnetic frequency and so a rather long years ago, this afterglow of the Big Bang would of the Murchison layer of the water- wavelength, of slightly more than 21 cm. have looked uniformly orange to human eyes. Widefield Array in melon, the section It was this hydrogen signature that, in Then the sky would have reddened, before Western Australia. between the green the 1950s, revealed the Milky Way’s spiral slowly dimming into pitch darkness; there was shell and the pink structure. By the late 1960s, Soviet cosmolo- simply nothing else there to produce visible flesh. This represents the first billion years gist Rashid Sunyaev, now at the Max Planck light, as the wavelengths of the background of the Universe’s history (see ‘An Earth’s-eye Institute for Astrophysics in Garching, radiation continued to stretch through the view of the early Universe’). Astronomers have Germany, was among the first researchers infrared spectrum and beyond. Cosmologists seen very little of this period, except for a few, to realize that the line could also be used to call this period the dark ages. exceedingly bright galaxies and other objects. study the primordial cosmos. Stretched, or Over time, theorists reckon that the Yet this was the time when the Universe redshifted, by the Universe’s expansion, those evolving Universe would have left three dis- underwent its most dramatic changes. We 21-cm photons would today have wavelengths tinct imprints on the hydrogen that filled know the end product of that transition — we ranging roughly between 1.5 and 20 metres — space. The first event would have begun some are here, after all — but not how it happened. corresponding to 15–200 megahertz (MHz). 5 million years after the Big Bang, when the JOHN GOLDSMITH/CELESTIAL VISIONS JOHN GOLDSMITH/CELESTIAL How and when did the first stars form, and what Sunyaev and his mentor, the late Yakov hydrogen became cool enough to absorb more did they look like? What part did black holes Zeldovich, thought of using the primordial of the background radiation than it emitted. play in shaping galaxies? And what is the nature hydrogen signal to test some early theories Evidence of this period should be detectable of dark matter, which vastly outweighs ordinary for how galaxies formed2. But, he tells Nature, today in the CMB spectrum as a dip in inten- matter and is thought to have shaped much of “When I went to radioastronomers with this, sity at a certain wavelength, a feature that has the Universe’s evolution? they said, ‘Rashid, you are crazy! We will never been dubbed the dark-ages trough. An army of radioastronomy projects small be able to observe this’.” A second change arose some 200 million and large is now trying to chart this terra The problem was that the hydrogen line, years later, after matter had clumped together incognita. Astronomers have one simple source redshifted deeper into the radio spectrum, enough to create the first stars and galaxies. This of information — a single, isolated wavelength would be so weak that it seemed impossible to ‘cosmic dawn’ released ultraviolet radiation into emitted and absorbed by atomic hydrogen, isolate from the cacophony of radio-frequency intergalactic space, which made the hydrogen the element that made up almost all ordinary signals emanating from the Milky Way and there more receptive to absorbing 21-cm pho- matter after the Big Bang. The effort to detect from human activity, including FM radio tons. As a result, astronomers expect to see a this subtle signal — a line in the spectrum of stations and cars’ spark plugs. second dip, or trough, in the CMB spectrum at hydrogen with a wavelength of 21 centimetres The idea of mapping the early Universe a different, shorter wavelength; this is the signa- — is driving astronomers to deploy ever-more- with 21-cm photons received only sporadic ture that EDGES seems to have detected1. sensitive observatories in some of the world’s attention for three decades, but technologi- Half a billion years into the Universe’s most remote places, including an isolated raft cal advancements in the past few years have existence, hydrogen would have gone through on a lake on the Tibetan Plateau and an island made the technique look more tractable. The an even more dramatic change. The ultraviolet in the Canadian Arctic. basics of radio detection remain the same; radiation from stars and galaxies would have Last year, the Experiment to Detect the brightened enough to cause the Universe’s Global Epoch of Reionization Signature hydrogen to fluoresce, turning it into a glowing (EDGES), a disarmingly simple antenna in the source of 21-cm photons. But the hydrogen Australian outback, might have seen the first “THIS IS closest to those early galaxies absorbed so hint of the presence of primordial hydrogen much energy that it lost its electrons and went around the earliest stars1. Other experiments PART OF OUR dark. Those dark, ionized bubbles grew bigger are now on the brink of reaching the sensitivity over roughly half a billion years, as galaxies that’s required to start mapping the primordial grew and merged, leaving less and less lumi- hydrogen — and therefore the early Universe — GENESIS nous hydrogen between them. Even today, in 3D. This is now the “last frontier of cosmol- the vast majority of the Universe’s hydro- ogy”, says theoretical astrophysicist Avi Loeb gen remains ionized. Cosmologists call this at the Harvard-Smithsonian Center for Astro- STORY.” transition the epoch of reionization, or EOR. physics (CfA) in Cambridge, Massachusetts. The EOR is the period that many 21-cm It holds the key to revealing how an undistin- many radio telescopes are constructed from radio astronomy experiments, either ongoing or guished, uniform mass of particles evolved into simple materials, such as plastic pipes and in preparation, are aiming to detect. The hope is stars, galaxies and planets. “This is part of our wire mesh. But the signal-processing capa- to map it in 3D as it evolved over time, by taking genesis story — our roots,” says Loeb. bilities of the telescopes have become much snapshots of the sky at different wavelengths, more advanced. Consumer-electronics com- or redshifts. “We’ll be able to build up a whole A FINE LINE ponents that were originally developed for movie,” says Emma Chapman, an astrophysicist Some 380,000 years after the Big Bang, the gaming and mobile phones now allow obser- at Imperial College London. Details of when Universe had expanded and cooled enough vatories to crunch enormous amounts of data the bubbles formed, their shapes and how fast for its broth of mostly protons and electrons with relatively little investment. Meanwhile, they grew will reveal how galaxies formed and to combine into atoms. Hydrogen dominated theoretical cosmologists have been making what kind of light they produced. If stars did ordinary matter at the time, but it neither emits a more detailed and compelling case for the most of the reionization, the bubbles will have nor absorbs photons across the vast majority promise of 21-cm cosmology. neat, regular shapes, Chapman says. But “if of the electromagnetic spectrum. As a result, there are a lot of black holes, they start to get it is largely invisible. DARKNESS AND DAWN larger and more free-form, or wispy”, she says, But hydrogen’s single electron offers an Right after atomic hydrogen formed in the because radiation in the jets that shoot out from exception. When the electron switches between aftermath of the Big Bang, the only light in the black holes is more energetic and penetrating two orientations, it releases or absorbs a photon. cosmos was that which reaches Earth today as than that from stars. The two states have almost identical energies, so faint, long-wavelength radiation coming from The EOR will also provide an unprecedented the difference that the photon makes up is quite all directions — a signal known as the cosmic test for the current best model of cosmic evolu- small. As a result, the photon has a relatively low microwave background (CMB). Some 14 billion tion.
Recommended publications
  • Dark Energy and Dark Matter As Inertial Effects Introduction
    Dark Energy and Dark Matter as Inertial Effects Serkan Zorba Department of Physics and Astronomy, Whittier College 13406 Philadelphia Street, Whittier, CA 90608 [email protected] ABSTRACT A disk-shaped universe (encompassing the observable universe) rotating globally with an angular speed equal to the Hubble constant is postulated. It is shown that dark energy and dark matter are cosmic inertial effects resulting from such a cosmic rotation, corresponding to centrifugal (dark energy), and a combination of centrifugal and the Coriolis forces (dark matter), respectively. The physics and the cosmological and galactic parameters obtained from the model closely match those attributed to dark energy and dark matter in the standard Λ-CDM model. 20 Oct 2012 Oct 20 ph] - PACS: 95.36.+x, 95.35.+d, 98.80.-k, 04.20.Cv [physics.gen Introduction The two most outstanding unsolved problems of modern cosmology today are the problems of dark energy and dark matter. Together these two problems imply that about a whopping 96% of the energy content of the universe is simply unaccounted for within the reigning paradigm of modern cosmology. arXiv:1210.3021 The dark energy problem has been around only for about two decades, while the dark matter problem has gone unsolved for about 90 years. Various ideas have been put forward, including some fantastic ones such as the presence of ghostly fields and particles. Some ideas even suggest the breakdown of the standard Newton-Einstein gravity for the relevant scales. Although some progress has been made, particularly in the area of dark matter with the nonstandard gravity theories, the problems still stand unresolved.
    [Show full text]
  • Fine-Tuning, Complexity, and Life in the Multiverse*
    Fine-Tuning, Complexity, and Life in the Multiverse* Mario Livio Dept. of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, USA E-mail: [email protected] and Martin J. Rees Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK E-mail: [email protected] Abstract The physical processes that determine the properties of our everyday world, and of the wider cosmos, are determined by some key numbers: the ‘constants’ of micro-physics and the parameters that describe the expanding universe in which we have emerged. We identify various steps in the emergence of stars, planets and life that are dependent on these fundamental numbers, and explore how these steps might have been changed — or completely prevented — if the numbers were different. We then outline some cosmological models where physical reality is vastly more extensive than the ‘universe’ that astronomers observe (perhaps even involving many ‘big bangs’) — which could perhaps encompass domains governed by different physics. Although the concept of a multiverse is still speculative, we argue that attempts to determine whether it exists constitute a genuinely scientific endeavor. If we indeed inhabit a multiverse, then we may have to accept that there can be no explanation other than anthropic reasoning for some features our world. _______________________ *Chapter for the book Consolidation of Fine Tuning 1 Introduction At their fundamental level, phenomena in our universe can be described by certain laws—the so-called “laws of nature” — and by the values of some three dozen parameters (e.g., [1]). Those parameters specify such physical quantities as the coupling constants of the weak and strong interactions in the Standard Model of particle physics, and the dark energy density, the baryon mass per photon, and the spatial curvature in cosmology.
    [Show full text]
  • Galaxy Redshifts: from Dozens to Millions
    GALAXY REDSHIFTS: FROM DOZENS TO MILLIONS Chris Impey University of Arizona The Expanding Universe • Evolution of the scale factor from GR; metric assumes homogeneity and isotropy (~FLRW). • Cosmological redshift fundamentally differs from a Doppler shift. • Galaxies (and other objects) are used as space-time markers. Expansion History and Contents Science is Seeing The expansion history since the big bang and the formation of large scale structure are driven by dark matter and dark energy. Observing Galaxies Galaxy Observables: • Redshift (z) • Magnitude (color, SED) • Angular size (morphology) All other quantities (size, luminosity, mass) derive from knowing a distance, which relates to redshift via a cosmological model. The observables are poor distance indicators. Other astrophysical luminosity predictors are required. (Cowie) ~90% of the volume or look-back time is probed by deep field • Number of galaxies in observable universe: ~90% of the about 100 billion galaxies in the volume • Number of stars in the are counted observable universe: about 1022 Heading for 100 Million (Baldry/Eisenstein) Multiplex Advantage Cannon (1910) Gemini/GMOS (2010) Sluggish, Spacious, Reliable. Photography CCD Imaging Speedy, Cramped, Finicky. 100 Years of Measuring Galaxy Redshifts Who When # Galaxies Size Time Mag Scheiner 1899 1 (M31) 0.3m 7.5h V = 3.4 Slipher 1914 15 0.6m ~5h V ~ 8 Slipher 1917 25 0.6m ~5h V ~ 8 Hubble/Slipher 1929 46 1.5m ~6h V ~ 10 Hum/May/San 1956 800 5m ~2h V = 11.6 Photographic 1960s 1 ~4m ~2.5h V ~ 15 Image Intensifier 1970s
    [Show full text]
  • New Constraints on Cosmic Reionization
    New Constraints on Cosmic Reionization Brant Robertson UCSC Exploring the Universe with JWST ESA / ESTEC, The Netherlands October 12, 2015 1 Exploring the Universe with JWST, 10/12/2015 B. Robertson, UCSC Brief History of the Observable Universe 1100 Redshift 12 8 6 1 13.8 13.5 Billions of years ago 13.4 12.9 8 Adapted from Robertson et al. Nature, 468, 49 (2010). 2 Exploring the Universe with JWST, 10/12/2015 B. Robertson, UCSC Observational Facilities Over the Next Decade 1100 Redshift 12 8 6 1 Planck Future 21cm Current 21cm LSST Thirty Meter Telescope WFIRST ALMA Hubble Chandra Fermi James Webb Space Telescope 13.8 13.5 Billions of years ago 13.4 12.9 8 Observations with JWST, WFIRST, TMT/E-ELT, LSST, ALMA, and 21- cm will drive astronomical discoveries over the next decade. Adapted from Robertson et al. Nature, 468, 49 (2010). 3 Exploring the Universe with JWST, 10/12/2015 B. Robertson, UCSC 1100 Redshift 12 8 6 1 Planck Future 21cm Current 21cm LSST Thirty Meter Telescope WFIRST ALMA Hubble Chandra Fermi James Webb Space Telescope 13.8 13.5 Billions of years ago 13.4 12.9 8 1. What can we learn about Cosmic Dawn? Was it a dramatic event in a narrow period of time or did the birth of galaxies happen gradually? 2. Can we be sure light from early galaxies caused cosmic reionization? We have some guide on when reionization occurred from studying the thermal glow of the Big Bang (microwave background), but what were the sources of ionizing photons? 3.
    [Show full text]
  • Chapter 3 the Mechanisms of Electromagnetic Emissions
    BASICS OF RADIO ASTRONOMY Chapter 3 The Mechanisms of Electromagnetic Emissions Objectives: Upon completion of this chapter, you will be able to describe the difference between thermal and non-thermal radiation and give some examples of each. You will be able to distinguish between thermal and non-thermal radiation curves. You will be able to describe the significance of the 21-cm hydrogen line in radio astronomy. If the material in this chapter is unfamiliar to you, do not be discouraged if you don’t understand everything the first time through. Some of these concepts are a little complicated and few non- scientists have much awareness of them. However, having some familiarity with them will make your radio astronomy activities much more interesting and meaningful. What causes electromagnetic radiation to be emitted at different frequencies? Fortunately for us, these frequency differences, along with a few other properties we can observe, give us a lot of information about the source of the radiation, as well as the media through which it has traveled. Electromagnetic radiation is produced by either thermal mechanisms or non-thermal mechanisms. Examples of thermal radiation include • Continuous spectrum emissions related to the temperature of the object or material. • Specific frequency emissions from neutral hydrogen and other atoms and mol- ecules. Examples of non-thermal mechanisms include • Emissions due to synchrotron radiation. • Amplified emissions due to astrophysical masers. Thermal Radiation Did you know that any object that contains any heat energy at all emits radiation? When you’re camping, if you put a large rock in your campfire for a while, then pull it out, the rock will emit the energy it has absorbed as radiation, which you can feel as heat if you hold your hand a few inches away.
    [Show full text]
  • The Protection of Frequencies for Radio Astronomy 1
    JOURNAL OF RESEARCH of the National Bureau of Standards-D. Radio Propagation Vol. 67D, No. 2, March- April 1963 b The Protection of Frequencies for Radio Astronomy 1 R. 1. Smith-Rose President, International Scientific Radio Union (R eceived November 5, 1962) The International T elecommunications Union in its Geneva, 1959 R adio R egulations r recognises the Radio Astronomy Service in t he two following definitions: N o. 74 Radio A st1" onomy: Astronomy based on t he reception of waves of cos mi c origin. No. 75 R adio A st1"onomy Se1"vice: A service involving the use of radio astronomy. This service differs, however, from other r adio services in two important respects. 1. It does not itself originate any radio waves, and therefore causes no interference to any other service. L 2. A large proportion of its activity is conducted by the use of reception techniques which are several orders of magnit ude )]).ore sensitive than those used in other ra dio services. In order to pursue his scientific r esearch successfully, t he radio astronomer seeks pro­ tection from interference first, in a number of bands of frequencies distributed t hroughout I t he s p ~ct run:; and secondly:. 1~10r e complete and s p ec i~c prote.ction fOl: t he exact frequency bands III whIch natural radIatIOn from, or absorptIOn lD, cosmIc gases IS known or expected to occur. The International R egulations referred to above give an exclusive all ocation to one freq uency band only- the emission line of h ydrogen at 1400 to 1427 Mc/s.
    [Show full text]
  • Estimations of Total Mass and Energy of the Observable Universe
    Physics International 5 (1): 15-20, 2014 ISSN: 1948-9803 ©2014 Science Publication doi:10.3844/pisp.2014.15.20 Published Online 5 (1) 2014 (http://www.thescipub.com/pi.toc) ESTIMATIONS OF TOTAL MASS AND ENERGY OF THE OBSERVABLE UNIVERSE Dimitar Valev Department of Stara Zagora, Space Research and Technology Institute, Bulgarian Academy of Sciences, 6000 Stara Zagora, Bulgaria Received 2014-02-05; Revised 2014-03-18; Accepted 2014-03-21 ABSTRACT The recent astronomical observations indicate that the expanding universe is homogeneous, isotropic and asymptotically flat. The Euclidean geometry of the universe enables to determine the total gravitational and kinetic energy of the universe by Newtonian gravity in a flat space. By means of dimensional analysis, we have found the mass of the observable universe close to the Hoyle-Carvalho formula M∼c3/(GH ). This value is independent from the cosmological model and infers a size (radius) of the observable universe close to Hubble distance. It has been shown that almost the entire kinetic energy of the observable universe ensues from the cosmological expansion. Both, the total gravitational and kinetic energies of the observable universe have been determined in relation to an observer at an arbitrary location. The relativistic calculations for total kinetic energy have been made and the dark energy has been excluded from calculations. The total mechanical energy of the observable universe has been found close to zero, which is a remarkable result. This result supports the conjecture that the gravitational energy of the observable universe is approximately balanced with its kinetic energy of the expansion and favours a density of dark energy ΩΛ≈ 0.78.
    [Show full text]
  • Dark Energy and CMB
    Dark Energy and CMB Conveners: S. Dodelson and K. Honscheid Topical Conveners: K. Abazajian, J. Carlstrom, D. Huterer, B. Jain, A. Kim, D. Kirkby, A. Lee, N. Padmanabhan, J. Rhodes, D. Weinberg Abstract The American Physical Society's Division of Particles and Fields initiated a long-term planning exercise over 2012-13, with the goal of developing the community's long term aspirations. The sub-group \Dark Energy and CMB" prepared a series of papers explaining and highlighting the physics that will be studied with large galaxy surveys and cosmic microwave background experiments. This paper summarizes the findings of the other papers, all of which have been submitted jointly to the arXiv. arXiv:1309.5386v2 [astro-ph.CO] 24 Sep 2013 2 1 Cosmology and New Physics Maps of the Universe when it was 400,000 years old from observations of the cosmic microwave background and over the last ten billion years from galaxy surveys point to a compelling cosmological model. This model requires a very early epoch of accelerated expansion, inflation, during which the seeds of structure were planted via quantum mechanical fluctuations. These seeds began to grow via gravitational instability during the epoch in which dark matter dominated the energy density of the universe, transforming small perturbations laid down during inflation into nonlinear structures such as million light-year sized clusters, galaxies, stars, planets, and people. Over the past few billion years, we have entered a new phase, during which the expansion of the Universe is accelerating presumably driven by yet another substance, dark energy. Cosmologists have historically turned to fundamental physics to understand the early Universe, successfully explaining phenomena as diverse as the formation of the light elements, the process of electron-positron annihilation, and the production of cosmic neutrinos.
    [Show full text]
  • 1 Spectroscopic Study of Unique Line Broadening and Inversion in Low
    Spectroscopic study of unique line broadening and inversion in low pressure microwave generated water plasmas R. L. Mills,a) P. C. Ray, R. M. Mayo, M. Nansteel, B. Dhandapani BlackLight Power, Inc., 493 Old Trenton Road, Cranbury, NJ 08512 Jonathan Phillips University of New Mexico, Dept. of Chemical and Nuclear Engineering, 203 Farris Engineering, Albuquerque, NM 87131 It was demonstrated that low pressure (~ 0.2 Torr) water vapor plasmas generated in a 10 mm inner diameter quartz tube with an Evenson microwave cavity show at least two features which are not explained by conventional plasma models. First, significant (> 2.5 Å) hydrogen Balmer α line broadening, of constant width, up to 5 cm from the microwave coupler was recorded. Only hydrogen, and not oxygen, showed significant line broadening. This feature, observed previously in hydrogen-containing mixed gas plasmas generated with high voltage dc and rf discharges was explained by some researchers to result from acceleration of hydrogen ions near the cathode. This explanation cannot apply to the line broadening observed in the (electrodeless) microwave plasmas generated in this work, particularly at distances as great as 5 cm from the microwave coupler. Second, inversion of the line intensities of both the Lyman and Balmer series, again, at distances up to 5 cm from the coupler, were observed. The line inversion suggests the existence of a hitherto unknown source of pumping of the 1 optical power in plasmas. Finally, it is notable that other aspects of the plasma including the OH* rotational temperature and low electron concentrations are quite typical of plasmas of this type.
    [Show full text]
  • The Radio-Frequency Line Spectrum of Atomic Hydrogen and Its Applications in Astronomy
    THE RADIO-FREQUENCY LINE SPECTRUM OF ATOMIC HYDROGEN AND ITS APPLICATIONS IN ASTRONOMY J. P. Wild Division of Radiophysics, Commonwealth Scientific and Industrial Research Organization, Australia Received September 8, 1951 ABSTRACT Formulae are obtained for the frequencies, transition probabilities, and natural widths of the dis- crete lines of atomic hydrogen that fall within the radio spectrum. Such lines are due to transitions within either the fine structure or the hyperfine structure of the energy levels. The conditions necessary for the formation of observable emission and absorption lines are examined. Thence an inquiry is made into which of the hydrogen lines are likely to be observable from astronomi- cal systems. It is found that the sun may give a detectable absorption line at about 10,000 Mc/sec, corre- 2 2 sponding to the 2 Si/2-2 P3/2 fine-structure transition, but that other solar fines are not likely to be observable. From the interstellar gas, the emission line already observed (i.e., the 1420 Mc/sec hyper- fine-structure line) is probably the only detectable hydrogen line. The importance of this fine in the study of the interstellar gas is discussed. Some general conclusions are drawn from the preliminary evidence regarding the motion and kinetic temperature of the regions of un-ionized hydrogen. The ratio data are used to obtain a measure of the product of “galactic thickness” and average hydrogen concentration. I. INTRODUCTION The first astronomical observation of a spectral line in the radio-frequency band has recently been announced by Ewen and Purcell1 and has had independent confirmation by two other groups of workers.2,3 The observed line is an emission line of frequency 1420 Mc/sec due to the transition between the hyperfine-s truc ture substates in the ground state of atomic hydrogen.
    [Show full text]
  • Spectra of Photoionized Regions 1. Introduction
    Spectra of Photoionized Regions Friday, January 21, 2011 CONTENTS: 1. Introduction 2. Recombination Processes A. Overview B. Level networks C. Free-bound continuum D. Two-photon continuum E. Collisions 3. Additional Processes A. Lyman-α emission B. Helium processes C. Resonance fluorescence 4. Diagnostics A. Temperature B. Density C. Composition D. Star formation rates 1. Introduction Our next task is to consider the emitted spectrum from an H II region. This is one of the most important subjects observationally since spectroscopy provides our principal set of diagnostics on the physics occurring in the region. This material is (mostly) covered in Chapters 4 and 5 of Osterbrock & Ferland (on which most of these notes are based). The sources of emission we will consider fall into two categories: Cooling: Infrared fine structure lines Optical forbidden lines Free-free continuum Recombination: Free-bound continuum Recombination lines Two-photon continuua 1 Generally, the forbidden lines (optical or IR) come from metals, whereas the recombination features are proportional to abundance and arise mainly from H and He. Since the cooling radiation has already been discussed, we will focus on recombination and then proceed to diagnostics. 2. Recombination Processes A. OVERVIEW We first consider the case of recombination of hydrogen at very low densities where the collision rates are small, i.e. any hydrogen atom that forms can decay radiatively before any collision. Later on we will introduce collisions between particles (electrons, protons) with excited atoms. The recombination process at low density begins with a radiative recombination, H+ + e− → H0(nl) + γ , which populates an excited state of the hydrogen atom.
    [Show full text]
  • Hydrogen Line Project Documentation
    Welcome to . The Astronomy Zone! In Which Two D&D Nerds Build a Hydrogen Line Radio Telescope Contents: Moonlighting: Overview 2 Petals to the Metal: Horn Antenna Design Analysis 6 The Crystal Kingdom: SDR, Amplification, and Filtering Setup 11 The Eleventh Hour: Finding the Signal in the Noise with GnuRadio 16 The Stolen Century: Data Collection and Analysis 23 Story and Song: Conclusion 32 Here There Be Gerblins: References 34 Moonlighting: Overview Introduction The exact phrases expressing the excitement that started this project are perhaps not appropriate for general audiences. One of us had successfully used their software defined radio to receive images from orbiting NOAA weather satellites, and was looking for a fun challenge. After wandering through the depths of the radio related internet, the Open Source Radio Telescope website revealed images of a device made of lumber, foam insulation paneling, and fairly standard radio equipment. It was a device designed to investigate the structure and motion of clouds of hydrogen gas across the galaxy, the galaxy. Was it really possible? Another link led to the DSPIRA ​ ​ program, using a very similar telescope as part of an NSF program for teachers. It was real! Just one problem: woefully insufficient background in radio astronomy, spectrometry, digital signal processing, or the necessary software. Who cares though, learning by doing is the best way to learn. No sleep was had that night due to excitement and wondering if this could be pulled off in summer. This was too good and too hard not to be shared though, so a late night inquiry was made to a local space-loving physics major and Dungeon Master extraordinaire, and so here we are.
    [Show full text]