Intrinsic Robustness of the Price of Anarchy∗
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CSC304 Lecture 4 Game Theory
CSC304 Lecture 4 Game Theory (Cost sharing & congestion games, Potential function, Braess’ paradox) CSC304 - Nisarg Shah 1 Recap • Nash equilibria (NE) ➢ No agent wants to change their strategy ➢ Guaranteed to exist if mixed strategies are allowed ➢ Could be multiple • Pure NE through best-response diagrams • Mixed NE through the indifference principle CSC304 - Nisarg Shah 2 Worst and Best Nash Equilibria • What can we say after we identify all Nash equilibria? ➢ Compute how “good” they are in the best/worst case • How do we measure “social good”? ➢ Game with only rewards? Higher total reward of players = more social good ➢ Game with only penalties? Lower total penalty to players = more social good ➢ Game with rewards and penalties? No clear consensus… CSC304 - Nisarg Shah 3 Price of Anarchy and Stability • Price of Anarchy (PoA) • Price of Stability (PoS) “Worst NE vs optimum” “Best NE vs optimum” Max total reward Max total reward Min total reward in any NE Max total reward in any NE or or Max total cost in any NE Min total cost in any NE Min total cost Min total cost PoA ≥ PoS ≥ 1 CSC304 - Nisarg Shah 4 Revisiting Stag-Hunt Hunter 2 Stag Hare Hunter 1 Stag (4 , 4) (0 , 2) Hare (2 , 0) (1 , 1) • Max total reward = 4 + 4 = 8 • Three equilibria ➢ (Stag, Stag) : Total reward = 8 ➢ (Hare, Hare) : Total reward = 2 1 2 1 2 ➢ ( Τ3 Stag – Τ3 Hare, Τ3 Stag – Τ3 Hare) 1 1 1 1 o Total reward = ∗ ∗ 8 + 1 − ∗ ∗ 2 ∈ (2,8) 3 3 3 3 • Price of stability? Price of anarchy? CSC304 - Nisarg Shah 5 Revisiting Prisoner’s Dilemma John Stay Silent Betray Sam -
Potential Games. Congestion Games. Price of Anarchy and Price of Stability
8803 Connections between Learning, Game Theory, and Optimization Maria-Florina Balcan Lecture 13: October 5, 2010 Reading: Algorithmic Game Theory book, Chapters 17, 18 and 19. Price of Anarchy and Price of Staility We assume a (finite) game with n players, where player i's set of possible strategies is Si. We let s = (s1; : : : ; sn) denote the (joint) vector of strategies selected by players in the space S = S1 × · · · × Sn of joint actions. The game assigns utilities ui : S ! R or costs ui : S ! R to any player i at any joint action s 2 S: any player maximizes his utility ui(s) or minimizes his cost ci(s). As we recall from the introductory lectures, any finite game has a mixed Nash equilibrium (NE), but a finite game may or may not have pure Nash equilibria. Today we focus on games with pure NE. Some NE are \better" than others, which we formalize via a social objective function f : S ! R. Two classic social objectives are: P sum social welfare f(s) = i ui(s) measures social welfare { we make sure that the av- erage satisfaction of the population is high maxmin social utility f(s) = mini ui(s) measures the satisfaction of the most unsatisfied player A social objective function quantifies the efficiency of each strategy profile. We can now measure how efficient a Nash equilibrium is in a specific game. Since a game may have many NE we have at least two natural measures, corresponding to the best and the worst NE. We first define the best possible solution in a game Definition 1. -
Lecture Notes
GRADUATE GAME THEORY LECTURE NOTES BY OMER TAMUZ California Institute of Technology 2018 Acknowledgments These lecture notes are partially adapted from Osborne and Rubinstein [29], Maschler, Solan and Zamir [23], lecture notes by Federico Echenique, and slides by Daron Acemoglu and Asu Ozdaglar. I am indebted to Seo Young (Silvia) Kim and Zhuofang Li for their help in finding and correcting many errors. Any comments or suggestions are welcome. 2 Contents 1 Extensive form games with perfect information 7 1.1 Tic-Tac-Toe ........................................ 7 1.2 The Sweet Fifteen Game ................................ 7 1.3 Chess ............................................ 7 1.4 Definition of extensive form games with perfect information ........... 10 1.5 The ultimatum game .................................. 10 1.6 Equilibria ......................................... 11 1.7 The centipede game ................................... 11 1.8 Subgames and subgame perfect equilibria ...................... 13 1.9 The dollar auction .................................... 14 1.10 Backward induction, Kuhn’s Theorem and a proof of Zermelo’s Theorem ... 15 2 Strategic form games 17 2.1 Definition ......................................... 17 2.2 Nash equilibria ...................................... 17 2.3 Classical examples .................................... 17 2.4 Dominated strategies .................................. 22 2.5 Repeated elimination of dominated strategies ................... 22 2.6 Dominant strategies .................................. -
Potential Games and Competition in the Supply of Natural Resources By
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ASU Digital Repository Potential Games and Competition in the Supply of Natural Resources by Robert H. Mamada A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved March 2017 by the Graduate Supervisory Committee: Carlos Castillo-Chavez, Co-Chair Charles Perrings, Co-Chair Adam Lampert ARIZONA STATE UNIVERSITY May 2017 ABSTRACT This dissertation discusses the Cournot competition and competitions in the exploita- tion of common pool resources and its extension to the tragedy of the commons. I address these models by using potential games and inquire how these models reflect the real competitions for provisions of environmental resources. The Cournot models are dependent upon how many firms there are so that the resultant Cournot-Nash equilibrium is dependent upon the number of firms in oligopoly. But many studies do not take into account how the resultant Cournot-Nash equilibrium is sensitive to the change of the number of firms. Potential games can find out the outcome when the number of firms changes in addition to providing the \traditional" Cournot-Nash equilibrium when the number of firms is fixed. Hence, I use potential games to fill the gaps that exist in the studies of competitions in oligopoly and common pool resources and extend our knowledge in these topics. In specific, one of the rational conclusions from the Cournot model is that a firm’s best policy is to split into separate firms. In real life, we usually witness the other way around; i.e., several firms attempt to merge and enjoy the monopoly profit by restricting the amount of output and raising the price. -
Price of Competition and Dueling Games
Price of Competition and Dueling Games Sina Dehghani ∗† MohammadTaghi HajiAghayi ∗† Hamid Mahini ∗† Saeed Seddighin ∗† Abstract We study competition in a general framework introduced by Immorlica, Kalai, Lucier, Moitra, Postlewaite, and Tennenholtz [19] and answer their main open question. Immorlica et al. [19] considered classic optimization problems in terms of competition and introduced a general class of games called dueling games. They model this competition as a zero-sum game, where two players are competing for a user’s satisfaction. In their main and most natural game, the ranking duel, a user requests a webpage by submitting a query and players output an or- dering over all possible webpages based on the submitted query. The user tends to choose the ordering which displays her requested webpage in a higher rank. The goal of both players is to maximize the probability that her ordering beats that of her opponent and gets the user’s at- tention. Immorlica et al. [19] show this game directs both players to provide suboptimal search results. However, they leave the following as their main open question: “does competition be- tween algorithms improve or degrade expected performance?” (see the introduction for more quotes) In this paper, we resolve this question for the ranking duel and a more general class of dueling games. More precisely, we study the quality of orderings in a competition between two players. This game is a zero-sum game, and thus any Nash equilibrium of the game can be described by minimax strategies. Let the value of the user for an ordering be a function of the position of her requested item in the corresponding ordering, and the social welfare for an ordering be the expected value of the corresponding ordering for the user. -
The Three Types of Collusion: Fixing Prices, Rivals, and Rules Robert H
University of Baltimore Law ScholarWorks@University of Baltimore School of Law All Faculty Scholarship Faculty Scholarship 2000 The Three Types of Collusion: Fixing Prices, Rivals, and Rules Robert H. Lande University of Baltimore School of Law, [email protected] Howard P. Marvel Ohio State University, [email protected] Follow this and additional works at: http://scholarworks.law.ubalt.edu/all_fac Part of the Antitrust and Trade Regulation Commons, and the Law and Economics Commons Recommended Citation The Three Types of Collusion: Fixing Prices, Rivals, and Rules, 2000 Wis. L. Rev. 941 (2000) This Article is brought to you for free and open access by the Faculty Scholarship at ScholarWorks@University of Baltimore School of Law. It has been accepted for inclusion in All Faculty Scholarship by an authorized administrator of ScholarWorks@University of Baltimore School of Law. For more information, please contact [email protected]. ARTICLES THE THREE TYPES OF COLLUSION: FIXING PRICES, RIVALS, AND RULES ROBERTH. LANDE * & HOWARDP. MARVEL** Antitrust law has long held collusion to be paramount among the offenses that it is charged with prohibiting. The reason for this prohibition is simple----collusion typically leads to monopoly-like outcomes, including monopoly profits that are shared by the colluding parties. Most collusion cases can be classified into two established general categories.) Classic, or "Type I" collusion involves collective action to raise price directly? Firms can also collude to disadvantage rivals in a manner that causes the rivals' output to diminish or causes their behavior to become chastened. This "Type 11" collusion in turn allows the colluding firms to raise prices.3 Many important collusion cases, however, do not fit into either of these categories. -
Prophylaxy Copie.Pdf
Social interactions and the prophylaxis of SI epidemics on networks Géraldine Bouveret, Antoine Mandel To cite this version: Géraldine Bouveret, Antoine Mandel. Social interactions and the prophylaxis of SI epi- demics on networks. Journal of Mathematical Economics, Elsevier, 2021, 93, pp.102486. 10.1016/j.jmateco.2021.102486. halshs-03165772 HAL Id: halshs-03165772 https://halshs.archives-ouvertes.fr/halshs-03165772 Submitted on 17 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Social interactions and the prophylaxis of SI epidemics on networkssa G´eraldineBouveretb Antoine Mandel c March 17, 2021 Abstract We investigate the containment of epidemic spreading in networks from a nor- mative point of view. We consider a susceptible/infected model in which agents can invest in order to reduce the contagiousness of network links. In this setting, we study the relationships between social efficiency, individual behaviours and network structure. First, we characterise individual and socially efficient behaviour using the notions of communicability and exponential centrality. Second, we show, by computing the Price of Anarchy, that the level of inefficiency can scale up to lin- early with the number of agents. -
Collusion Constrained Equilibrium
Theoretical Economics 13 (2018), 307–340 1555-7561/20180307 Collusion constrained equilibrium Rohan Dutta Department of Economics, McGill University David K. Levine Department of Economics, European University Institute and Department of Economics, Washington University in Saint Louis Salvatore Modica Department of Economics, Università di Palermo We study collusion within groups in noncooperative games. The primitives are the preferences of the players, their assignment to nonoverlapping groups, and the goals of the groups. Our notion of collusion is that a group coordinates the play of its members among different incentive compatible plans to best achieve its goals. Unfortunately, equilibria that meet this requirement need not exist. We instead introduce the weaker notion of collusion constrained equilibrium. This al- lows groups to put positive probability on alternatives that are suboptimal for the group in certain razor’s edge cases where the set of incentive compatible plans changes discontinuously. These collusion constrained equilibria exist and are a subset of the correlated equilibria of the underlying game. We examine four per- turbations of the underlying game. In each case,we show that equilibria in which groups choose the best alternative exist and that limits of these equilibria lead to collusion constrained equilibria. We also show that for a sufficiently broad class of perturbations, every collusion constrained equilibrium arises as such a limit. We give an application to a voter participation game that shows how collusion constraints may be socially costly. Keywords. Collusion, organization, group. JEL classification. C72, D70. 1. Introduction As the literature on collective action (for example, Olson 1965) emphasizes, groups often behave collusively while the preferences of individual group members limit the possi- Rohan Dutta: [email protected] David K. -
Online Learning and Game Theory
Online Learning and Game Theory Your guide: Avrim Blum Carnegie Mellon University [Algorithmic Economics Summer School 2012] Itinerary • Stop 1: Minimizing regret and combining advice. – Randomized Wtd Majority / Multiplicative Weights alg – Connections to minimax-optimality in zero-sum games • Stop 2: Bandits and Pricing – Online learning from limited feedback (bandit algs) – Use for online pricing/auction problems • Stop 3: Internal regret & Correlated equil – Internal regret minimization – Connections to correlated equilib. in general-sum games • Stop 4: Guiding dynamics to higher-quality equilibria – Helpful “nudging” of simple dynamics in potential games Stop 1: Minimizing regret and combining expert advice Consider the following setting… Each morning, you need to pick one of N possible routes to drive to work. Robots But traffic is different each day. R Us 32 min Not clear a priori which will be best. When you get there you find out how long your route took. (And maybe others too or maybe not.) Is there a strategy for picking routes so that in the long run, whatever the sequence of traffic patterns has been, you’ve done nearly as well as the best fixed route in hindsight? (In expectation, over internal randomness in the algorithm) Yes. “No-regret” algorithms for repeated decisions A bit more generally: Algorithm has N options. World chooses cost vector. Can view as matrix like this (maybe infinite # cols) World – life - fate Algorithm At each time step, algorithm picks row, life picks column. Alg pays cost for action chosen. Alg gets column as feedback (or just its own cost in the “bandit” model). Need to assume some bound on max cost. -
Correlated Equilibria and Communication in Games Françoise Forges
Correlated equilibria and communication in games Françoise Forges To cite this version: Françoise Forges. Correlated equilibria and communication in games. Computational Complex- ity. Theory, Techniques, and Applications, pp.295-704, 2012, 10.1007/978-1-4614-1800-9_45. hal- 01519895 HAL Id: hal-01519895 https://hal.archives-ouvertes.fr/hal-01519895 Submitted on 9 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Correlated Equilibrium and Communication in Games Françoise Forges, CEREMADE, Université Paris-Dauphine Article Outline Glossary I. De…nition of the Subject and its Importance II. Introduction III. Correlated Equilibrium: De…nition and Basic Properties IV. Correlated Equilibrium and Communication V. Correlated Equilibrium in Bayesian Games VI. Related Topics and Future Directions VII. Bibliography Acknowledgements The author wishes to thank Elchanan Ben-Porath, Frédéric Koessler, R. Vijay Krishna, Ehud Lehrer, Bob Nau, Indra Ray, Jérôme Renault, Eilon Solan, Sylvain Sorin, Bernhard von Stengel, Tristan Tomala, Amparo Ur- bano, Yannick Viossat and, especially, Olivier Gossner and Péter Vida, for useful comments and suggestions. Glossary Bayesian game: an interactive decision problem consisting of a set of n players, a set of types for every player, a probability distribution which ac- counts for the players’ beliefs over each others’ types, a set of actions for every player and a von Neumann-Morgenstern utility function de…ned over n-tuples of types and actions for every player. -
Strategic Behavior in Queues
Strategic behavior in queues Lecturer: Moshe Haviv1 Dates: 31 January – 4 February 2011 Abstract: The course will first introduce some concepts borrowed from non-cooperative game theory to the analysis of strategic behavior in queues. Among them: Nash equilibrium, socially optimal strategies, price of anarchy, evolutionarily stable strategies, avoid the crowd and follow the crowd. Various decision models will be considered. Among them: to join or not to join an M/M/1 or an M/G/1 queue, when to abandon the queue, when to arrive to a queue, and from which server to seek service (if at all). We will also look at the application of cooperative game theory concepts to queues. Among them: how to split the cost of waiting among customers and how to split the reward gained when servers pooled their resources. Program: 1. Basic concepts in strategic behavior in queues: Unobservable and observable queueing models, strategy profiles, to avoid or to follow the crowd, Nash equilibrium, evolutionarily stable strategy, social optimization, the price of anarchy. 2. Examples: to queue or not to queue, priority purchasing, retrials and abandonment, server selection. 3. Competition between servers. Examples: price war, capacity competition, discipline competition. 4. When to arrive to a queue so as to minimize waiting and tardiness costs? Examples: Poisson number of arrivals, fluid approximation. 5. Basic concepts in cooperative game theory: The Shapley value, the core, the Aumann-Shapley prices. Ex- amples: Cooperation among servers, charging customers based on the externalities they inflict on others. Bibliography: [1] M. Armony and M. Haviv, Price and delay competition between two service providers, European Journal of Operational Research 147 (2003) 32–50. -
Interim Correlated Rationalizability
Interim Correlated Rationalizability The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Dekel, Eddie, Drew Fudenberg, and Stephen Morris. 2007. Interim correlated rationalizability. Theoretical Economics 2, no. 1: 15-40. Published Version http://econtheory.org/ojs/index.php/te/article/view/20070015 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:3196333 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Theoretical Economics 2 (2007), 15–40 1555-7561/20070015 Interim correlated rationalizability EDDIE DEKEL Department of Economics, Northwestern University, and School of Economics, Tel Aviv University DREW FUDENBERG Department of Economics, Harvard University STEPHEN MORRIS Department of Economics, Princeton University This paper proposes the solution concept of interim correlated rationalizability, and shows that all types that have the same hierarchies of beliefs have the same set of interim-correlated-rationalizable outcomes. This solution concept charac- terizes common certainty of rationality in the universal type space. KEYWORDS. Rationalizability, incomplete information, common certainty, com- mon knowledge, universal type space. JEL CLASSIFICATION. C70, C72. 1. INTRODUCTION Harsanyi (1967–68) proposes solving games of incomplete