EUONYMUS EUROPAEUS (Euon. Eur.) Botanical Name : Euonymus Europaeus Linn. Family: Celastraceae Synonym : Euonymus Vulgaris

Total Page:16

File Type:pdf, Size:1020Kb

EUONYMUS EUROPAEUS (Euon. Eur.) Botanical Name : Euonymus Europaeus Linn. Family: Celastraceae Synonym : Euonymus Vulgaris EUONYMUS EUROPAEUS (Euon. eur.) Botanical name : Euonymus europaeus Linn. Family: Celastraceae Synonym : Euonymus vulgaris Mill. Common names : English: Spindle tree; French: Bonnet de pretre. Description : Much branched, glabrous, deciduous shrub; branches quadrangular. Buds 2 to 4 mm, ovoid. Leaves up to 10 by 3.5 cm, opposite ovate or lanceolate to elliptical, acute or acuminate. Flowers 3 to 8, in cymes, tetramerous, greenish-white. Fruit a capsule, 10 to 15 mm wide, angled, pink; seeds reddish-orange covered by scarlet aril. Part used : Seed. Microscopical : Transection shows outer 2 to 4 layers of parenchyma followed by a ring of palisade like sclereids, a layer of unorganised suberised cells, a wide zone of endosperm parenchyma containing oil globules. Embryo consists of an outer layer of thin walled epidermal cells, followed by polygonal and oval parenchyma cells. Identification : 1. Take one ml of 50 percent alcoholic extract, add 5 drops of dilute hydrochloric acid and a few drops of Mayer’s reagent; a brownish yellow precipitate appears. 2. Evaporate 20 ml of alcoholic extract on a water bath to remove alcohol, make it alkaline with ammonia solution and extract with chloroform (2 × 20 ml). Combine the chloroform extracts and concentrate to 5 ml. Carry out TLC of chloroform extract using chloroform : methanol (9:1 v/v) as mobile phase. Under UV light two bluish violet spots appeared at R 0.78 and 0.88. On spraying with Dragendorff’s f reagent one yellowish orange coloured spot appears at R 0.78. f Distribution : Throughout Europe and East Asia. History and authority : Proved by Graeser, Noack and Trinks; Allen: Encyclop. Mat. Med., Vol. IV, 234, Vol. X, 518; Clarke: A Dictionary of Practical Mat. Med., Vol. I, 725. Preparation : (a) Mother Tincture φ Drug strength 1/10 Euonymus Europaeus, moist magma containing solids 100 g and plant moisture 500 ml 600 g Strong Alcohol 537 ml to make one thousand millilitres of the Mother Tincture. (b) Potencies: 2x to contain one part Mother Tincture, four parts Purified Water; five parts Strong Alcohol; 3x and higher with Dispensing Alcohol. .
Recommended publications
  • Aphis Fabae Scop.) to Field Beans ( Vicia Faba L.
    ANALYSIS OF THE DAMAGE CAUSED BY THE BLACK BEAN APHID ( APHIS FABAE SCOP.) TO FIELD BEANS ( VICIA FABA L.) BY JESUS ANTONIO SALAZAR, ING. AGR. ( VENEZUELA ) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE UNIVERSITY OF LONDON OCTOBER 1976 IMPERIAL COLLEGE FIELD STATION, SILWOOD PARK, SUNNINGHILL, ASCOT, BERKSHIRE. 2 ABSTRACT The concept of the economic threshold and its importance in pest management programmes is analysed in Chapter I. The significance of plant responses or compensation in the insect-injury-yield relationship is also discussed. The amount of damage in terms of yield loss that results from aphid attack, is analysed by comparing the different components of yield in infested and uninfested plants. In the former, plants were infested at different stages of plant development. The results showed that seed weights, pod numbers and seed numbers in plants infested before the flowering period were significantly less than in plants infested during or after the period of flower setting. The growth pattern and growth analysis in infested and uninfested plants have shown that the rate of leaf production and dry matter production were also more affected when the infestations occurred at early stages of plant development. When field beans were infested during the flowering period and afterwards, the aphid feeding did not affect the rate of leaf and dry matter production. There is some evidence that the rate of leaf area production may increase following moderate aphid attack during this period. The relationship between timing of aphid migration from the wintering host and the stage of plant development are shown to be of considerable significance in determining the economic threshold for A.
    [Show full text]
  • Edge-Biased Distributions of Insects. a Review
    Agronomy for Sustainable Development (2018) 38: 11 https://doi.org/10.1007/s13593-018-0488-4 REVIEW ARTICLE Edge-biased distributions of insects. A review Hoang Danh Derrick Nguyen1 & Christian Nansen 1,2 Accepted: 15 January 2018 /Published online: 5 February 2018 # The Author(s) 2018. This article is an open access publication Abstract Spatial ecology includes research into factors responsible for observed distribution patterns of organisms. Moreover, the spatial distribution of an animal at a given spatial scale and in a given landscape may provide valuable insight into its host preference, fitness, evolutionary adaptation potential, and response to resource limitations. In agro-ecology, in-depth understanding of spatial distributions of insects is of particular importance when the goals are to (1) promote establishment and persistence of certain food webs, (2) maximize performance of pollinators and natural enemies, and (3) develop precision-targeted monitoring and detection of emerging outbreaks of herbivorous pests. In this article, we review and discuss a spatial phenomenon that is widespread among insect species across agricultural systems and across spatial scales—they tend to show “edge-biased distributions” (spatial distribution patterns show distinct “edge effects”). In the conservation and biodiversity literature, this phenomenon has been studied and reviewed intensively in the context of how landscape fragmentation affects species diversity. However, possible explanations of, and also implications of, edge-biased distributions of insects in agricultural systems have not received the same attention. Our review suggests that (1) mathe- matical modeling approaches can partially explain edge-biased distributions and (2) abiotic factors, crop vegetation traits, and environmental parameters are factors that are likely responsible for this phenomenon.
    [Show full text]
  • Morphological and Anatomical Study of the Bark, Leaves and Seeds Of
    Journal of Pharmacognosy and Phytochemistry 2020; 9(1): 1297-1299 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2020; 9(1): 1297-1299 Morphological and anatomical study of the bark, Received: 10-11-2019 Accepted: 12-12-2019 leaves and seeds of Euonymus europaeus L Vrubel OR Vrubel OR, Darmohray RYE and Antonyk VO Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical Abstract University; Pekarska Str., 69, Morphological and microscopic examination of the bark, leaves and seeds of Euonymus europaeus L. is Lviv, Ukraine presented in the study. The plant has an antioxidant, insecticidal, antimicrobial action. Euonymus europaeus L. can be a potential source of biologically active compounds. The purpose of the work was to Darmohray RYE determine the diagnostic features for the correct identification of plant materials. Light microscopy was Department of Pharmacognosy used in the study. As a result, the morphological analysis of the raw material was carried out, the and Botany, Danylo Halytsky anatomical structure of the leaf, the leaves upper and lower epidermis, type of stomata, cross sections of Lviv National Medical the bark and seeds were investigated. University; Pekarska Str., 69, Lviv, Ukraine Keywords: Euonymus europaeus L., microscopy, leaves, bark, seeds Antonyk VO Institute of Cell Biology, Introduction National Academy of Sciences of European spindle (Euonymus europaeus L.) belongs to the Celastraceae family. Euonymus Ukraine, 14/16 Dragomanova europaeus L. is native to much of Europe, including the surrounding Atlantic and Str., Lviv, Ukraine Mediterranean islands. In the north it extends all the way to the southern part of Sweden, in the [1, 2] east to the Caucasus Mountains and Asia Minor .
    [Show full text]
  • Euonymus Europaeus
    Euonymus europaeus COMMON NAME Spindle tree FAMILY Celastraceae FLORA CATEGORY Vascular – Exotic STRUCTURAL CLASS Trees & Shrubs - Dicotyledons NVS CODE EUOEUR HABITAT Terrestrial. FEATURES Much-branched glabrous, deciduous shrub or small tree up to 6m high. Bark grey & smooth. Twigs green, quadrangular, smooth, not winged. Leaves opposite, ovate-lanceolate to elliptic, acute or acuminate, crenate, usually turning red in autumn, 2–10cm long; petiole 6–12mm long. Cymes 2–15-flowered, pedunculate, dichotomous. Buds greenish, usually 4- angled; flowers usually 4-merous, 8–10mm diam.; petals greenish-yellow, generally oblong, widely separated. Capsule 4-lobed, deep pink, exposing the bright orange aril after opening. (- Webb et. al., 1988) FLOWERING November, December Euonymus europaeus. Photographer: Nic Singers FLOWER COLOURS Green, Yellow FRUITING March to May YEAR NATURALISED 1958 ORIGIN Europe ETYMOLOGY euonymus: One possible explanation is this genus is named after Euonymus europaeus. Photographer: John Smith-Dodsworth Euonyme, the mother of the Furies (vengeance deities in Greek mythology) because of the irritating properties of this plant. Another explanation is that the name is simply from the Greek eu ‘good’ and onoma ‘name’, meaning ‘a name of good repute’. Reason For Introduction Ornamental Life Cycle Comments Perennial. Long-lived seed bank - more than a year (Carol West, pers. comm.). Reproduction The species is gynodioecious (2 sexual morphs: 1 strictly female and the other, termed male, producing some seed) with both sexes established in wild populations (Webb et al., 1988). Dispersal Birds (Webb et al., 1988). Poisonous plant: All parts of this tree are poisonous including the pink fruits with orange seed. MORE INFORMATION https://www.nzpcn.org.nz/flora/species/euonymus-europaeus/.
    [Show full text]
  • Celastraceae
    Species information Abo ut Reso urces Hom e A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Celastraceae Family Profile Celastraceae Family Description A family of about 94 genera and 1400 species, worldwide; 22 genera occur naturally in Australia. Genera Brassiantha - A genus of two species in New Guinea and Australia; one species occurs naturally in Australia. Simmons et al (2012). Celastrus - A genus of 30 or more species, pantropic; two species occur naturally in Australia. Jessup (1984). Denhamia - A genus of about 17 species in the Pacific and Australia; about 15 species occur in Australia. Cooper & Cooper (2004); McKenna et al (2011); Harden et al (2014); Jessup (1984); Simmons (2004). Dinghoua - A monotypic genus endemic to Australia. Simmons et al (2012). Elaeodendron - A genus of about 80 species, mainly in the tropics and subtropics particularly in Africa; two species occur naturally in Australia. Harden et al. (2014); Jessup (1984) under Cassine; Simmons (2004) Euonymus - A genus of about 180 species, pantropic, well developed in Asia; one species occur naturally in Australia. Hou (1975); Jessup (1984); Simmons et al (2012). Gymnosporia - A genus of about 100 species in the tropics and subtropics, particularly Africa; one species occurs naturally in Australia. Jordaan & Wyk (1999). Hedraianthera - A monotypic genus endemic to Australia. Jessup (1984); Simmons et al (2012). Hexaspora - A monotypic genus endemic to Australia. Jessup (1984). Hippocratea - A genus of about 100 species, pantropic extending into the subtropics; one species occurs naturally in Australia.
    [Show full text]
  • Hortus Botanicus Universitatis Posnaniensis Index Seminum
    HORTUS BOTANICUS UNIVERSITATIS POSNANIENSIS INDEX SEMINUM 2020-2021 ANNO 2020 COLLECTORUM QUAE HORTUS BOTANICUS UNIVERSITATIS POSNANIENSIS MUTUO COMMUTANDA OFFERT OGRÓD BOTANICZNY UNIWERSYTETU IM. ADAMA MICKIEWICZA UL. DĄBROWSKIEGO 165 PL – 60-594 POZNAŃ ebgconsortiumindexseminum2020 ebgconsortiumindexseminum2021 Information Informacja Year of foundation – 1925 Rok założenia – 1925 Area about 22 ha, including about 800 m2 of greenhouses Aktualna powierzchnia około 22 ha w tym około 800 m2 pod szkłem Number of taxa – about 7500 Liczba taksonów – około 7500 1. Location: 1. Położenie: the Botanical Garden of the A. Mickiewicz University is situated in the W part of Poznań zachodnia część miasta Poznania latitude – 52o 25‘N szerokość geograficzna – 52o 25‘N longitude – 16o 55‘E długość geograficzna – 16o 55‘E the altitude is 89.2 m a.s.l. wysokość n.p.m. – 89.2 m 2. The types of soils: 2. Typy gleb: – brown soil – brunatna – rot soil on mineral ground – murszowa na podłożu mineralnym – gray forest soil – szara gleba leśna SEMINA PLANTARUM EX LOCIS NATURALIBUS COLLECTA zbierał/collected gatunek/species stanowisko/location by MAGNOLIOPHYTA Magnoliopsida Apiaceae 1. Daucus carota L. PL, prov. Wielkopolskie, Poznań, Szczepankowo J. Jaskulska 2. Peucedanum oreoselinum (L.) Moench PL, prov. Kujawsko-Pomorskie, Folusz J. Jaskulska Asteraceae 3. Achillea millefolium L. s.str. PL, prov. Wielkopolskie, Kamionki J. Jaskulska 4. Achillea millefolium L. s.str. PL, prov. Wielkopolskie, Koninko J. Jaskulska 5. Artemisia vulgaris L. PL, prov. Wielkopolskie, Kamionki J. Jaskulska 6. Artemisia vulgaris L. PL, prov. Wielkopolskie, Koninko J. Jaskulska 7. Bidens tripartita L. PL, prov. Wielkopolskie, Koninko J. Jaskulska 8. Centaurea scabiosa L. PL, prov. Kujawsko-Pomorskie, Folusz J.
    [Show full text]
  • Guide to the Euonymus of New York City
    New York City EcoFlora Guide to the Euonymus (Euonymus) of New York City Euonymus is a genus of 130–140 species in the mostly tropical Celastraceae (Staff-Tree) family. The family comprises about 95 genera and 1,350 species. Only three genera occur in the northern hemisphere, Euonymus, Celastrus and Parnassia, all three found or once found in New York City. Euonymus species occur nearly worldwide with most species native to eastern Asia. They are trees, shrubs or woody vines, the stems often angled or winged, sometimes climbing by adventitious roots; leaves deciduous or evergreen, opposite, the blades simple, margins crenate or toothed; inflorescences terminal or axillary; flowers in small clusters, petals usually green, sometimes white or purple; fruit usually brightly colored, lobed capsules; seeds enveloped in brightly colored tissue (aril), often contrasting with the fruit wall. Euonymus (as well as most members of the Celastraceae family) can often be recognized by “gestalt”. The leaves and often the stems too have a distinctive, but somewhat variable yellow-green color that is hard to describe but nearly unlike any other plants. The leaves are usually leathery, and almost always have distinctively scalloped (crenate) margins (the margins rarely completely smooth or toothed). There are four species native to North America, one species endemic to California, Oregon and Washington (Euonymus occidentalis); a predominately Midwestern species (Euonymus obovatus); a widespread northeastern species (Euonymus atropurpureus) and a widespread southeastern species (Euonymus americanus). Two species are indigenous to New York City. The predominately southeastern US species, Euonymus americanus, American Strawberry Bush is endangered in New York State.
    [Show full text]
  • Celastraceae (Bittersweet Family) Traits, Key, & Comparison Chart Genus Traits of Parnassia (Grass-Of-Parnassus)
    Celastraceae (Bittersweet Family) Traits, Key, & Comparison Chart © S.J. Meades. Flora of Newfoundland and Labrador (Jan. 2020) Traits of Parnassia (Celastraceae)................................................................................................... 1 Key .................................................................................................................................................. 2 Comparison Chart .......................................................................................................................... 3 References ...................................................................................................................................... 4 Genus Traits of Parnassia (grass-of-Parnassus) [Parnassia is the only genus of the Celastraceae Family in NL] • Herbaceous plants with basal rosettes of petiolate leaves and 0 or 1 sessile cauline leaf; stems and leaves are glabrous (without hairs). • Flowers solitary, terminal on erect stems, bisexual, and 5-merous. • Flowers have 5 green sepals, 5 white petals with prominent veins, 5 stamens (maturing sequentially), and a single pistil. • Five staminodia (modified sterile stamens; singular: staminodium) are situated opposite the petals and alternate with the fertile stamens. Each staminodium has 3–27 slender segments that terminate in a spherical yellow gland. • The pistil has an ovoid, superior ovary, ivory white or green, which has 4 carpels but only 1 locule (interior chamber); stigmas are 4 and sessile; styles are lacking. • The fruit
    [Show full text]
  • Comparison of Different Classifications on the Celastraceae
    UNITED STATES DEPARTMENT OF AGRICLJLTURE AGRICULTURAL RESEARCH SERVICE NORTHEASTERN REGlON AGRICULTURAL RESEARCH CENTER BELTSVILLE. MARYLAND 20705 Novenber 7, 1974 / Subject: ConpadSon of Different Classifications on the Celastraceae in Africa with Discussions on the Status of Gymnosporia and Other Genera To : R. E. Perdue, Jr., Chief ,.. Medicinal Plant Resources ~aboratory Currently, the taxonomy of the Celastraceae is in a state of confusion. A few recent revisions limited mostly ,to political boundaries, have helped to clarify the systematics in a few genera; however, the continued disagreement among generic relationships seems to make it nore difficult for the non-specialist. Because of special efforts to procure plant samples in this family, frequent synonomy has led to confusion as well as duplica- tion, especially in Africa where a number of samples have been received from floristically related countries in which different authorities are recogcized for the Celastracean Flora. This report, primarily, will 'deal with the systematic problems of the African Celasrrtseae. Until recently, the Hippocrateaceae was treated as a separate family from the Celastraceae (Smith, 1940; Loesener, 1942; Wilczek, 1960; Hallee, 1962). L Robson (1965, 1966), Ding Hou (1963, 1964), Blakelock (1958), and Codd (1972) have united the Hippocrateaceae with the Celastraceae; but, their reasons for uniting the two families are not in agreement. The Celastraceae is believed by Codd and Kobson to comprise about 60 to 70 genera, but Ding Hou has indicated that there are about 90 genera. For the purpose of identifying two major complexes, which taxonomists are not in agreement, I will refer to the Celastraceae and Hippocrateaceae as two separate families.
    [Show full text]
  • Saxifragaceae
    Flora of China 8: 269–452. 2001. SAXIFRAGACEAE 虎耳草科 hu er cao ke Pan Jintang (潘锦堂)1, Gu Cuizhi (谷粹芝 Ku Tsue-chih)2, Huang Shumei (黄淑美 Hwang Shu-mei)3, Wei Zhaofen (卫兆芬 Wei Chao-fen)4, Jin Shuying (靳淑英)5, Lu Lingdi (陆玲娣 Lu Ling-ti)6; Shinobu Akiyama7, Crinan Alexander8, Bruce Bartholomew9, James Cullen10, Richard J. Gornall11, Ulla-Maj Hultgård12, Hideaki Ohba13, Douglas E. Soltis14 Herbs or shrubs, rarely trees or vines. Leaves simple or compound, usually alternate or opposite, usually exstipulate. Flowers usually in cymes, panicles, or racemes, rarely solitary, usually bisexual, rarely unisexual, hypogynous or ± epigynous, rarely perigynous, usually biperianthial, rarely monochlamydeous, actinomorphic, rarely zygomorphic, 4- or 5(–10)-merous. Sepals sometimes petal-like. Petals usually free, sometimes absent. Stamens (4 or)5–10 or many; filaments free; anthers 2-loculed; staminodes often present. Carpels 2, rarely 3–5(–10), usually ± connate; ovary superior or semi-inferior to inferior, 2- or 3–5(–10)-loculed with axile placentation, or 1-loculed with parietal placentation, rarely with apical placentation; ovules usually many, 2- to many seriate, crassinucellate or tenuinucellate, sometimes with transitional forms; integument 1- or 2-seriate; styles free or ± connate. Fruit a capsule or berry, rarely a follicle or drupe. Seeds albuminous, rarely not so; albumen of cellular type, rarely of nuclear type; embryo small. About 80 genera and 1200 species: worldwide; 29 genera (two endemic), and 545 species (354 endemic, seven introduced) in China. During the past several years, cladistic analyses of morphological, chemical, and DNA data have made it clear that the recognition of the Saxifragaceae sensu lato (Engler, Nat.
    [Show full text]
  • Plant Cover on the Limestone Alvar of Oland Ecology - Sociology - Taxonomy
    ACTA UNIVERSITATIS UPSALIENSIS ACTA PHYTOGEOGRAPHICA SUECICA 76 Plant cover on the limestone Alvar of Oland Ecology - Sociology - Taxonomy Editor Erik Sjogren UPPSALA 1988 ACTA UNIVERSITATIS UPSALIENSIS ACTA PHYTOGEOGRAPHICA SUECICA 76 Plant cover on the limestone Alvar of Oland Ecology - Sociology - Taxonomy Editor Erik Sjogren Almqvist & Wiksell International, Stockholm UPPSALA 1988 The publication of this volume has been economically supported by the "Axel och Margaret Ax:son Johnsons stiftelse". ISBN 91-7210-076-1 (paperback) ISBN 91-7210-476-7 (cloth) ISSN 0084-5914 Respective author 1988 © Drawing of Hel ianthemum oelandicum on cover by Marie Widen. Edidit: Svenska Vaxtgeografiska Sallskapet Box 559, 751 22 Uppsala Editor: Erik Sjogren Technical editor: Gunnel Sjors Phototypesetting: Textgruppen i U ppsala AB Printed in Sweden 1988 by Centraltryckeriet AB, Bon\s Acta phytogeographica suecica 76 Contents Studies of vegetation on Oland-changes and development during a century. By Erik Sj ogren . 5 Limiting factors on seed production in Crepis tectorum ssp. pumila. By Stejan Andersson. 9 The dry alvar grasslands of Oland: ecological amplitudes of plant spe­ cies in relation to vegetation composition. By Karin Bengtsson, Honor C. Prentice, Ej vind Rosen, Roland Moberg & Erik Sj ogren . 21 Calcicolous lichens and their ecological preferences on the Great Alvar of Oland. By Lars Froberg. 47 Floristic diversity and guild structure in the grasslands of Oland's Stora Alvar. By Eddy van der Maarel. 53 The effects of colonizing shrubs (Juniperus communis and Potentilla fructicosa) on species richness in the grasslands of Stora Alvaret, Oland. By Marcel Rejmdnek & Ejvind Rosen. 67 Das Naturschutzgebiet in Gosslunda. By Lars Rodenborg.
    [Show full text]
  • First Report of Euonymus Fortunei (Celastraceae) Naturalized in Texas
    Nesom, G. L. 2010. First report of Euonymus fortunei (Celastraceae) naturalized in Texas. Phytoneuron 2010-1: 1-9. (8 January) [photos added to text, Aug 2021] FIRST REPORT OF EUONYMUS FORTUNEI (CELASTRACEAE) NATURALIZED IN TEXAS GUY L. NESOM 2925 Hartwood Drive Fort Worth, TX 76109, USA www.guynesom.com ABSTRACT Euonymus fortunei is documented here for the first time to occur outside of cultivation in Texas. The population, which is perhaps a large clone spread from an original planting, is in Overton Park in the central part of Fort Worth. Flowers and fruits have not been observed. Color photos are included. KEY WORDS: Euonymus fortunei, Celastraceae, naturalized, Texas Euonymus fortunei (Turcz.) Hand.-Mazz. Winter creeper, climbing euonymus Texas. Tarrant Co.: Fort Worth, Overton Park near intersection of Owenwood Drive and Glenwood Drive, terrace bank on south side of Overton Creek, along 60 feet of embankment and covering ca. 600-800 square feet, apparently spread downslope from original plantings near a house ca. 50 feet above, in a thicket of Prunus caroliniana, Photinia serratifolia, Ligustrum lucidum, Ligustrum quihoui, Nandina domestica, under Ulmus crassifolia and young Bumelia lanuginosa and Celtis laevigata, with Hedera helix, the euonymus also spreading out of the thicket into adjacent mowed areas, 18 May 2009, G.L. Nesom 2010-01 (BRIT, OKL, TEX, to be deposited). Euonymus fortunei is an evergreen, trailing or scandent subshrub native to southeastern Asia. At the Overton Park site, it densely covers the ground, intermixed in one area with Hedera helix, and has grown nearly 10 feet out of the thicket into grassy areas into a constantly mowed area.
    [Show full text]