The Influence of Black Beaq Aphid, Aphis Fabae Scop., and Its Honeydew on the Photosynthesis of Sugar Beet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aphis Fabae Scop.) to Field Beans ( Vicia Faba L.
ANALYSIS OF THE DAMAGE CAUSED BY THE BLACK BEAN APHID ( APHIS FABAE SCOP.) TO FIELD BEANS ( VICIA FABA L.) BY JESUS ANTONIO SALAZAR, ING. AGR. ( VENEZUELA ) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE UNIVERSITY OF LONDON OCTOBER 1976 IMPERIAL COLLEGE FIELD STATION, SILWOOD PARK, SUNNINGHILL, ASCOT, BERKSHIRE. 2 ABSTRACT The concept of the economic threshold and its importance in pest management programmes is analysed in Chapter I. The significance of plant responses or compensation in the insect-injury-yield relationship is also discussed. The amount of damage in terms of yield loss that results from aphid attack, is analysed by comparing the different components of yield in infested and uninfested plants. In the former, plants were infested at different stages of plant development. The results showed that seed weights, pod numbers and seed numbers in plants infested before the flowering period were significantly less than in plants infested during or after the period of flower setting. The growth pattern and growth analysis in infested and uninfested plants have shown that the rate of leaf production and dry matter production were also more affected when the infestations occurred at early stages of plant development. When field beans were infested during the flowering period and afterwards, the aphid feeding did not affect the rate of leaf and dry matter production. There is some evidence that the rate of leaf area production may increase following moderate aphid attack during this period. The relationship between timing of aphid migration from the wintering host and the stage of plant development are shown to be of considerable significance in determining the economic threshold for A. -
Edge-Biased Distributions of Insects. a Review
Agronomy for Sustainable Development (2018) 38: 11 https://doi.org/10.1007/s13593-018-0488-4 REVIEW ARTICLE Edge-biased distributions of insects. A review Hoang Danh Derrick Nguyen1 & Christian Nansen 1,2 Accepted: 15 January 2018 /Published online: 5 February 2018 # The Author(s) 2018. This article is an open access publication Abstract Spatial ecology includes research into factors responsible for observed distribution patterns of organisms. Moreover, the spatial distribution of an animal at a given spatial scale and in a given landscape may provide valuable insight into its host preference, fitness, evolutionary adaptation potential, and response to resource limitations. In agro-ecology, in-depth understanding of spatial distributions of insects is of particular importance when the goals are to (1) promote establishment and persistence of certain food webs, (2) maximize performance of pollinators and natural enemies, and (3) develop precision-targeted monitoring and detection of emerging outbreaks of herbivorous pests. In this article, we review and discuss a spatial phenomenon that is widespread among insect species across agricultural systems and across spatial scales—they tend to show “edge-biased distributions” (spatial distribution patterns show distinct “edge effects”). In the conservation and biodiversity literature, this phenomenon has been studied and reviewed intensively in the context of how landscape fragmentation affects species diversity. However, possible explanations of, and also implications of, edge-biased distributions of insects in agricultural systems have not received the same attention. Our review suggests that (1) mathe- matical modeling approaches can partially explain edge-biased distributions and (2) abiotic factors, crop vegetation traits, and environmental parameters are factors that are likely responsible for this phenomenon. -
Morphological and Anatomical Study of the Bark, Leaves and Seeds Of
Journal of Pharmacognosy and Phytochemistry 2020; 9(1): 1297-1299 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2020; 9(1): 1297-1299 Morphological and anatomical study of the bark, Received: 10-11-2019 Accepted: 12-12-2019 leaves and seeds of Euonymus europaeus L Vrubel OR Vrubel OR, Darmohray RYE and Antonyk VO Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical Abstract University; Pekarska Str., 69, Morphological and microscopic examination of the bark, leaves and seeds of Euonymus europaeus L. is Lviv, Ukraine presented in the study. The plant has an antioxidant, insecticidal, antimicrobial action. Euonymus europaeus L. can be a potential source of biologically active compounds. The purpose of the work was to Darmohray RYE determine the diagnostic features for the correct identification of plant materials. Light microscopy was Department of Pharmacognosy used in the study. As a result, the morphological analysis of the raw material was carried out, the and Botany, Danylo Halytsky anatomical structure of the leaf, the leaves upper and lower epidermis, type of stomata, cross sections of Lviv National Medical the bark and seeds were investigated. University; Pekarska Str., 69, Lviv, Ukraine Keywords: Euonymus europaeus L., microscopy, leaves, bark, seeds Antonyk VO Institute of Cell Biology, Introduction National Academy of Sciences of European spindle (Euonymus europaeus L.) belongs to the Celastraceae family. Euonymus Ukraine, 14/16 Dragomanova europaeus L. is native to much of Europe, including the surrounding Atlantic and Str., Lviv, Ukraine Mediterranean islands. In the north it extends all the way to the southern part of Sweden, in the [1, 2] east to the Caucasus Mountains and Asia Minor . -
Euonymus Europaeus
Euonymus europaeus COMMON NAME Spindle tree FAMILY Celastraceae FLORA CATEGORY Vascular – Exotic STRUCTURAL CLASS Trees & Shrubs - Dicotyledons NVS CODE EUOEUR HABITAT Terrestrial. FEATURES Much-branched glabrous, deciduous shrub or small tree up to 6m high. Bark grey & smooth. Twigs green, quadrangular, smooth, not winged. Leaves opposite, ovate-lanceolate to elliptic, acute or acuminate, crenate, usually turning red in autumn, 2–10cm long; petiole 6–12mm long. Cymes 2–15-flowered, pedunculate, dichotomous. Buds greenish, usually 4- angled; flowers usually 4-merous, 8–10mm diam.; petals greenish-yellow, generally oblong, widely separated. Capsule 4-lobed, deep pink, exposing the bright orange aril after opening. (- Webb et. al., 1988) FLOWERING November, December Euonymus europaeus. Photographer: Nic Singers FLOWER COLOURS Green, Yellow FRUITING March to May YEAR NATURALISED 1958 ORIGIN Europe ETYMOLOGY euonymus: One possible explanation is this genus is named after Euonymus europaeus. Photographer: John Smith-Dodsworth Euonyme, the mother of the Furies (vengeance deities in Greek mythology) because of the irritating properties of this plant. Another explanation is that the name is simply from the Greek eu ‘good’ and onoma ‘name’, meaning ‘a name of good repute’. Reason For Introduction Ornamental Life Cycle Comments Perennial. Long-lived seed bank - more than a year (Carol West, pers. comm.). Reproduction The species is gynodioecious (2 sexual morphs: 1 strictly female and the other, termed male, producing some seed) with both sexes established in wild populations (Webb et al., 1988). Dispersal Birds (Webb et al., 1988). Poisonous plant: All parts of this tree are poisonous including the pink fruits with orange seed. MORE INFORMATION https://www.nzpcn.org.nz/flora/species/euonymus-europaeus/. -
Differences in the Sugar Composition of the Honeydew of Polyphagous
NOTE Eur. J. Entomol. 108: 705–709, 2011 http://www.eje.cz/scripts/viewabstract.php?abstract=1671 ISSN 1210-5759 (print), 1802-8829 (online) Differences in the sugar composition of the honeydew of polyphagous brown soft scale Coccus hesperidum (Hemiptera: Sternorrhyncha: Coccoidea) feeding on various host plants KATARZYNA GOLAN 1 and AGNIESZKA NAJDA2 1Department of Entomology, University of Life Sciences in Lublin, LeszczyĔskiego 7, 20-069 Lublin, Poland; e-mail: [email protected] 2 Department of Vegetable and Medicinal Plants, University of Life Sciences in Lublin, LeszczyĔskiego 58, 20-068 Lublin, Poland Key words. Coccoidea, Coccus hesperidum, brown scale insects, honeydew, host plants, soft scale, sugar composition Abstract. Plant chemical composition is an important determinant of host plant-insect interactions. For many insects sugars are the main factors determining the acceptability of a plant. This study investigated changes in plant chemical composition and differences in sugar composition of different host plants induced by the feeding of Coccus hesperidum L. (Hemiptera: Sternorrhyncha: Coccoi- dea). Present in plant extracts and honeydew there were three monosaccharide sugars: glucose, fructose and arabinose, and one disaccharide – sucrose. Arabinose was only found in extracts of Ficus benjamina plants. The sugar content of the honeydew was greater than in the extracts of control plants and lower than that in the extracts of infested plants. The honeydew collected from C. hesperidum feeding on the three plant species differed significantly in sugar content. Extracts of coccid infested plants of the three species used in this study contained more sugar than the un-infested control plants. The results show that honeydew composition of scale insects differ and the differences reflect the chemical composition of the host plants. -
Bushhopper Stalk-Eyed Fly Coconut Crab Periodical Cicada
PIOTR NASKRECKI PHOTO BANNERS HANGING IN CHANGING EXHIBIT GALLERY Bushhopper Stalk-Eyed Fly Phymateus viridipes Diasemopsis fasciata Gorongosa National Park, Mozambique Gorongosa National Park, Mozambique A nymph of the bushhopper from Mozambique Like antlers on a deer’s head, the long can afford to be slow and conspicuous thanks eyestalks on this fly’s head are used in maleto- to the toxins in its body. These insects feed male combat, allowing the individual with on plants rich in poisonous metabolites, the largest stalks to win access to females including some that can cause heart failure, so most predators avoid them. Coconut Crab Periodical Cicada Birgus latro Magicicada septendecim Guadalcanal, Solomon Islands Annandale, Virginia The coconut crab is not just another land Periodical cicadas spend seventeen years crab; it is the largest living terrestrial underground, feeding on the roots of plants. invertebrate, reaching a weight of nine After that time they all emerge at the same pounds and a leg span of over three feet. time, causing consternation in people and Their lifespan is equally impressive, and the a feeding frenzy in birds. A newly emerged largest individuals are believed to be forty to (eclosed) periodical cicada is almost snow sixty years old. white, but within a couple of hours its body darkens and the exoskeleton becomes hard. BIG BUGS • Dec. 31, 2015 - April 17, 2016 Virginia Living Museum • 524 J. Clyde Morris Blvd. • Newport News, VA 23601 • 757-595-1900 • thevlm.org PIOTR NASKRECKI PHOTO BANNERS HANGING IN CHANGING EXHIBIT GALLERY Dung Beetles Lappet Moth Kheper aegyptiorum Chrysopsyche lutulenta Gorongosa National Park, Mozambique Gorongosa National Park, Mozambique Dung beetles are very important members of At the beginning of the dry season in Savanna communities. -
Hortus Botanicus Universitatis Posnaniensis Index Seminum
HORTUS BOTANICUS UNIVERSITATIS POSNANIENSIS INDEX SEMINUM 2020-2021 ANNO 2020 COLLECTORUM QUAE HORTUS BOTANICUS UNIVERSITATIS POSNANIENSIS MUTUO COMMUTANDA OFFERT OGRÓD BOTANICZNY UNIWERSYTETU IM. ADAMA MICKIEWICZA UL. DĄBROWSKIEGO 165 PL – 60-594 POZNAŃ ebgconsortiumindexseminum2020 ebgconsortiumindexseminum2021 Information Informacja Year of foundation – 1925 Rok założenia – 1925 Area about 22 ha, including about 800 m2 of greenhouses Aktualna powierzchnia około 22 ha w tym około 800 m2 pod szkłem Number of taxa – about 7500 Liczba taksonów – około 7500 1. Location: 1. Położenie: the Botanical Garden of the A. Mickiewicz University is situated in the W part of Poznań zachodnia część miasta Poznania latitude – 52o 25‘N szerokość geograficzna – 52o 25‘N longitude – 16o 55‘E długość geograficzna – 16o 55‘E the altitude is 89.2 m a.s.l. wysokość n.p.m. – 89.2 m 2. The types of soils: 2. Typy gleb: – brown soil – brunatna – rot soil on mineral ground – murszowa na podłożu mineralnym – gray forest soil – szara gleba leśna SEMINA PLANTARUM EX LOCIS NATURALIBUS COLLECTA zbierał/collected gatunek/species stanowisko/location by MAGNOLIOPHYTA Magnoliopsida Apiaceae 1. Daucus carota L. PL, prov. Wielkopolskie, Poznań, Szczepankowo J. Jaskulska 2. Peucedanum oreoselinum (L.) Moench PL, prov. Kujawsko-Pomorskie, Folusz J. Jaskulska Asteraceae 3. Achillea millefolium L. s.str. PL, prov. Wielkopolskie, Kamionki J. Jaskulska 4. Achillea millefolium L. s.str. PL, prov. Wielkopolskie, Koninko J. Jaskulska 5. Artemisia vulgaris L. PL, prov. Wielkopolskie, Kamionki J. Jaskulska 6. Artemisia vulgaris L. PL, prov. Wielkopolskie, Koninko J. Jaskulska 7. Bidens tripartita L. PL, prov. Wielkopolskie, Koninko J. Jaskulska 8. Centaurea scabiosa L. PL, prov. Kujawsko-Pomorskie, Folusz J. -
Guide to the Euonymus of New York City
New York City EcoFlora Guide to the Euonymus (Euonymus) of New York City Euonymus is a genus of 130–140 species in the mostly tropical Celastraceae (Staff-Tree) family. The family comprises about 95 genera and 1,350 species. Only three genera occur in the northern hemisphere, Euonymus, Celastrus and Parnassia, all three found or once found in New York City. Euonymus species occur nearly worldwide with most species native to eastern Asia. They are trees, shrubs or woody vines, the stems often angled or winged, sometimes climbing by adventitious roots; leaves deciduous or evergreen, opposite, the blades simple, margins crenate or toothed; inflorescences terminal or axillary; flowers in small clusters, petals usually green, sometimes white or purple; fruit usually brightly colored, lobed capsules; seeds enveloped in brightly colored tissue (aril), often contrasting with the fruit wall. Euonymus (as well as most members of the Celastraceae family) can often be recognized by “gestalt”. The leaves and often the stems too have a distinctive, but somewhat variable yellow-green color that is hard to describe but nearly unlike any other plants. The leaves are usually leathery, and almost always have distinctively scalloped (crenate) margins (the margins rarely completely smooth or toothed). There are four species native to North America, one species endemic to California, Oregon and Washington (Euonymus occidentalis); a predominately Midwestern species (Euonymus obovatus); a widespread northeastern species (Euonymus atropurpureus) and a widespread southeastern species (Euonymus americanus). Two species are indigenous to New York City. The predominately southeastern US species, Euonymus americanus, American Strawberry Bush is endangered in New York State. -
Sucrose Triggers Honeydew Preference in the Ghost Ant, Tapinoma Melanocephalum (Hymenoptera: Formicidae) A
Sucrose triggers honeydew preference in the ghost ant, Tapinoma melanocephalum (Hymenoptera: Formicidae) A. M. Zhou1, 2,*, B. Q. Kuang2, Y. R. Gao2, and G. W. Liang2 Abstract Honeydew produced by hemipterans mediates mutualistic interactions between ants and hemipterans. Previous studies demonstrated that the mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) and the aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) produce abundant honeydew and attract a large number of tending ants. Ghost ants, Tapinoma melanocephalum (F.) (Hymenoptera: Formicidae), show a significant preference for mealybug honeydew over aphid honeydew. Although many studies have indicated that the honeydew produced by hemip- terans plays an important role in ant–hemipteran interactions, we know little about what triggers ants’ foraging preferences. Our results showed that the honeydew produced by both mealybugs and aphids contained fructose, sucrose, trehalose, melezitose, raffinose, and rhamnose. There were no significant difference in the concentrations of the various sugars between mealybugs and aphids, except sucrose. Xylose was present only in mealy- bug honeydew, and glucose was present only in aphid honeydew. We also found no substantial difference in the excretion frequency and the total weight of honeydew produced per 24 h between mealybugs and aphids. Ghost ants preferred sucrose. In addition, attractiveness of sucrose solutions increased significantly with increasing concentration. These results suggest that sucrose is the trigger for ghost ants’ honeydew preference. Key Words: ant–hemipteran mutualism; sugar composition; sugar concentration Resumen La mielcilla producida por hemípteros regula las interacciones mutualistas entre las hormigas y los hemípteros. Los estudios anteriores demostraron que la cochinilla harinosa Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) y el áfido Myzus persicae (Sulzer) (Hemiptera: Aphididae) producen mielcilla abundante y atraen a un gran número de hormigas que atienden. -
Citrus Mealybug Planococcus Citri (Risso) (Insecta: Hemiptera: Pseudococcidae)1 Harsimran Kaur Gill, Gaurav Goyal, and Jennifer Gillett-Kaufman2
EENY-537 Citrus Mealybug Planococcus citri (Risso) (Insecta: Hemiptera: Pseudococcidae)1 Harsimran Kaur Gill, Gaurav Goyal, and Jennifer Gillett-Kaufman2 Introduction or several weeks. An average of 29 eggs per day is laid by females (Kerns et al. 2001, Meyers 1932). The citrus mealybug is a common pest of citrus primarily in greenhouses and of several ornamental plants in Florida. It has been recognized as a difficult-to-control pest in Europe since 1813 (where it is called the greenhouse mealybug) and in the United States since 1879 (Anonymous 2007). Distribution The pest is a native of Asia but is also found throughout the Americas, Europe, and Oceania. In North America, it is present in both Mexico and United States (Alabama, Arizona, Arkansas, California, Florida, Hawaii, Kansas, Louisiana, Maryland, Massachusetts, Missouri, New Mexico, Ohio, South Carolina, Tennessee, Texas, and Virginia) (CABI/EPPO 1999). Figure 1. Eggs are deposited as white cottony massess called ovisacs. Credits: Lyle Buss, University of Florida. Description and Life History Immatures Eggs Nymphs emerge from the ovisacs and typically settle along Eggs are deposited as white, cottony masses, called ovisacs, midribs and veins on the underside of leaves, young twigs, on the trunk and stems of citrus plants, giving the appear- and fruit buttons. They can also be found where two fruits ance of cotton spread on plants (Figure 1). The glossy, are touching each other (Figure 2) or on leaves clinging light yellow eggs are oval and approximately 0.3 mm long. to fruits. Due to their habit of hiding in crevices, light A female can lay from 300 to 600 eggs in her life period, infestations are easily overlooked. -
Plant Cover on the Limestone Alvar of Oland Ecology - Sociology - Taxonomy
ACTA UNIVERSITATIS UPSALIENSIS ACTA PHYTOGEOGRAPHICA SUECICA 76 Plant cover on the limestone Alvar of Oland Ecology - Sociology - Taxonomy Editor Erik Sjogren UPPSALA 1988 ACTA UNIVERSITATIS UPSALIENSIS ACTA PHYTOGEOGRAPHICA SUECICA 76 Plant cover on the limestone Alvar of Oland Ecology - Sociology - Taxonomy Editor Erik Sjogren Almqvist & Wiksell International, Stockholm UPPSALA 1988 The publication of this volume has been economically supported by the "Axel och Margaret Ax:son Johnsons stiftelse". ISBN 91-7210-076-1 (paperback) ISBN 91-7210-476-7 (cloth) ISSN 0084-5914 Respective author 1988 © Drawing of Hel ianthemum oelandicum on cover by Marie Widen. Edidit: Svenska Vaxtgeografiska Sallskapet Box 559, 751 22 Uppsala Editor: Erik Sjogren Technical editor: Gunnel Sjors Phototypesetting: Textgruppen i U ppsala AB Printed in Sweden 1988 by Centraltryckeriet AB, Bon\s Acta phytogeographica suecica 76 Contents Studies of vegetation on Oland-changes and development during a century. By Erik Sj ogren . 5 Limiting factors on seed production in Crepis tectorum ssp. pumila. By Stejan Andersson. 9 The dry alvar grasslands of Oland: ecological amplitudes of plant spe cies in relation to vegetation composition. By Karin Bengtsson, Honor C. Prentice, Ej vind Rosen, Roland Moberg & Erik Sj ogren . 21 Calcicolous lichens and their ecological preferences on the Great Alvar of Oland. By Lars Froberg. 47 Floristic diversity and guild structure in the grasslands of Oland's Stora Alvar. By Eddy van der Maarel. 53 The effects of colonizing shrubs (Juniperus communis and Potentilla fructicosa) on species richness in the grasslands of Stora Alvaret, Oland. By Marcel Rejmdnek & Ejvind Rosen. 67 Das Naturschutzgebiet in Gosslunda. By Lars Rodenborg. -
Shrubs of the Chicago Region
A Selection of Native Shrubs and Noteworthy Non-Native Shrubs 1 WEB VERSION Shrubs of the Chicago Region Volunteer Stewardship Network – Chicago Wilderness Photos by: © Paul Rothrock (Taylor University, IN), © John & Jane Balaban ([email protected]; North Branch Restoration Project), © Kenneth Dritz, © Sue Auerbach, © Melanie Gunn, © Sharon Shattuck, and © William Burger (Field Museum). Produced by: Jennie Kluse © vPlants.org and Sharon Shattuck, with assistance from Ken Klick (Lake County Forest Preserve), Paul Rothrock, Sue Auerbach, John & Jane Balaban, and Laurel Ross. © Environment, Culture and Conservation, The Field Museum, Chicago, IL 60605 USA. [http://www.fmnh.org/temperateguides/]. Chicago Wilderness Guide #5 version 1 (06/2008) EVERGREEN SHRUBS: GROUP 1. LEAVES ARE NEEDLES or SCALES. 1 Juniperus horizontalis TRAILING JUNIPER: 2 Juniperus communis COMMON JUNIPER: Plants have a creeping habit; some leaves are needles but most are Erect shrub or tree (up to 3 m tall); needles whorled on stem; scales with a whitish coat; fruit a bluish-whitish berry-like cone; fruit a bluish or black berry-like cone; grows only in dunes/bluffs male cones on separate plants; grows in sandy soils. bordering Lake Michigan. DECIDUOUS SHRUBS: GROUP 2. LEAVES COMPOUND (more than one leaflet per stalk). STEMS ARMED. 3 Rosa setigera ILLINOIS ROSE: 4 Rosa palustris SWAMP ROSE: Mature plant with long-arching stems; sparse prickles; leaflets Upright shrub; stems very thorny; leaflets 5-7; sepals fall from usually 3, but sometimes 5; styles (female pollen tube) fused into mature fruit; fruit smooth, red berry-like hips; grows in wet and a column; stipules narrow to tip. open ditches, bogs, and swamps.