Transcriptional Regulation of Photoreceptor Development in the Zebrafish Retina Karen Alvarez-Delfin

Total Page:16

File Type:pdf, Size:1020Kb

Transcriptional Regulation of Photoreceptor Development in the Zebrafish Retina Karen Alvarez-Delfin Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2011 Transcriptional Regulation of Photoreceptor Development in the Zebrafish Retina Karen Alvarez-Delfin Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES TRANSCRIPTIONAL REGULATION OF PHOTORECEPTOR DEVELOPMENT IN THE ZEBRAFISH RETINA By KAREN ALVAREZ-DELFIN A Dissertation submitted to the Department of Biological Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Summer Semester, 2011 The members of the committee approve the Dissertation of Karen Alvarez-Delfin defended on June 23th, 2011. _______________________________________ James M. Fadool Professor Directing Dissertation _______________________________________ Michael Blaber University Representative _______________________________________ Lloyd M. Epstein Committee Member _______________________________________ Wu-min Deng Committee Member _______________________________________ Laura R. Keller Committee Member Approved: _____________________________________ P. Bryant Chase, Chair, Department of Biological Science The Graduate School has verified and approved the above-named committee members. ii To my parents and Amalia María iii ACKNOWLEDGEMENTS I would like to sincerely acknowledge the following: The funding sources through all graduate school: NIH Grant IY017753, pre-doctoral Kirschstein NRSA from the National Eye Institute, the Department of Biological Science for financial support and Publication and M. Menzel awards, the National Eye Institute for full support to attend the Vision Course in the MBL, the Association for Research in Vision and Ophthalmology (ARVO) for travel grant, FSU for the Dissertation Research Grant and the Leslie N. Wilson-Delores Auzenne Assistanship, and the Bryan W. Robinson Endowment for the Neurosciences of the Tallahassee Memorial Foundation. The zebrafish and retina scientific communities for sharing reagents and fish lines. The FSU Biological Science Department; Kimberly A. Riddle and Thomas J. Fellers from the Biological Science Imaging Facility for great assistance; Cheryl Pye, Brian Washburn, Rani Dhanarajan and Steve Miller from the Core Facility for assisting with cloning, sequencing and good advising; Ms. Judy Bowers for invaluable help and guidance; the Clerical Office, especially to Ms. Linda Sims, Ms. Bobbie Weston and Ms. Virginia Hellman; Ms Anne B. Thistle for manuscript editing; Charles Badland for friendship and wonderful assistance with art work and photography; Dr. Debra Fadool, Dr. Hank Bass and Dr. Lisa Lyons and their lab members for being great neighbors and supporters; Dr. Fanxiu Zhu and his lab members for assistance with the reporter experiments, especially the PhD student Qiming Liang; my officemates, all the CMB, MOB, Biomedical and Neuroscience graduate student for the friendship. My major professor and advisor Dr. James M. Fadool for his excellent guidance and support, also for the understanding and patience. Thanks for always encourage me to take on new challenges, but also letting me be independent. The members of my doctoral committee: Dr. Laura Keller, Dr. Lloyd Epstein, Dr. Wu-min Deng and Dr. Michael Blaber for their valuable comments, suggestions and advising. All members of the J.M. Fadool’s laboratory for friendship and support; the former members: Dr. Ann C. Morris, Gina Johnson, Katie Loughlin, Jamal Barlett, Haley Robinson and Alex Csizinszky; the current members, Madison Grant, Orly Guerra, Liz Ball, Tyler Scott, especially to my friends Mailin Sotolongo and Carole Saade for their help, support and for sharing good and bad times. My family and all my friends, some of them have been far geographically, but always very encouraging and enthusiastic about my success. I greatly thank my parents Rosa María Delfín and Rafael Alvarez for always give me inspiration to accomplish my goals, for the unconditional love and support through my life and especially during these years in graduate school. iv TABLE OF CONTENTS List of Tables ................................................................................................................................ vii List of Figures.............................................................................................................................. viii Abbreviations.................................................................................................................................. x Abstract.......................................................................................................................................... xi 1. CHAPTER ONE-INTRODUCTION......................................................................................1 1.1 Zebrafish as Animal Model ...........................................................................................1 1.2 Eye Development...........................................................................................................3 1.2.1 Retinal Development .........................................................................................3 1.2.2 Retinal Development in Zebrafish.....................................................................4 1.2.3 Photoreceptor Cell Type Specification and Regulation of Gene Expression ....6 1.3 T-box Family of Genes in Development .....................................................................10 1.3.1 Tbx2 in Retinal Development..........................................................................12 1.4 Six Genes in Development...........................................................................................13 1.4.1 Six Genes in Eye and Retinal Development....................................................14 1.4.2 The Six3/6 Subfamily in Zebrafish ..................................................................16 2. CHAPTER TWO-TBX2B IS REQUIRED FOR ULTRAVIOLET PHOTORECEPTOR CELL SPECIFICATION DURING ZEBRAFISH RETINAL DEVELOPMENT.......................19 2.1 Introduction..................................................................................................................19 2.2 Material and Methods ..................................................................................................20 Zebrafish Maintenance.....................................................................................20 Polymerase Chain Reaction (PCR), cloning and sequencing ..........................20 Immunochemistry............................................................................................21 Whole-mount in situ Hybridization .................................................................22 Cell Transplantation.........................................................................................22 Optokinetic Response Assay (OKR) ...............................................................22 Mapping...........................................................................................................22 Cell Quantification...........................................................................................22 Cell Death ........................................................................................................23 2.3 Results..........................................................................................................................23 2.4 Discussion....................................................................................................................35 3. CHAPTER THREE-TRANSCRIPTIONAL REGULATION OF PHOTORECPETOR GENES...........................................................................................................................................39 3.1 Introduction..................................................................................................................39 3.2 Material and Methods ..................................................................................................41 Plasmids...........................................................................................................41 Cell Culture......................................................................................................42 v Luciferase Reporter Assay...............................................................................42 3.3 Results..........................................................................................................................42 3.4 Discussion....................................................................................................................47 4. CHAPTER FOUR-THE TRANSCRIPTION FACTOR SIX7 REGULATES ROD NUMBER DURING ZEBRAFISH RETINAL DEVELOPMENT ..............................................50 4.1 Introduction..................................................................................................................50 4.2 Material and Methods ..................................................................................................53 Zebrafish Maintenance.....................................................................................53 Cloning and Sequencing..................................................................................53 Embryo Injections............................................................................................53 RT-PCR............................................................................................................53 Whole-mount in
Recommended publications
  • Core Transcriptional Regulatory Circuitries in Cancer
    Oncogene (2020) 39:6633–6646 https://doi.org/10.1038/s41388-020-01459-w REVIEW ARTICLE Core transcriptional regulatory circuitries in cancer 1 1,2,3 1 2 1,4,5 Ye Chen ● Liang Xu ● Ruby Yu-Tong Lin ● Markus Müschen ● H. Phillip Koeffler Received: 14 June 2020 / Revised: 30 August 2020 / Accepted: 4 September 2020 / Published online: 17 September 2020 © The Author(s) 2020. This article is published with open access Abstract Transcription factors (TFs) coordinate the on-and-off states of gene expression typically in a combinatorial fashion. Studies from embryonic stem cells and other cell types have revealed that a clique of self-regulated core TFs control cell identity and cell state. These core TFs form interconnected feed-forward transcriptional loops to establish and reinforce the cell-type- specific gene-expression program; the ensemble of core TFs and their regulatory loops constitutes core transcriptional regulatory circuitry (CRC). Here, we summarize recent progress in computational reconstitution and biologic exploration of CRCs across various human malignancies, and consolidate the strategy and methodology for CRC discovery. We also discuss the genetic basis and therapeutic vulnerability of CRC, and highlight new frontiers and future efforts for the study of CRC in cancer. Knowledge of CRC in cancer is fundamental to understanding cancer-specific transcriptional addiction, and should provide important insight to both pathobiology and therapeutics. 1234567890();,: 1234567890();,: Introduction genes. Till now, one critical goal in biology remains to understand the composition and hierarchy of transcriptional Transcriptional regulation is one of the fundamental mole- regulatory network in each specified cell type/lineage.
    [Show full text]
  • Tbx2 Is Essential for Patterning the Atrioventricular Canal and for Morphogenesis of the Outflow Tract During Heart Development Zachary Harrelson1, Robert G
    Research article 5041 Tbx2 is essential for patterning the atrioventricular canal and for morphogenesis of the outflow tract during heart development Zachary Harrelson1, Robert G. Kelly1, Sarah N. Goldin1, Jeremy J. Gibson-Brown1,2,3, Roni J. Bollag3,4, Lee M. Silver3 and Virginia E. Papaioannou1,* 1Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA 2Department of Biology, Washington University, St Louis, MO 63130, USA 3Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA 4Institute of Molecular Genetics and Development, Medical College of Georgia, Augusta, GA 30912, USA *Author for correspondence (e-mail: [email protected]) Accepted 29 July 2004 Development 131, 5041-5052 Published by The Company of Biologists 2004 doi:10.1242/dev.01378 Summary Tbx2 is a member of the T-box transcription factor gene that Tbx2 is required to repress chamber differentiation in family, and is expressed in a variety of tissues and organs the atrioventricular canal at 9.5 dpc. Analysis of during embryogenesis. In the developing heart, Tbx2 is homozygous mutants also highlights a role for Tbx2 during expressed in the outflow tract, inner curvature, hindlimb digit development. Despite evidence that TBX2 atrioventricular canal and inflow tract, corresponding to negatively regulates the cell cycle control genes Cdkn2a, a myocardial zone that is excluded from chamber Cdkn2b and Cdkn1a in cultured cells, there is no evidence differentiation at 9.5 days post coitus (dpc). We have used that loss of Tbx2 function during mouse development targeted mutagenesis in mice to investigate Tbx2 function.
    [Show full text]
  • TRANSCRIPTIONAL REGULATION of Hur in RENAL STRESS
    TRANSCRIPTIONAL REGULATION OF HuR IN RENAL STRESS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Sudha Suman Govindaraju Graduate Program in Biochemistry The Ohio State University 2014 Dissertation Committee: Dr. Beth S. Lee, Ph.D., Advisor Dr. Kathleen Boris-Lawrie, Ph.D. Dr. Sissy M. Jhiang, Ph.D. Dr. Arthur R. Strauch, Ph.D Abstract HuR is a ubiquitously expressed RNA-binding protein that affects the post- transcriptional life of thousands of cellular mRNAs by regulating transcript stability and translation. HuR can post-transcriptionally regulate gene expression and modulate cellular responses to stress, differentiation, proliferation, apoptosis, senescence, inflammation, and the immune response. It is an important mediator of survival during cellular stress, but when inappropriately expressed, can promote oncogenic transformation. Not surprisingly, the expression of HuR itself is tightly regulated at multiple transcriptional and post-transcriptional levels. Previous studies demonstrated the existence of two alternate HuR transcripts that differ in their 5’ untranslated regions and have markedly different translatabilities. These forms were also found to be reciprocally expressed following cellular stress in kidney proximal tubule cell lines, and the shorter, more readily translatable variant was shown to be regulated by Smad 1/5/8 pathway and bone morphogenetic protein-7 (BMP-7) signaling. In this study, the factors that promote transcription of the longer alternate form were identified. NF-κB was shown to be important for expression of the long HuR mRNA, as was a newly identified region with potential for binding the Sp/KLF families of transcription factors.
    [Show full text]
  • Podocyte Specific Knockdown of Klf15 in Podocin-Cre Klf15flox/Flox Mice Was Confirmed
    SUPPLEMENTARY FIGURE LEGENDS Supplementary Figure 1: Podocyte specific knockdown of Klf15 in Podocin-Cre Klf15flox/flox mice was confirmed. (A) Primary glomerular epithelial cells (PGECs) were isolated from 12-week old Podocin-Cre Klf15flox/flox and Podocin-Cre Klf15+/+ mice and cultured at 37°C for 1 week. Real-time PCR was performed for Nephrin, Podocin, Synaptopodin, and Wt1 mRNA expression (n=6, ***p<0.001, Mann-Whitney test). (B) Real- time PCR was performed for Klf15 mRNA expression (n=6, *p<0.05, Mann-Whitney test). (C) Protein was also extracted and western blot analysis for Klf15 was performed. The representative blot of three independent experiments is shown in the top panel. The bottom panel shows the quantification of Klf15 by densitometry (n=3, *p<0.05, Mann-Whitney test). (D) Immunofluorescence staining for Klf15 and Wt1 was performed in 12-week old Podocin-Cre Klf15flox/flox and Podocin-Cre Klf15+/+ mice. Representative images from four mice in each group are shown in the left panel (X 20). Arrows show colocalization of Klf15 and Wt1. Arrowheads show a lack of colocalization. Asterisk demonstrates nonspecific Wt1 staining. “R” represents autofluorescence from RBCs. In the right panel, a total of 30 glomeruli were selected in each mouse and quantification of Klf15 staining in the podocytes was determined by the ratio of Klf15+ and Wt1+ cells to Wt1+ cells (n=6 mice, **p<0.01, unpaired t test). Supplementary Figure 2: LPS treated Podocin-Cre Klf15flox/flox mice exhibit a lack of recovery in proteinaceous casts and tubular dilatation after DEX administration.
    [Show full text]
  • Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin
    cells Review Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin Agnieszka Bochy ´nska,Juliane Lüscher-Firzlaff and Bernhard Lüscher * ID Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany; [email protected] (A.B.); jluescher-fi[email protected] (J.L.-F.) * Correspondence: [email protected]; Tel.: +49-241-8088850; Fax: +49-241-8082427 Received: 18 January 2018; Accepted: 27 February 2018; Published: 2 March 2018 Abstract: Regulation of gene expression is achieved by sequence-specific transcriptional regulators, which convey the information that is contained in the sequence of DNA into RNA polymerase activity. This is achieved by the recruitment of transcriptional co-factors. One of the consequences of co-factor recruitment is the control of specific properties of nucleosomes, the basic units of chromatin, and their protein components, the core histones. The main principles are to regulate the position and the characteristics of nucleosomes. The latter includes modulating the composition of core histones and their variants that are integrated into nucleosomes, and the post-translational modification of these histones referred to as histone marks. One of these marks is the methylation of lysine 4 of the core histone H3 (H3K4). While mono-methylation of H3K4 (H3K4me1) is located preferentially at active enhancers, tri-methylation (H3K4me3) is a mark found at open and potentially active promoters. Thus, H3K4 methylation is typically associated with gene transcription. The class 2 lysine methyltransferases (KMTs) are the main enzymes that methylate H3K4. KMT2 enzymes function in complexes that contain a necessary core complex composed of WDR5, RBBP5, ASH2L, and DPY30, the so-called WRAD complex.
    [Show full text]
  • Genome-Wide Inference of Natural Selection on Human Transcription Factor Binding Sites
    ANALYSIS Genome-wide inference of natural selection on human transcription factor binding sites Leonardo Arbiza1, Ilan Gronau1, Bulent A Aksoy2, Melissa J Hubisz1, Brad Gulko3, Alon Keinan1–3 & Adam Siepel1–3 For decades, it has been hypothesized that gene regulation persistence in humans7,8. In addition, some genome-wide analyses has had a central role in human evolution, yet much remains have found bulk statistical evidence of natural selection in noncoding unknown about the genome-wide impact of regulatory regions near genes, presumably due to cis-regulatory elements9–12. mutations. Here we use whole-genome sequences and genome- Nevertheless, evidence in support of the overall prominence of wide chromatin immunoprecipitation and sequencing data to cis-regulatory mutations in evolutionary adaptation remains largely demonstrate that natural selection has profoundly influenced anecdotal and indirect, and there is continuing controversy about the human transcription factor binding sites since the divergence relative roles of regulatory and protein-coding sequences in evolu- of humans from chimpanzees 4–6 million years ago. Our tion8. Large-scale genomic studies of the evolution of transcription analysis uses a new probabilistic method, called INSIGHT, for factor binding sites have the potential to advance this debate, but a measuring the influence of selection on collections of short, major limitation of such studies so far has been a lack of precisely interspersed noncoding elements. We find that, on average, annotated binding sites across the genome. The analysis of con- transcription factor binding sites have experienced somewhat served noncoding sequences and/or promoter regions rather than weaker selection than protein-coding genes.
    [Show full text]
  • Mediator of DNA Damage Checkpoint 1 (MDC1) Is a Novel Estrogen Receptor Co-Regulator in Invasive 6 Lobular Carcinoma of the Breast 7 8 Evelyn K
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423142; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Running Title: MDC1 co-regulates ER in ILC 2 3 Research article 4 5 Mediator of DNA damage checkpoint 1 (MDC1) is a novel estrogen receptor co-regulator in invasive 6 lobular carcinoma of the breast 7 8 Evelyn K. Bordeaux1+, Joseph L. Sottnik1+, Sanjana Mehrotra1, Sarah E. Ferrara2, Andrew E. Goodspeed2,3, James 9 C. Costello2,3, Matthew J. Sikora1 10 11 +EKB and JLS contributed equally to this project. 12 13 Affiliations 14 1Dept. of Pathology, University of Colorado Anschutz Medical Campus 15 2Biostatistics and Bioinformatics Shared Resource, University of Colorado Comprehensive Cancer Center 16 3Dept. of Pharmacology, University of Colorado Anschutz Medical Campus 17 18 Corresponding author 19 Matthew J. Sikora, PhD.; Mail Stop 8104, Research Complex 1 South, Room 5117, 12801 E. 17th Ave.; Aurora, 20 CO 80045. Tel: (303)724-4301; Fax: (303)724-3712; email: [email protected]. Twitter: 21 @mjsikora 22 23 Authors' contributions 24 MJS conceived of the project. MJS, EKB, and JLS designed and performed experiments. JLS developed models 25 for the project. EKB, JLS, SM, and AEG contributed to data analysis and interpretation. SEF, AEG, and JCC 26 developed and performed informatics analyses. MJS wrote the draft manuscript; all authors read and revised the 27 manuscript and have read and approved of this version of the manuscript.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • To Study Mutant P53 Gain of Function, Various Tumor-Derived P53 Mutants
    Differential effects of mutant TAp63γ on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Shama K Khokhar M.Sc., Bilaspur University, 2004 B.Sc., Bhopal University, 2002 2007 1 COPYRIGHT SHAMA K KHOKHAR 2007 2 WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES Date of Defense: 12-03-07 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY SHAMA KHAN KHOKHAR ENTITLED Differential effects of mutant TAp63γ on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science Madhavi P. Kadakia, Ph.D. Thesis Director Daniel Organisciak , Ph.D. Department Chair Committee on Final Examination Madhavi P. Kadakia, Ph.D. Steven J. Berberich, Ph.D. Michael Leffak, Ph.D. Joseph F. Thomas, Jr., Ph.D. Dean, School of Graduate Studies 3 Abstract Khokhar, Shama K. M.S., Department of Biochemistry and Molecular Biology, Wright State University, 2007 Differential effect of TAp63γ mutants on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression. p63, a member of the p53 gene family, known to play a role in development, has more recently also been implicated in cancer progression. Mice lacking p63 exhibit severe developmental defects such as limb truncations, abnormal skin, and absence of hair follicles, teeth, and mammary glands. Germline missense mutations of p63 have been shown to be responsible for several human developmental syndromes including SHFM, EEC and ADULT syndromes and are associated with anomalies in the development of organs of epithelial origin.
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • Early Regionalization of the Otic Placode and Its Regulation by the Notch Signaling Pathway
    Mechanisms of Development 124 (2007) 631–645 www.elsevier.com/locate/modo Early regionalization of the otic placode and its regulation by the Notch signaling pathway Gina Abello´, Safia Khatri, Fernando Gira´ldez, Berta Alsina * DCEXS-Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003 Barcelona, Spain Received 18 December 2006; received in revised form 11 April 2007; accepted 13 April 2007 Available online 20 April 2007 Abstract Otic neuronal precursors are the first cells to be specified and do so in the anterior domain of the otic placode, the proneural domain. In the present study, we have explored the early events of otic proneural regionalization in relation to the activity of the Notch signaling pathway. The proneural domain was characterized by the expression of Sox3, Fgf10 and members of the Notch pathway such as Delta1, Hes5 and Lunatic Fringe. The complementary non-neural domain expressed two patterning genes, Lmx1b and Iroquois1, and the mem- bers of the Notch pathway, Serrate1 and Hairy1. Fate map studies and double injections with DiI/DiO showed that labeled cells remained confined to anterior or posterior territories with limited cell intermingling. To explore whether Notch signaling pathway plays a role in the initial regionalization of the otic placode, Notch activity was blocked by a c-secretase inhibitor (DAPT). Notch blockade induced the expansion of non-neural genes, Lmx1 and Iroquois1, into the proneural domain. Combined gene expression and DiI exper- iments showed that these effects were not due to migration of non-neural cells into the proneural domain, suggesting that Notch activity regulates the expression of non-neural genes.
    [Show full text]
  • Implications for 22Q11 Deletion Syndrome
    Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: Implications for 22q11 deletion syndrome Richard Paylora,b, Beate Glaserc,d, Annalisa Mupod,e,f,g, Paris Ataliotisd,h, Corinne Spencera,b, Angela Sobotkae, Chelsey Sparkse, Chul-Hee Choii, John Oghalaii, Sarah Curranj, Kieran C. Murphyk, Stephen Monksk, Nigel Williamsc, Michael C. O’Donovanc, Michael J. Owenc,l, Peter J. Scamblerh, and Elizabeth Lindsaye,f,m Departments of aMolecular and Human Genetics, bNeuroscience, ePediatrics (Cardiology), and iOtolaryngology, Baylor College of Medicine, Houston, TX 77030; cDepartment of Psychological Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; fCEINGE Biotecnologie Avanzate and gEuropean School of Molecular Medicine (SEMM), 80145 Naples, Italy; hMolecular Medicine Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom; kDepartment of Psychiatry, Royal College of Surgeons in Ireland, Dublin 9, Ireland; and jDepartment of Psychological Medicine, Institute of Psychiatry, London SE4 8AF, United Kingdom Edited by Edward M. Scolnick, The Broad Institute, Cambridge, MA, and approved March 10, 2006 (received for review January 9, 2006) About 35% of patients with 22q11 deletion syndrome (22q11DS), which includes DiGeorge and velocardiofacial syndromes, devel- ops psychiatric disorders, mainly schizophrenia and bipolar disor- der. We previously reported that mice carrying a multigene dele- tion (Df1) that models 22q11DS have reduced prepulse inhibition (PPI), a behavioral abnormality and schizophrenia endophenotype. Impaired PPI is associated with several psychiatric disorders, in- cluding those that occur in 22q11DS, and recently, reduced PPI was reported in children with 22q11DS. Here, we have mapped PPI deficits in a panel of mouse mutants that carry deletions that partially overlap with Df1 and have defined a PPI critical region encompassing four genes.
    [Show full text]