Understanding Fish Bycatch Discard and Escapee Mortality by Michael W
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Evaluation of Cetacean Bycatch in UK Fisheries: Problems and Solutions
AN EVALUATION OF CETACEAN BYCATCH IN UK FISHERIES: PROBLEMS AND SOLUTIONS A report to WDC and HSI Russell Leaper | February 2021 1 SUMMARY Cetacean bycatch has been a serious and persistent welfare and conservation issue in UK waters for many years. The most recent estimates indicate that over 1000 cetaceans are killed each year in UK fisheries. The species most affected are harbour porpoise, common dolphin, minke and humpback whale, but all cetaceans in UK waters are vulnerable. The level of suffering for mammals that become entangled in fishing gear has been described as ‘one of the grossest abuses of wild animal sensibility in the modern world’. Although potential solutions exist, the mitigation efforts to date have only achieved small reductions in the numbers of animals that are killed. The Fisheries Act 2020 commits the UK to minimise and, where possible, eliminate bycatch of sensitive species. The Act does not include details of how to achieve this, but requires reconsideration of fisheries management and practices, the phasing out of some gears, and a change of approach from strategies previously pursued. While gill nets are recognised as the highest risk gear category globally for cetacean bycatch, there are also serious bycatch problems associated with trawl fisheries and with creel fisheries using pots and traps. The different characteristics of these gear types and the types and size of vessels involved, require different approaches to bycatch monitoring and mitigation. Acoustic deterrent devices (ADDs), such as ‘pingers’, have been shown to be effective at reducing harbour porpoise bycatch in gill nets, but the reduction achieved so far has been small, they may cause unwanted disturbance or displacement, and they may not be effective for other species. -
New and Emerging Technologies for Sustainable Fisheries: a Comprehensive Landscape Analysis
Photo by Pablo Sanchez Quiza New and Emerging Technologies for Sustainable Fisheries: A Comprehensive Landscape Analysis Environmental Defense Fund | Oceans Technology Solutions | April 2021 New and Emerging Technologies for Sustainable Fisheries: A Comprehensive Landscape Analysis Authors: Christopher Cusack, Omisha Manglani, Shems Jud, Katie Westfall and Rod Fujita Environmental Defense Fund Nicole Sarto and Poppy Brittingham Nicole Sarto Consulting Huff McGonigal Fathom Consulting To contact the authors please submit a message through: edf.org/oceans/smart-boats edf.org | 2 Contents List of Acronyms ...................................................................................................................................................... 5 1. Introduction .............................................................................................................................................................7 2. Transformative Technologies......................................................................................................................... 10 2.1 Sensors ........................................................................................................................................................... 10 2.2 Satellite remote sensing ...........................................................................................................................12 2.3 Data Collection Platforms ...................................................................................................................... -
Marine Fish Conservation Global Evidence for the Effects of Selected Interventions
Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca0 K. Smith & William J. Sutherland CONSERVATION EVIDENCE SERIES SYNOPSES Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca K. Smith and William J. Sutherland Conservation Evidence Series Synopses 1 Copyright © 2021 William J. Sutherland This work is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). This license allows you to share, copy, distribute and transmit the work; to adapt the work and to make commercial use of the work providing attribution is made to the authors (but not in any way that suggests that they endorse you or your use of the work). Attribution should include the following information: Taylor, N., Clarke, L.J., Alliji, K., Barrett, C., McIntyre, R., Smith, R.K., and Sutherland, W.J. (2021) Marine Fish Conservation: Global Evidence for the Effects of Selected Interventions. Synopses of Conservation Evidence Series. University of Cambridge, Cambridge, UK. Further details about CC BY licenses are available at https://creativecommons.org/licenses/by/4.0/ Cover image: Circling fish in the waters of the Halmahera Sea (Pacific Ocean) off the Raja Ampat Islands, Indonesia, by Leslie Burkhalter. Digital material and resources associated with this synopsis are available at https://www.conservationevidence.com/ -
Ecosystem Services Generated by Fish Populations
AR-211 Ecological Economics 29 (1999) 253 –268 ANALYSIS Ecosystem services generated by fish populations Cecilia M. Holmlund *, Monica Hammer Natural Resources Management, Department of Systems Ecology, Stockholm University, S-106 91, Stockholm, Sweden Abstract In this paper, we review the role of fish populations in generating ecosystem services based on documented ecological functions and human demands of fish. The ongoing overexploitation of global fish resources concerns our societies, not only in terms of decreasing fish populations important for consumption and recreational activities. Rather, a number of ecosystem services generated by fish populations are also at risk, with consequences for biodiversity, ecosystem functioning, and ultimately human welfare. Examples are provided from marine and freshwater ecosystems, in various parts of the world, and include all life-stages of fish. Ecosystem services are here defined as fundamental services for maintaining ecosystem functioning and resilience, or demand-derived services based on human values. To secure the generation of ecosystem services from fish populations, management approaches need to address the fact that fish are embedded in ecosystems and that substitutions for declining populations and habitat losses, such as fish stocking and nature reserves, rarely replace losses of all services. © 1999 Elsevier Science B.V. All rights reserved. Keywords: Ecosystem services; Fish populations; Fisheries management; Biodiversity 1. Introduction 15 000 are marine and nearly 10 000 are freshwa ter (Nelson, 1994). Global capture fisheries har Fish constitute one of the major protein sources vested 101 million tonnes of fish including 27 for humans around the world. There are to date million tonnes of bycatch in 1995, and 11 million some 25 000 different known fish species of which tonnes were produced in aquaculture the same year (FAO, 1997). -
Why Study Bycatch? an Introduction to the Theme Section on Fisheries Bycatch
Vol. 5: 91–102, 2008 ENDANGERED SPECIES RESEARCH Printed December 2008 doi: 10.3354/esr00175 Endang Species Res Published online December xx, 2008 Contribution to the Theme Section ‘Fisheries bycatch problems and solutions’ OPENPEN ACCESSCCESS Why study bycatch? An introduction to the Theme Section on fisheries bycatch Candan U. Soykan1,*, Jeffrey E. Moore2, Ramunas ¯ 5ydelis2, Larry B. Crowder2, Carl Safina3, Rebecca L. Lewison1 1Biology Department, San Diego State University, 5500 Campanile Dr., San Diego, California 92182-4614, USA 2Center for Marine Conservation, Nicholas School of the Environment, Duke University Marine Laboratory, 135 Duke Marine Lab Road, Beaufort,North Carolina 28516, USA 3Blue Ocean Institute, PO Box 250, East Norwich, New York 11732, USA ABSTRACT: Several high-profile examples of fisheries bycatch involving marine megafauna (e.g. dolphins in tuna purse-seines, albatrosses in pelagic longlines, sea turtles in shrimp trawls) have drawn attention to the unintentional capture of non-target species during fishing operations, and have resulted in a dramatic increase in bycatch research over the past 2 decades. Although a number of successful mitigation measures have been developed, the scope of the bycatch problem far exceeds our current capacity to deal with it. Specifically, we lack a comprehensive understanding of bycatch rates across species, fisheries, and ocean basins, and, with few exceptions, we lack data on demographic responses to bycatch or the in situ effectiveness of existing mitigation measures. As an introduction to this theme section of Endangered Species Research ‘Fisheries bycatch: problems and solutions’, we focus on 5 bycatch-related questions that require research attention, building on exam- ples from the current literature and the contributions to this Theme Section. -
Fish Passage Engineering Design Criteria 2019
FISH PASSAGE ENGINEERING DESIGN CRITERIA 2019 37.2’ U.S. Fish and Wildlife Service Northeast Region June 2019 Fish and Aquatic Conservation, Fish Passage Engineering Ecological Services, Conservation Planning Assistance United States Fish and Wildlife Service Region 5 FISH PASSAGE ENGINEERING DESIGN CRITERIA June 2019 This manual replaces all previous editions of the Fish Passage Engineering Design Criteria issued by the U.S. Fish and Wildlife Service Region 5 Suggested citation: USFWS (U.S. Fish and Wildlife Service). 2019. Fish Passage Engineering Design Criteria. USFWS, Northeast Region R5, Hadley, Massachusetts. USFWS R5 Fish Passage Engineering Design Criteria June 2019 USFWS R5 Fish Passage Engineering Design Criteria June 2019 Contents List of Figures ................................................................................................................................ ix List of Tables .................................................................................................................................. x List of Equations ............................................................................................................................ xi List of Appendices ........................................................................................................................ xii 1 Scope of this Document ....................................................................................................... 1-1 1.1 Role of the USFWS Region 5 Fish Passage Engineering ............................................ -
SOLUTION: Gathering and Sonic Blasts for Oil Exploration Because These Practices Can Harm and Kill Whales
ENDANGEREDWHALES © Nolan/Greenpeace WE HAVE A PROBLEM: WHAT YOU CAN DO: • Many whale species still face extinction. • Tell the Bush administration to strongly support whale protection so whaling countries get the • Blue whales, the largest animals ever, may now number as message. few as 400.1 • Ask elected officials to press Iceland, Japan • Rogue nations Japan, Norway and Iceland flout the and Norway to respect the commercial whaling international ban on commercial whaling. moratorium. • Other threats facing whales include global warming, toxic • Demand that the U.S. curb global warming pollution dumping, noise pollution and lethal “bycatch” from fishing. and sign the Stockholm Convention, which bans the most harmful chemicals on the planet. • Tell Congress that you oppose sonar intelligence SOLUTION: gathering and sonic blasts for oil exploration because these practices can harm and kill whales. • Japan, Norway and Iceland must join the rest of the world and respect the moratorium on commercial whaling. • The loophole Japan exploits to carry out whaling for “Tomostpeople,whalingisallnineteenth- “scientific” research should be closed. centurystuff.Theyhavenoideaabout • Fishing operations causing large numbers of whale hugefloatingslaughterhouses,steel-hulled bycatch deaths must be cleaned up or stopped. chaserboatswithsonartostalkwhales, • Concerted international action must be taken to stop andharpoonsfiredfromcannons.” other threats to whales including global warming, noise Bob Hunter, pollution, ship strikes and toxic contamination. -
'Bycatch' Whaling a Growing Threat to Coastal Whales 23 June 2009
'Bycatch' whaling a growing threat to coastal whales 23 June 2009 Scientists are warning that a new form of Whales are occasionally killed in entanglements unregulated whaling has emerged along the with fishing nets and the deaths of large whales are coastlines of Japan and South Korea, where the reported by most member nations of the IWC. commercial sale of whales killed as fisheries Japan and South Korea are the only countries that "bycatch" is threatening coastal stocks of minke allow the commercial sale of products killed as whales and other protected species. "incidental bycatch." The sheer number of whales represented by whale-meat products on the market Scott Baker, associate director of the Marine suggests that both countries have an inordinate Mammal Institute at Oregon State University, says amount of bycatch, Baker said. DNA analysis of whale-meat products sold in Japanese markets suggests that the number of "The sale of bycatch alone supports a lucrative whales actually killed through this "bycatch trade in whale meat at markets in some Korean whaling" may be equal to that killed through coastal cities, where the wholesale price of an adult Japan's scientific whaling program - about 150 minke whale can reach as high as $100,000," annually from each source. Baker said. "Given these financial incentives, you have to wonder how many of these whales are, in Baker, a cetacean expert, and Vimoksalehi fact, killed intentionally." Lukoscheck of the University of California-Irvine presented their findings at the recent scientific In Japan, whale-meat products enter into the meeting of the International Whaling Commission commercial supply chain that supports the (IWC) in Portugal. -
Seafood Watch® Standard for Fisheries
1 Seafood Watch® Standard for Fisheries Table of Contents Table of Contents ............................................................................................................................... 1 Introduction ...................................................................................................................................... 2 Seafood Watch Guiding Principles ...................................................................................................... 3 Seafood Watch Criteria and Scoring Methodology for Fisheries ........................................................... 5 Criterion 1 – Impacts on the Species Under Assessment ...................................................................... 8 Factor 1.1 Abundance .................................................................................................................... 9 Factor 1.2 Fishing Mortality ......................................................................................................... 19 Criterion 2 – Impacts on Other Capture Species ................................................................................ 22 Factor 2.1 Abundance .................................................................................................................. 26 Factor 2.2 Fishing Mortality ......................................................................................................... 27 Factor 2.3 Modifying Factor: Discards and Bait Use .................................................................... 29 Criterion -
Symposium Review: Using Electronic Tags to Estimate Vital Rates in Fishes Brendan J
COLUMN 2017 ANNUAL MEETING Symposium Review: Using Electronic Tags to Estimate Vital Rates in Fishes Brendan J. Runde | Center for Marine Sciences and Technology, Department of Applied Ecology, North Carolina State University, 303 College Cir., Morehead City, NC 28557. E-mail: [email protected] Julianne E. Harris | U.S. Fish and Wildlife Service Office, Columbia River Fish and Wildlife Conservation, Vancouver, WA Jeffrey A. Buckel | Center for Marine Sciences and Technology, Department of AppliedEcology, North Carolina State University, Morehead City, NC Accurate and precise estimates of vital rates, such as nat- discussion that concluded the session. Symposium presenta- ural and fishing mortality, can be challenging to obtain, but tions illustrated the breadth and depth of use of electronic are essential for stock assessment, fisheries management, and tags to estimate vital rates and the discussion stressed the conservation. Joseph Hightower pioneered a novel approach need for careful study design. As tag technology and ana- for estimating mortality rates—assigning fates of electroni- lytical approaches continue to improve, we suggest that elec- cally tagged fish using telemetry. Herein, we describe a day- tronic tagging studies will become even more valuable to help long symposium held at the 147th American Fisheries Society scientists and managers better understand fish biology and Meeting in 2017 dedicated to highlighting and discussing manage fisheries. current uses of and recent advancements in electronic tag- Accurate and precise estimates of vital rates such as fishing ging to estimate fish vital rates. In this review, we highlight mortality (F) and natural mortality (M) are necessary for stock the 18 presentations made in the symposium as well as the assessment, fisheries management, and conservation. -
Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs
little fish BIG IMPACT Managing a crucial link in ocean food webs A report from the Lenfest Forage Fish Task Force The Lenfest Ocean Program invests in scientific research on the environmental, economic, and social impacts of fishing, fisheries management, and aquaculture. Supported research projects result in peer-reviewed publications in leading scientific journals. The Program works with the scientists to ensure that research results are delivered effectively to decision makers and the public, who can take action based on the findings. The program was established in 2004 by the Lenfest Foundation and is managed by the Pew Charitable Trusts (www.lenfestocean.org, Twitter handle: @LenfestOcean). The Institute for Ocean Conservation Science (IOCS) is part of the Stony Brook University School of Marine and Atmospheric Sciences. It is dedicated to advancing ocean conservation through science. IOCS conducts world-class scientific research that increases knowledge about critical threats to oceans and their inhabitants, provides the foundation for smarter ocean policy, and establishes new frameworks for improved ocean conservation. Suggested citation: Pikitch, E., Boersma, P.D., Boyd, I.L., Conover, D.O., Cury, P., Essington, T., Heppell, S.S., Houde, E.D., Mangel, M., Pauly, D., Plagányi, É., Sainsbury, K., and Steneck, R.S. 2012. Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs. Lenfest Ocean Program. Washington, DC. 108 pp. Cover photo illustration: shoal of forage fish (center), surrounded by (clockwise from top), humpback whale, Cape gannet, Steller sea lions, Atlantic puffins, sardines and black-legged kittiwake. Credits Cover (center) and title page: © Jason Pickering/SeaPics.com Banner, pages ii–1: © Brandon Cole Design: Janin/Cliff Design Inc. -
OCEANA Bycatch Summary V4.Indd
COLLATERAL DAMAGE: HOW TO REDUCE BYCATCH IN CANADA'S COMMERCIAL FISHERIES oceana.ca 2017 TABLE OF CONTENTS 01 executi ve summary 04 glossary and acronyms WHAT IS 05 bycatch is a global issue 06 Harmful gear 08 assessing canada’s bycatch problem bycatch? 10 key fi nding: hundreds of species end up as bycatch 13 key fi nding: there are big holes in the data 16 key fi nding: canada’s regulatory approach to reducing bycatch is collateral damage created by fi shing: the non- bycatch is inadequate target fi sh and ocean wildlife that are captured in nets, 17 methods for monitoring bycatch lines and other gear set for other targeted species. it may 18 msc-certi fi ed fi sheries with the most discards be discarded at sea or brought to port. 24 what’s the soluti on? 25 recommendati ons for fisheries and oceans canada globally, this includes the dolphins that are ensnared to 27 conclusions bring you canned tuna, the sea turtles caught to bring you 28 oceana canada: saving the oceans shrimp and the fl ounder thrown overboard to put seared to feed the world scallops on the menu. it also includes targeted fi sh that are too small to harvest and non-target fi sh with litt le commercial value. Quite simply, poorly managed bycatch is one of the biggest threats to the world’s oceans, contributi ng to the dramati c decline of some fi sh populati ons. Collateral Damage: 2 How to reduce bycatch in Canada’s commercial fi sheries EXECUTIVE SUMMARY Bycatch is one of the biggest threats to ocean health.