Diplura: Rhabdirua: Campodeidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diplura and Protura of Canada
A peer-reviewed open-access journal ZooKeys 819: 197–203 (2019) Diplura and Protura of Canada 197 doi: 10.3897/zookeys.819.25238 REVIEW ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Diplura and Protura of Canada Derek S. Sikes1 1 University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, Alaska 99775-6960, USA Corresponding author: Derek S. Sikes ([email protected]) Academic editor: D. Langor | Received 23 March 2018 | Accepted 12 April 2018 | Published 24 January 2019 http://zoobank.org/D68D1C72-FF1D-4415-8E0F-28B36460E90A Citation: Sikes DS (2019) Diplura and Protura of Canada. In: Langor DW, Sheffield CS (Eds) The Biota of Canada – A Biodiversity Assessment. Part 1: The Terrestrial Arthropods. ZooKeys 819: 197–203.https://doi.org/10.3897/ zookeys.819.25238 Abstract A literature review of the Diplura and Protura of Canada is presented. Canada has six Diplura species documented and an estimated minimum 10–12 remaining to be documented. The Protura fauna is equally poorly known, with nine documented species and a conservatively estimated ten undocumented. Only six and three Barcode Index Numbers are available for Canadian specimens of Diplura and Protura, respectively. Keywords biodiversity assessment, Biota of Canada, Diplura, Protura Diplura, sometimes referred to as two-pronged bristletails, and Protura, sometimes called coneheads, are terrestrial arthropod taxa that have suffered from lack of scientific attention in Canada as well as globally. As both groups are undersampled and under- studied in Canada, the state of knowledge is considered to be poor, although there have been some modest advances since 1979. Both of these taxa are soil dwelling, and, given the repeated glaciations over most of Canada, the Canadian diversity is expected to be relatively low except possibly in unglaciated areas. -
Is Ellipura Monophyletic? a Combined Analysis of Basal Hexapod
ARTICLE IN PRESS Organisms, Diversity & Evolution 4 (2004) 319–340 www.elsevier.de/ode Is Ellipura monophyletic? A combined analysis of basal hexapod relationships with emphasis on the origin of insects Gonzalo Giribeta,Ã, Gregory D.Edgecombe b, James M.Carpenter c, Cyrille A.D’Haese d, Ward C.Wheeler c aDepartment of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA bAustralian Museum, 6 College Street, Sydney, New South Wales 2010, Australia cDivision of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA dFRE 2695 CNRS, De´partement Syste´matique et Evolution, Muse´um National d’Histoire Naturelle, 45 rue Buffon, F-75005 Paris, France Received 27 February 2004; accepted 18 May 2004 Abstract Hexapoda includes 33 commonly recognized orders, most of them insects.Ongoing controversy concerns the grouping of Protura and Collembola as a taxon Ellipura, the monophyly of Diplura, a single or multiple origins of entognathy, and the monophyly or paraphyly of the silverfish (Lepidotrichidae and Zygentoma s.s.) with respect to other dicondylous insects.Here we analyze relationships among basal hexapod orders via a cladistic analysis of sequence data for five molecular markers and 189 morphological characters in a simultaneous analysis framework using myriapod and crustacean outgroups.Using a sensitivity analysis approach and testing for stability, the most congruent parameters resolve Tricholepidion as sister group to the remaining Dicondylia, whereas most suboptimal parameter sets group Tricholepidion with Zygentoma.Stable hypotheses include the monophyly of Diplura, and a sister group relationship between Diplura and Protura, contradicting the Ellipura hypothesis.Hexapod monophyly is contradicted by an alliance between Collembola, Crustacea and Ectognatha (i.e., exclusive of Diplura and Protura) in molecular and combined analyses. -
Formation of the Entognathy of Dicellurata, Occasjapyx Japonicus (Enderlein, 1907) (Hexapoda: Diplura, Dicellurata)
S O I L O R G A N I S M S Volume 83 (3) 2011 pp. 399–404 ISSN: 1864-6417 Formation of the entognathy of Dicellurata, Occasjapyx japonicus (Enderlein, 1907) (Hexapoda: Diplura, Dicellurata) Kaoru Sekiya1, 2 and Ryuichiro Machida1 1 Sugadaira Montane Research Center, University of Tsukuba, Sugadaira Kogen, Ueda, Nagano 386-2204, Japan 2 Corresponding author: Kaoru Sekiya (e-mail: [email protected]) Abstract The development of the entognathy in Dicellurata was examined using Occasjapyx japonicus (Enderlein, 1907). The formation of entognathy involves rotation of the labial appendages, resulting in a tandem arrangement of the glossa, paraglossa and labial palp. The mandibular, maxillary and labial terga extend ventrally to form the mouth fold. The intercalary tergum also participates in the formation of the mouth fold. The labial coxae extending anteriorly unite with the labial terga, constituting the posterior region of the mouth fold, the medial half of which is later partitioned into the admentum. The labial appendages of both sides migrate medially, and the labial subcoxae fuse to form the postmentum, which posteriorly confines the entognathy. The entognathy formation in Dicellurata is common to that in another dipluran suborder, Rhabdura. The entognathy of Diplura greatly differs from that of Protura and Collembola in the developmental plan, preventing homologization of the entognathies of Diplura and other two entognathan orders. Keywords: Entognatha, comparative embryology, mouth fold, admentum, postmentum 1. Introduction The Diplura, a basal clade of the Hexapoda, have traditionally been placed within Entognatha [= Diplura + Collembola + Protura], a group characterized by entognathy (Hennig 1969). However, Hennig’s ‘Entognatha-Ectognatha System’, especially the validity of Entognatha, has been challenged by various disciplines. -
Annotated Checklist of the Diplura (Hexapoda: Entognatha) of California
Zootaxa 3780 (2): 297–322 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3780.2.5 http://zoobank.org/urn:lsid:zoobank.org:pub:DEF59FEA-C1C1-4AC6-9BB0-66E2DE694DFA Annotated Checklist of the Diplura (Hexapoda: Entognatha) of California G.O. GRAENING1, YANA SHCHERBANYUK2 & MARYAM ARGHANDIWAL3 Department of Biological Sciences, California State University, Sacramento 6000 J Street, Sacramento, CA 95819-6077. E-mail: [email protected]; [email protected]; [email protected] Abstract The first checklist of California dipluran taxa is presented with annotations. New state and county records are reported, as well as new taxa in the process of being described. California has a remarkable dipluran fauna with about 8% of global richness. California hosts 63 species in 5 families, with 51 of those species endemic to the State, and half of these endemics limited to single locales. The genera Nanojapyx, Hecajapyx, and Holjapyx are all primarily restricted to California. Two species are understood to be exotic, and six dubious taxa are removed from the State checklist. Counties in the central Coastal Ranges have the highest diversity of diplurans; this may indicate sampling bias. Caves and mines harbor unique and endemic dipluran species, and subterranean habitats should be better inventoried. Only four California taxa exhibit obvious troglomorphy and may be true cave obligates. In general, the North American dipluran fauna is still under-inven- toried. Since many taxa are morphologically uniform but genetically diverse, genetic analyses should be incorporated into future taxonomic descriptions. -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Insect Classification Standards 2020
RECOMMENDED INSECT CLASSIFICATION FOR UGA ENTOMOLOGY CLASSES (2020) In an effort to standardize the hexapod classification systems being taught to our students by our faculty in multiple courses across three UGA campuses, I recommend that the Entomology Department adopts the basic system presented in the following textbook: Triplehorn, C.A. and N.F. Johnson. 2005. Borror and DeLong’s Introduction to the Study of Insects. 7th ed. Thomson Brooks/Cole, Belmont CA, 864 pp. This book was chosen for a variety of reasons. It is widely used in the U.S. as the textbook for Insect Taxonomy classes, including our class at UGA. It focuses on North American taxa. The authors were cautious, presenting changes only after they have been widely accepted by the taxonomic community. Below is an annotated summary of the T&J (2005) classification. Some of the more familiar taxa above the ordinal level are given in caps. Some of the more important and familiar suborders and families are indented and listed beneath each order. Note that this is neither an exhaustive nor representative list of suborders and families. It was provided simply to clarify which taxa are impacted by some of more important classification changes. Please consult T&J (2005) for information about taxa that are not listed below. Unfortunately, T&J (2005) is now badly outdated with respect to some significant classification changes. Therefore, in the classification standard provided below, some well corroborated and broadly accepted updates have been made to their classification scheme. Feel free to contact me if you have any questions about this classification. -
Relationships Between Hexapods and Crustaceans Based on Mitochondrial Genomics
Relationships between hexapods and crustaceans based on mitochondrial genomics CARAPELLI A.1, NARDI F.1, DALLAI R.1, BOORE J.L.2, LIO’ P.3, FRATI F.1 1 Department of Evolutionary Biology, University of Siena, Siena, ITALY 2 U.S. Department of Energy Joint Genome Institute and Lawrence Berkeley National Laboratory, Walnut Creek, and University of California, Berkeley, U.S.A. 3 Computer Laboratory, University of Cambridge, Cambridge, U.K. ABSTRACT The ever-increasing use of molecular data in phylogenetic studies have revolutionized our view of the phylogenetic relationships among the major lineages of arthropods. In this context, an important contribution is offered by mitochondrial genes, and the now widely available sequences of entire mitochondrial genomes. One of the most debated issues in arthropod phylogeny is the relationships between crustaceans and hexapods, and particularly whether the traditional taxa Crustacea and Hexapoda are mono- or paraphyletic. A key role is played by basal hexapodan taxa, the entognathan apterygotans (Protura, Collembola, Diplura), whose phylogenetic position as the sister-taxa of the Insecta s.s. is not totally convincing. The phylogenetic analysis based on mitochondrial protein- coding genes suggests that there are crustacean taxa which are more closely related to the Insecta s.s. than are Collembola and Diplura, therefore suggesting non-monophyly of the taxon Hexapoda as traditionally defined. Hence, Collembola and Diplura might have differentiated from their pancrustacean ancestor(s) before the remaining hexapods (Insecta) differentiated fomr their closest relative with crustaceans. These results also imply a new scenario for the evolution of several morphological and physiological features of hexapods, including terrestrialization. -
Arkansas Endemic Biota: an Update with Additions and Deletions H
Journal of the Arkansas Academy of Science Volume 62 Article 14 2008 Arkansas Endemic Biota: An Update with Additions and Deletions H. Robison Southern Arkansas University, [email protected] C. McAllister C. Carlton Louisiana State University G. Tucker FTN Associates, Ltd. Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Botany Commons Recommended Citation Robison, H.; McAllister, C.; Carlton, C.; and Tucker, G. (2008) "Arkansas Endemic Biota: An Update with Additions and Deletions," Journal of the Arkansas Academy of Science: Vol. 62 , Article 14. Available at: http://scholarworks.uark.edu/jaas/vol62/iss1/14 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 62 [2008], Art. 14 The Arkansas Endemic Biota: An Update with Additions and Deletions H. Robison1, C. McAllister2, C. Carlton3, and G. Tucker4 1Department of Biological Sciences, Southern Arkansas University, Magnolia, AR 71754-9354 2RapidWrite, 102 Brown Street, Hot Springs National Park, AR 71913 3Department of Entomology, Louisiana State University, Baton Rouge, LA 70803-1710 4FTN Associates, Ltd., 3 Innwood Circle, Suite 220, Little Rock, AR 72211 1Correspondence: [email protected] Abstract Pringle and Witsell (2005) described this new species of rose-gentian from Saline County glades. -
Grooming Behavior in Diplura (Insecta: Apterygota)
GROOMING BEHAVIOR IN DIPLURA (INSECTA: APTERYGOTA) BY BARRY D. VALENTINE AND MICHAEL J. GLORIOSO Departments of Zoology & Entomology respectively, The Ohio State University, Columbus, Ohio 43210 Insect grooming studies are adding an important new dimension to knowledge of comparative behavior and evolution. Recent advances include an overview of a few selected movements of insects and myriopods (Jander, 1966), studies of the functional morphology of grooming structures (Hlavac, 1975), extensive reports about individual orders (Coleoptera: Valentine, 1973; Hymenoptera: Far- ish, 1972), quantitative studies at species levels (Chironomidae: Stoffer, in preparation; Drosophila: Lipps, 1973), and many less inclusive works. All such studies have difficulties which include the inability to know when an observed sequence is complete, the enormous number of potential taxa, the problem of generalizing about families and orders from small samples of individuals or species, and the absence of data from primitive or odd groups which may be critical for interpreting evolutionary sequences. The first three difficulties can be partially solved by increasing sample sizes and combining observations; however, the fourth can be solved only by availability. Grooming in the apterygote order Diplura is a good example because we can find only incomplete reports on one species. Recently, we have studied ten live specimens representing two families and three species; the data obtained provide an important picture of grooming behavior in one of the most primitive surviving orders of insects. Our observations greatly extend the limited discussion of grooming in the European japygid Dipljapyx humberti (Grassi, 1886) reported by Pages (1951, 1967). Data on Dipljapyx are incorporated here, but have not been verified by us. -
Zootaxa, New Species, New Records, and Distribution of Campodeidae
Zootaxa 2639: 40–52 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) New species, new records, and distribution of Campodeidae (Diplura) in Anatolia ALBERTO SENDRA1, SANTIAGO TERUEL1, ALI SATAR2, SADREDDIN TUSUN2 & CENGIZHAN ÖZBAY2 1Museu Valencià d’Història Natural (Fundación Entomológica Torres Sala). Paseo de la Pechina 15, E-46008 Valencia (Spain). E-mail: [email protected] 2Dicle University, Arts and Science Faculty, Department of Biology, 21280 Diyarbakir (Turkey) Abstract The campodeid dipluran fauna from Anatolia was studied from samples collected from the Black Sea, southeastern, Aegean, and eastern regions of Turkey. A total of 16 species were collected: Campodea s. str. (10 species), Dicampa (2), Eutrichocampa (2), Libanocampa (1), and Edriocampa (1). Two new species are described: Campodea (Campodea) anae Sendra & Teruel n. sp. from northern Anatolia and Campodea (Campodea) sarae Sendra & Teruel n. sp. from Denizli, in southeastern Turkey. These results suggest that additional sampling is needed in other parts of Turkey to adequately characterize the campodeid fauna. The known campodeid biodiversity of Anatolia stands at 23 species, 3 times less than the Iberian peninsula. Key words: Diplura, Campodeidae, Campodea, Dicampa, Eutrichocampa, Edriocampa, Libanocampa, taxonomy, Turkey Nouveaux espèces, contribution et distribution à les Campodéidés (Diplura) de l’Anatolie. On examine la faune de diploures campodéidés de l’Anatolie originaire en majorité d’échantillons des régions de la Mer Noire, sud-est, Égée et est de la Turquie. Un total de 16 espèces est cité, comprises dans les genres et sous-genres suivants : Campodea s. str. -
The Genome of the Blind Soil-Dwelling and Ancestrally Wingless Dipluran Campodea Augens, a Key Reference Hexapod for Studying the Emergence of Insect Innovations
bioRxiv preprint doi: https://doi.org/10.1101/585695; this version posted June 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The genome of the blind soil-dwelling and ancestrally wingless dipluran Campodea augens, a key reference hexapod for studying the emergence of insect innovations Mosè Manni1*, Felipe A. Simao1, Hugh M. Robertson2, Marco A. Gabaglio1, Robert M. Waterhouse3, Bernhard Misof4, Oliver Niehuis5, Nikolaus U. Szucsich6, Evgeny M. Zdobnov1* 1Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland. 2Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. 3Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, Switzerland. 4Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany. 5Department of Evolutionary Biology and Ecology, Albert Ludwig University, Institute of Biology I (Zoology), Freiburg, Germany. 6Natural History Museum Vienna, 3rd Zoological Dept., Vienna, Austria. *Authors for Correspondence: Evgeny M. Zdobnov, email: [email protected] Mosè Manni, email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/585695; this version posted June 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. -
Curriculum Vitae
CURRICULUM VITAE Christopher E. Carlton Department of Entomology, LSU AgCenter Baton Rouge, LA 70803-1710 e-mail: [email protected] EDUCATION Bachelor of Science, Biology, 1977, Hendrix College, Conway, Arkansas. Master’s Degree, Entomology, 1983, University of Arkansas, Fayetteville. Doctor of Philosophy, Entomology, 1989, University of Arkansas, Fayetteville. HISTORY OF ASSIGNMENTS Louisiana State University, Baton Rouge 1995-2000, Assistant Professor; 2000-2005, Associate Professor; 2005-2007, Professor, 2007-present, John Benjamin Holton Alumni Association Departmental Professorship in Agriculture, Department of Entomology. Research in insect systematics, Director, Louisiana State Arthropod Museum, teach systematics and general entomology courses and direct graduate training programs. University of Arkansas, Fayetteville 1989-1995: Research Associate, Department of Entomology. Conduct research in biodiversity and systematics, provide identifications of insects and diagnoses of related problems, and curate University of Arkansas Arthropod Museum. 1982-1989: Research Assistant (degree track), Department of Entomology. Manage entomology collection and provide insect identifications. 1977-1981: Graduate Assistant, Department of Entomology. Graduate student in Master's Program. TEACHING Courses Taught and LSU SPOT Scores ENTM 7001 General Entomology, co-instructed with Jim Ottea, 4 credit hours Provides a framework of information about the evolution of insects and related arthropods, anatomy, functional morphology and physiology, and an introduction to insect diversity at the ordinal level. This course replaced 7014. Fall 2006 Total 4.07 (College Stats 4.03); n=3 Fall 2008 Total 4.22 (College Stats 4.07); n=12 Fall 2010 Total 3.89 (College Stats 4.15); n=11 Fall 2012 Spots not available; n=12 ENTM 4005 Insect Taxonomy, 4 credit hours This course teaches basic principles of taxonomy and nomenclature.