Rangelands Overview
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Impacts of Technology on U.S. Cropland and Rangeland Productivity Advisory Panel
l-'" of nc/:\!IOIOO _.. _ ... u"' "'"'" ... _ -'-- Impacts of Technology on U.S. Cropland w, in'... ' .....7 and Rangeland Productivity August 1982 NTIS order #PB83-125013 Library of Congress Catalog Card Number 82-600596 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Foreword This Nation’s impressive agricultural success is the product of many factors: abundant resources of land and water, a favorable climate, and a history of resource- ful farmers and technological innovation, We meet not only our own needs but supply a substantial portion of the agricultural products used elsewhere in the world. As demand increases, so must agricultural productivity, Part of the necessary growth may come from farming additional acreage. But most of the increase will depend on intensifying production with improved agricultural technologies. The question is, however, whether farmland and rangeland resources can sustain such inten- sive use. Land is a renewable resource, though one that is highly susceptible to degrada- tion by erosion, salinization, compaction, ground water depletion, and other proc- esses. When such processes are not adequately managed, land productivity can be mined like a nonrenewable resource. But this need not occur. For most agricul- tural land, various conservation options are available, Traditionally, however, farm- ers and ranchers have viewed many of the conservation technologies as uneconom- ical. Must conservation and production always be opposed, or can technology be used to help meet both goals? This report describes the major processes degrading land productivity, assesses whether productivity is sustainable using current agricultural technologies, reviews a range of new technologies with potentials to maintain productivity and profitability simultaneously, and presents a series of options for congressional consideration. -
Rangeland Resources Management Muhammad Ismail, Rohullah Yaqini, Yan Zhaoli, Andrew Billingsley
Managing Natural Resources Rangeland Resources Management Muhammad Ismail, Rohullah Yaqini, Yan Zhaoli, Andrew Billingsley Rangelands are areas which, by reason of physical limitations, low and erratic precipitation, rough topography, poor drainage, or extreme temperature, are less suitable for cultivation but are sources of food for free ranging wild and domestic animals, and of water, wood, and mineral products. Rangelands are generally managed as natural ecosystems that make them distinct from pastures for commercial livestock husbandry with irrigation and fertilisation facilities. Rangeland management is the science and art of optimising returns or benefits from rangelands through the manipulation of rangeland ecosystems. There has been increasing recognition worldwide of rangeland functions and various ecosystem services they provide in recent decades. However, livestock farming is still one of the most important uses of rangelands and will remain so in the foreseeable future. Rangeland Resources and Use Patterns in Afghanistan Afghanistan’s rangelands are specified as land where the predominant vegetation consists of grasses, herbs, shrubs, and may include areas with low-growing trees such as juniper, pistachio, and oak. The term ‘rangeland resources’ refers to biological resources within a specific rangeland and associated ecosystems, including vegetation, wildlife, open forests (canopy coverage less than 30%), non- biological products such as soil and minerals. Today, rangelands comprise between 60-75% of Afghanistan’s total territory, depending on the source of information. Rangelands are crucial in supplying Afghanistan with livestock products, fuel, building materials, medicinal plants, and providing habitat for wildlife. The water resources captured and regulated in Afghan rangelands are the lifeblood of the country and nourishes nearly 4 million ha of irrigated lands. -
Port Vision 2040 Port Vision Bahía Blanca 2040
Port Vision 2040 Port Vision Bahía Blanca 2040 Vision developed for the Port Authority of Bahía Blanca by and in collaboration with stakeholders of the Port Industrial Complex. "We do not inherit the land of our parents; we borrow it from our children." Francisco Pascasio Moreno We, the people from Argentina, have the responsibility to unlock our potential as a Nation, improving our present situation and overcoming the difficulties that we face. Thus, the only possible way is looking ahead to envision the future we want to leave for the generations to come and formulating the plans that will bring us closer to that vision. Therefore, it is time to work for the long-term, without neglecting the needs of the short- and medium-term. Here at the Port Authority of Bahía Blanca, we want contribute to achieve that goal. Consequently, we decided to start this long-term planning process, which includes the development of the Port Vision 2040; as we strongly believe that the port is one of the cornerstones for the expansion and prosperity of Bahía Blanca and the region. Thereafter, it is in the balanced combination of people, profit and planet that we foresee the necessary elements for a sustainable development. Moreover, stakeholder engagement is considered an essential factor to realise this long-term vision for attaining a general agreement of the steps to take. Port Vision Bahía Blanca 2040 represents the combined efforts and work of the Port Authority of Bahía Blanca, of most of the stakeholders, and of the institutions that yearn for a growing region and country. -
Climate Change and Rangelands: Responding Rationally to Uncertainty by Joel R
Climate Change and Rangelands: Responding Rationally to Uncertainty By Joel R. Brown and Jim Thorpe ccording to most estimates, rangeland ecosys- have a dominant infl uence on productivity, stability, and tems occupy about 50% of the earth’s terrestrial profi tability. surface. By itself, this estimate implies range- The interaction between scientists and managers is lands are important to humans, but their impor- critical to understanding and managing the relationships Atance extends far beyond their global dominance. Globally, critical to healthy rangeland ecosystems. While scientists rangelands provide about 70% of the forage for domestic uncover new relationships governing ecosystem behavior, livestock. For many societies, livestock are critical to sur- managers are ultimately responsible for implementing prac- vival. Rangelands also provide a host of ecosystem services tices to ensure continued heath of the systems they manage. technology or other land types cannot provide. Among the One of the most important scientifi c contributions of the most important of these services is climate regulation, or past decade is an enhanced understanding of earth’s climate the ability to sequester and store greenhouse gases such as system and human impacts on climate. Through a collab- carbon dioxide. orative effort, scientists have communicated the links The ability of any rangeland to provide any ecosystem between humans and climate. Policy makers and the public service is dependent, primarily, upon the rangeland’s condi- are generally aware that humans have an infl uence on tion. Degraded rangelands are poor providers of ecosystem climate—an infl uence that is likely to increase in the services, regardless of the commodity. -
P a M P a S L I
bs.as argentina www.pampaslife.com pampas life catalogue - 2013 - catalogue pampas life our story 04 our knives 05 06 the patagonia 12 the andes 18 the gaucho 24 the ombu 28 the pulperia 34 the iguazu 38 the rio de la plata contact 43 - 01- inspiration Las Pampas, Argentina 1800s - summer mansions, polo matches, afternoon tea and conversations about worldly travels were all common facets of an affluent life in Buenos Aires during this time. Having a “country” home was your only escape from the heat and hustle and bustle of the city; it was also a vital aspect of your social life. Entertaining with grand parties, lavish weekends and a very posh life style were essential. After all Buenos Aires was one of the most powerful cities in the world at this time. Of course, only the best was demanded and provided, and most of the style and goods were imports from Western Europe. However, when it came to leather and horses no one could do it better than the Argentines. Horses, their tack and their sports (polo, racing and jumping) were important to business life and for the leisure life. And the men who trained and cared for these prestigious animals were treated with a great amount of respect, for they were not only care takers, but amazing craftsman who developed beautiful pieces by hand – horse bridles, stirrups, boots, belts and knives. Over the years, these men, which carry the name gaucho, became known for their craftsmanship with metals and leathers. Still today these items are one of Argentina’s treasures where even the royalty from Europe come to seek them out. -
Rangeland Management
RANGELANDS 17(4), August 1995 127 Changing SocialValues and Images of Public Rangeland Management J.J. Kennedy, B.L. Fox, and T.D. Osen Many political, economiç-and'ocial changes of the last things (biocentric values). These human values are 30 years have affected Ar'ierican views of good public expressed in various ways—such as laws, rangeland use, rangeland and how it should be managed. Underlying all socio-political action, popularity of TV nature programs, this socio-political change s the shift in public land values governmental budgets, coyote jewelry, or environmental of an American industrial na4i hat emerged from WWII to messages on T-shirts. become an urban, postindutr society in the 1970s. Much of the American public hold environmentally-orientedpublic land values today, versus the commodity and community The Origin of Rangeland Social Values economic development orientation of the earlier conserva- We that there are no and tion era (1900—1969). The American public is also mentally propose fixed, unchanging intrinsic or nature values. All nature and visually tied to a wider world through expanded com- rangeland values are human creations—eventhe biocentric belief that nature has munication technology. value independent of our human endorsement or use. Consider golden eagles or vultures as an example. To Managing Rangelands as Evolving Social Value begin with, recognizing a golden eagle or vulture high in flight is learned behavior. It is a socially taught skill (and not Figure 1 presents a simple rangeland value model of four easily mastered)of distinguishingthe cant of wings in soar- interrelated systems: (1) the environmental/natural ing position and pattern of tail or wing feathers. -
The Record of Miocene Impacts in the Argentine Pampas
Meteoritics & Planetary Science 41, Nr 5, 749–771 (2006) Abstract available online at http://meteoritics.org The record of Miocene impacts in the Argentine Pampas Peter H. SCHULTZ1*, Marcelo Z¡RATE2, Willis E. HAMES3, R. Scott HARRIS1, T. E. BUNCH4, Christian KOEBERL5, Paul RENNE6, and James WITTKE7 1Department of Geological Sciences, Brown University, Providence, Rhode Island 02912–1846, USA 2Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Avda Uruguay 151, 6300 Santa Rosa, La Pampa, Argentina 3Department of Geology, Auburn University, Auburn, Alabama 36849, USA 4Department of Geology, Northern Arizona University, Flagstaff, Arizona 86011, USA 5Department of Geological Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria 6Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, California 94709, USA 7Department of Geology, Northern Arizona University, Flagstaff, Arizona 86011, USA *Corresponding author. E-mail: [email protected] (Received 02 March 2005; revision accepted 14 December 2005) Abstract–Argentine Pampean sediments represent a nearly continuous record of deposition since the late Miocene (∼10 Ma). Previous studies described five localized concentrations of vesicular impact glasses from the Holocene to late Pliocene. Two more occurrences from the late Miocene are reported here: one near Chasicó (CH) with an 40Ar/39Ar age of 9.24 ± 0.09 Ma, and the other near Bahía Blanca (BB) with an age of 5.28 ± 0.04 Ma. In contrast with andesitic and dacitic impact glasses from other localities in the Pampas, the CH and BB glasses are more mafic. They also exhibit higher degrees of melting with relatively few xenoycrysts but extensive quench crystals. In addition to evidence for extreme heating (>1700 °C), shock features are observed (e.g., planar deformation features [PDFs] and diaplectic quartz and feldspar) in impact glasses from both deposits. -
Atlantic South America Section 1 MAIN IDEAS 1
Name _____________________________ Class __________________ Date ___________________ Atlantic South America Section 1 MAIN IDEAS 1. Physical features of Atlantic South America include large rivers, plateaus, and plains. 2. Climate and vegetation in the region range from cool, dry plains to warm, humid forests. 3. The rain forest is a major source of natural resources. Key Terms and Places Amazon River 4,000-mile-long river that flows eastward across northern Brazil Río de la Plata an estuary that connects the Paraná River and the Atlantic Ocean estuary a partially enclosed body of water where freshwater mixes with salty seawater Pampas wide, grassy plains in central Argentina deforestation the clearing of trees soil exhaustion soil that has become infertile because it has lost nutrients needed by plants Section Summary PHYSICAL FEATURES The region of Atlantic South America includes four What four countries make countries: Brazil, Argentina, Uruguay, and up Atlantic South America? Paraguay. A major river system in the region is the _______________________ Amazon. The Amazon River extends from the _______________________ Andes Mountains in Peru to the Atlantic Ocean. The _______________________ Amazon carries more water than any other river in _______________________ the world. The Paraná River, which drains much of the central part of South America, flows into an estuary called the Río de la Plata and the Atlantic Ocean. The region’s landforms mainly consist of plains and plateaus. The Amazon Basin in northern Brazil What is the Amazon Basin? is a huge, flat floodplain. Farther south are the _______________________ Brazilian Highlands and an area of high plains _______________________ called the Mato Grosso Plateau. -
Standards for Rangeland Health and Guidelines
Standards for Rangeland Health and Guidelines for Livestock Grazing Management for Public Lands Administered by the Bureau of Land Management for Montana and the Dakotas Note: These standards and guidelines apply to the Butte, Dillon, and Missoula Field Offices Preamble The Butte Resource Advisory Council (BRAC) has developed standards for rangeland health and guidelines for livestock grazing management for use on the Butte District of the Bureau of Land Management (BLM). The purpose of the S&Gs are to facilitate the achievement and maintenance of healthy, properly functioning ecosystems within the historic and natural range of variability for long-term sustainable use. BRAC determined that the following considerations were very important in the adoption of these S&Gs: 1. For implementation, the BLM should emphasize a watershed approach that incorporates both upland and riparian standards and guidelines. 2. The standards are applicable to rangeland health, regardless of use. 3. The social and cultural heritage of the region and the viability of the local economy, are part of the ecosystem. 4. Wildlife is integral to the proper function of rangeland ecosystems. Standards Standards are statements of physical and biological condition or degree of function required for healthy sustainable rangelands. Achieving or making significant progress towards these functions and conditions is required of all uses of public rangelands as stated in 43 CFR 4180.1. Baseline, monitoring and trend data, when available, should be utilized to assess compliance with standards. Butte STANDARD #1: Uplands are in proper functioning condition. • As addressed by the preamble to these standards and as indicated by: Physical Environment - erosional flow patterns; - surface litter; - soil movement by water and wind; - soil crusting and surface sealing; - compaction layer; - rills; - gullies; - cover amount; and - cover distribution. -
Emerging Issues in Rangeland Ecohydrology: Vegetation Change and the Water Cycle
Emerging Issues in Rangeland Ecohydrology: Vegetation Change and the Water Cycle Item Type text; Article Authors Wilcox, Bradford P.; Thurow, Thomas L. Citation Wilcox, B. P., & Thurow, T. L. (2006). Emerging issues in rangeland ecohydrology: vegetation change and the water cycle. Rangeland Ecology & Management, 59(2), 220-224. DOI 10.2111/05-090R1.1 Publisher Society for Range Management Journal Rangeland Ecology & Management Rights Copyright © Society for Range Management. Download date 01/10/2021 09:03:40 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/643426 Rangeland Ecol Manage 59:220–224 | March 2006 Forum: Viewpoint Emerging Issues in Rangeland Ecohydrology: Vegetation Change and the Water Cycle Bradford P. Wilcox1 and Thomas L. Thurow2 Authors are 1Professor, Rangeland Ecology and Management Department, Texas A&M University, College Station, TX 77843-2126; and 2Professor, Renewable Resources Department, University of Wyoming, Laramie, WY 82071-3354. Abstract Rangelands have undergone—and continue to undergo—rapid change in response to changing land use and climate. A research priority in the emerging science of ecohydrology is an improved understanding of the implications of vegetation change for the water cycle. This paper describes some of the interactions between vegetation and water on rangelands and poses 3 questions that represent high-priority, emerging issues: 1) How do changes in woody plants affect water yield? 2) What are the ecohydrological consequences of invasion by exotic plants? 3) What ecohydrological feedbacks play a role in rangeland degradation processes? To effectively address these questions, we must expand our knowledge of hydrological connectivity and how it changes with scale, accurately identify ‘‘hydrologically sensitive’’ areas on the landscape, carry out detailed studies to learn where plants are accessing water, and investigate feedback loops between vegetation and the water cycle. -
A Synoptic Review of US Rangelands
A Synoptic Review of U.S. Rangelands A Technical Document Supporting the Forest Service 2010 RPA Assessment Matthew Clark Reeves and John E. Mitchell Reeves, Matthew Clark; Mitchell, John E. 2012. A synoptic review of U.S. rangelands: a technical document supporting the Forest Service 2010 RPA Assessment. Gen. Tech. Rep. RMRS-GTR-288. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 128 p. Abstract: The Renewable Resources Planning Act of 1974 requires the USDA Forest Service to conduct assessments of resource conditions. This report fulfills that need and focuses on quantifying extent, productivity, and health of U.S. rangelands. Since 1982, the area of U.S. rangelands has decreased at an average rate of 350,000 acres per year owed mostly to conversion to agricultural and residential land uses. Nationally, rangeland productivity has been steady over the last decade, but the Rocky Mountain Assessment Region appears to have moderately increased productivity since 2000. The forage situation is positive and, from a national perspective, U.S. rangelands can probably support a good deal more animal production than current levels. Sheep numbers continue to decline, horses and goats have increased numbers, and cattle have slightly increased, averaging 97 million animals per year since 2002. Data from numerous sources indicate rangelands are relatively healthy but also highlight the need for consolidation of efforts among land management agencies to improve characterization of rangeland health. The biggest contributors to decreased rangeland health, chiefly invasive species, are factors associated with biotic integrity. Non-native species are present on 50 percent of non-Federal rangelands, often offsetting gains in rangeland health from improved management practices. -
Rangeland Soil Quality—Introduction
Rangeland Sheet 1 Soil Quality Information Sheet Rangeland Soil Quality—Introduction USDA, Natural Resources Conservation Service May 2001 What is rangeland? reflected in soil properties that change in response to management or climate. Rangeland is land on which the native vegetation is predominantly grasses, grasslike plants, forbs, or shrubs. This What does soil quality affect on land includes natural grasslands, savannas, shrub lands, most deserts, tundras, areas of alpine communities, coastal marshes, rangeland? and wet meadows. • Plant production, reproduction, and mortality • Erosion • Water yields and water quality • Wildlife habitat • Carbon sequestration • Vegetation changes • Establishment and growth of invasive plants • Rangeland health How are soil quality and rangeland health related? Rangeland health and soil quality are interdependent. Rangeland health is characterized by the functioning of both the soil and the plant communities. The capacity of the soil to function affects ecological processes, including the capture, What is rangeland health? storage, and redistribution of water; the growth of plants; and the cycling of plant nutrients. For example, increased physical Rangeland health is the degree to which the integrity of the crusting decreases the infiltration capacity of the soil and thus soil, the vegetation, the water, and the air as well as the the amount of water available to plants. As the availability of ecological processes of the rangeland ecosystem are balanced water decreases, plant production declines, some plant species and sustained. may disappear, and the less desirable species may increase in abundance. Changes in vegetation may precede or follow What is soil? changes in soil properties and processes. Significant shifts in vegetation generally are associated with changes in soil Soil is a dynamic resource that supports plants.