Robust Corner Detector Based on Corner Candidate Region Seungryong Kim Hunjae Yoo Kwanghoon Sohn Dept. of Electrical and Electronic Eng., Dept. of Electrical and Electronic Eng., Dept. of Electrical and Electronic Eng., Yonsei University, Seoul, Korea Yonsei University, Seoul, Korea Yonsei University, Seoul, Korea Email:
[email protected] Email:
[email protected] Email:
[email protected] Abstract—Corner detection is a fundamental step for many Speeded-Up Robust Features (SURF) [5] which approximates computer vision applications to detect the salient image features. to SIFT and outperforms other methods. Recently, Edward Recently, FAST corner detector has been proposed to detect Rosten et al. propose the Feature from Accelerated Segment the high repeatable corners with efficient computational time. Test (FAST) [6]. It improved from SUSAN tests rapidly on However, FAST is very sensitive to noise and detects too many a circle of candidate pixel to find corners, which meets the unnecessary corners on the noise or texture region. In this conditions for real-time applications. paper, we propose a robust corner detector improved from FAST in terms of the localization accuracy and the computational FAST not only requires very low computation time but time. First, we construct a gradient map using the Haar-wavelet also represents the best localization accuracy performance. response by integral image for efficiency. Second, we define a However, FAST is very sensitive to noise. Furthermore, FAST corner candidate region which has large gradient magnitude detects many unnecessary texture corners in the outdoor scene. enough to be corner. Finally, we detect the corner on the corner candidate region by FAST.