Edge Detection As an Effective Technique in Image Segmentation

Total Page:16

File Type:pdf, Size:1020Kb

Edge Detection As an Effective Technique in Image Segmentation International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Nov-Dec 2014 RESEARCH ARTICLE OPEN ACCESS Edge Detection as an Effective Technique in Image Segmentation for Image Analysis Manjula KA Research Scholar Research Development Centre Bharathiar University Tamil Nadu – India ABSTRACT Digital Image processing is a technique making use of computer algorithms to perform specific operations on an image, to get an enhanced image or to extract some useful information from it. Image segmentation, which is an important phase in image processing, is the process of separation of an image into regions or categories, which correspond to different objects or parts of objects. This step is typically used to identify objects or other relevant information in digital images. There are generic methods available for image segmentation and edge based segmentation is one among them. Image segmentation needs to segment the object from the background to read the image properly and identify the content of the image carefully. In this context, edge detection is considered to be a fundamental tool for image segmentation. Keywords :- Digital image processing, image segmentation, edge detection. I. INTRODUCTION and digital image processing. Analog Image Processing refers to the processing of image The term image processing refers to through electrical means. The most common processing of images using mathematical operations example is the television image. The television in order to get an enhanced image or to extract some signal is a voltage level which varies in amplitude useful information from it. It is a type of signal to represent brightness through the image. By dispensation in which input may be image like electrically varying the signal, the displayed image video frame or photograph and output may be image appearance is altered. The brightness and contrast or characteristics associated with that image. Image controls on a TV set serve to adjust the amplitude processing is a rapidly growing technology today, and reference of the video signal, resulting in the with its diverse applications in various aspects of brightening, darkening and alteration of the science, engineering, management, business and day brightness range of the displayed image. In Digital to day life activities and it is a core research area Image Processing, digital computers are used to too. Image Processing is a technique useful in process the image. The image will be converted enhancing raw images received from cameras or into digital form using a scanner or digital sensors placed for various applications including camera and then fed as input for processing enhancing images obtained from unmanned operations by digital computer. Digital image spacecrafts, space probes and military processing includes numerous procedures such as reconnaissance flights[1]. Image processing finds formatting and correcting of the data, digital applications in areas such as Remote Sensing, enhancement to facilitate better visual interpretation, Medical Imaging, Non-destructive Evaluation, or even automated classification of targets and Forensic Studies, Textiles, Material Science, features entirely by computer. The requirements for Military, Film industry, Document processing, digital image processing is a computer system, Graphic arts and Printing Industry. sometimes referred to as an image analysis system, The following sections describe different steps in with the necessary hardware and software to process image processing, specifically edge based image the data. There are efficient software systems, open segmentation and image edge detection techniques in source and proprietory, have been developed for detail. image processing. The term digital image processing generally refers to processing of a two-dimensional picture by a digital computer and II.METHODS OF IMAGE a digital image is an array of real numbers PROCESSING represented by a finite number of bits[2]. The main There are two types of methods used in Image advantage of Digital Image Processing methods is Processing and they are Analog image processing its repeatability, versatility and the preservation of ISSN: 2347-8578 www.ijcstjournal.org Page 126 International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 4, Nov-Dec 2014 original data accuracy. units that are either more meaningful or more efficient for further analysis. The main reasons for the growing interest and Segmentation separates an image in to its demand in digital image processing are due to its component regions or objects. Image segmentation applications such as (i) improvement of pictorial needs to segment the object from the background to information for human interpretation, and (ii) read the image properly and to identify the content processing of scene data for autonomous of the image carefully. Because of the same reason, machine perception. edge detection is a fundamental tool for image segmentation. Example for the first application area are the iv)Representation and description: Representation is enhancement of images in medical field such as transforming raw data into a form suitable for MRI image, X-ray image etc to improve the computer processing. Description, which is also pictorial content of it, thus making it easier for called feature extraction, deals with extracting human interpretation. The second application area features that result in some quantitative information focuses on procedures for extracting image of interest or features which are basic for information in a form suitable for computer differentiating one class of objects from another. processing. Examples include automatic character v)Recognition & Interpretation : Recognition is the recognition, industrial machine vision for product process which assigns a label to an object based on assembly and inspection, military the information provided by its descriptors. recognizance, automatic processing of Interpretation is the process of assigning meaning to fingerprints etc. an ensemble of recognized objects. Of the different steps mentioned above, image III.STEPS IN IMAGE PROCESSING segmentation, which has emerged as a significant phase in image based applications, is going to be There are some common steps in image processing dealt in detail in the following section. as listed below, though all image processing systems would not require all steps together. IV. IMAGE SEGMENTATION i)Image Acquisition : An image is captured by a Image segmentation, one of the significant aspects sensor such as a TV camera and then it is digitized. of image processing, is a long standing problem in ii)Image Preprocessing : The first step in preparing the research area of computer vision. The main aim the picture for higher-level processing is called pre- of segmentation is to extract the ROI(Region of processing and the purpose of pre-processing is two- Interest)for image analysis. The division of an image fold: to eliminate undesirable features that will into meaningful structures, ie., image segmentation, hinder further processing and to extract the is often an essential step in image analysis, object desirable features that represent useful information representation, visualization, and many other image in the image. Unwanted image attributes include processing tasks. Segmentation plays an important noise (insignificant lines and contours) and the role in image processing since separation of a large presence of featureless space and the important image into several parts makes further processing features include surface details and boundaries such simpler. These several parts that are rejoined will as lines, edges, and vertices. Image preprocessing cover the entire image. Segmentation may also typically includes a processing step of transforming depend on various features like colour or texture a source image into a new image which is that are contained in the image. Before denoising fundamentally similar to the source image, but an image, it is segmented to recover the differs in certain aspects, e.g. improved contrast. In original image. The main aim of segmentation is this step, computer suppresses noise and sometimes to reduce the information and hence making easy enhances some object features which are essential in analysis possible. understanding the image. iii)Image segmentation: The main aim of There exists several image segmentation techniques, segmentation is to reduce the information to enable which partition the image into several parts based on easy analysis. Segmentation is also useful in Image certain image features like pixel intensity value, Analysis and Image Compression[3]. In this color, texture, etc and these techniques are process, an image is divided into multiple parts and categorized based on the segmentation method used. this is typically used to identify objects or other A great variety of segmentation methods has been relevant information in digital images. The proposed till now and in this article, we will segmentation has two objectives - i. to decompose concentrate on edge based segmentation methods the image into parts for further analysis. ii. to and edge detection mechanisms. In edge based perform a change of representation. ie., The pixels segmentation technique, detected edges in an image of the image must be organized into higher-level are assumed to represent object boundaries, and are ISSN: 2347-8578 www.ijcstjournal.org Page 127 International Journal of Computer Science Trends and Technology (IJCST)
Recommended publications
  • Edge Detection of Noisy Images Using 2-D Discrete Wavelet Transform Venkata Ravikiran Chaganti
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2005 Edge Detection of Noisy Images Using 2-D Discrete Wavelet Transform Venkata Ravikiran Chaganti Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY FAMU-FSU COLLEGE OF ENGINEERING EDGE DETECTION OF NOISY IMAGES USING 2-D DISCRETE WAVELET TRANSFORM BY VENKATA RAVIKIRAN CHAGANTI A thesis submitted to the Department of Electrical Engineering in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Spring Semester, 2005 The members of the committee approve the thesis of Venkata R. Chaganti th defended on April 11 , 2005. __________________________________________ Simon Y. Foo Professor Directing Thesis __________________________________________ Anke Meyer-Baese Committee Member __________________________________________ Rodney Roberts Committee Member Approved: ________________________________________________________________________ Leonard J. Tung, Chair, Department of Electrical and Computer Engineering Ching-Jen Chen, Dean, FAMU-FSU College of Engineering The office of Graduate Studies has verified and approved the above named committee members. ii Dedicate to My Father late Dr.Rama Rao, Mother, Brother and Sister-in-law without whom this would never have been possible iii ACKNOWLEDGEMENTS I thank my thesis advisor, Dr.Simon Foo, for his help, advice and guidance during my M.S and my thesis. I also thank Dr.Anke Meyer-Baese and Dr. Rodney Roberts for serving on my thesis committee. I would like to thank my family for their constant support and encouragement during the course of my studies. I would like to acknowledge support from the Department of Electrical Engineering, FAMU-FSU College of Engineering.
    [Show full text]
  • Computer Vision: Edge Detection
    Edge Detection Edge detection Convert a 2D image into a set of curves • Extracts salient features of the scene • More compact than pixels Origin of Edges surface normal discontinuity depth discontinuity surface color discontinuity illumination discontinuity Edges are caused by a variety of factors Edge detection How can you tell that a pixel is on an edge? Profiles of image intensity edges Edge detection 1. Detection of short linear edge segments (edgels) 2. Aggregation of edgels into extended edges (maybe parametric description) Edgel detection • Difference operators • Parametric-model matchers Edge is Where Change Occurs Change is measured by derivative in 1D Biggest change, derivative has maximum magnitude Or 2nd derivative is zero. Image gradient The gradient of an image: The gradient points in the direction of most rapid change in intensity The gradient direction is given by: • how does this relate to the direction of the edge? The edge strength is given by the gradient magnitude The discrete gradient How can we differentiate a digital image f[x,y]? • Option 1: reconstruct a continuous image, then take gradient • Option 2: take discrete derivative (finite difference) How would you implement this as a cross-correlation? The Sobel operator Better approximations of the derivatives exist • The Sobel operators below are very commonly used -1 0 1 1 2 1 -2 0 2 0 0 0 -1 0 1 -1 -2 -1 • The standard defn. of the Sobel operator omits the 1/8 term – doesn’t make a difference for edge detection – the 1/8 term is needed to get the right gradient
    [Show full text]
  • Vision Review: Image Processing
    Vision Review: Image Processing Course web page: www.cis.udel.edu/~cer/arv September 17, 2002 Announcements • Homework and paper presentation guidelines are up on web page • Readings for next Tuesday: Chapters 6, 11.1, and 18 • For next Thursday: “Stochastic Road Shape Estimation” Computer Vision Review Outline • Image formation • Image processing • Motion & Estimation • Classification Outline •Images • Binary operators •Filtering – Smoothing – Edge, corner detection • Modeling, matching • Scale space Images • An image is a matrix of pixels Note: Matlab uses • Resolution – Digital cameras: 1600 X 1200 at a minimum – Video cameras: ~640 X 480 • Grayscale: generally 8 bits per pixel → Intensities in range [0…255] • RGB color: 3 8-bit color planes Image Conversion •RGB → Grayscale: Mean color value, or weight by perceptual importance (Matlab: rgb2gray) •Grayscale → Binary: Choose threshold based on histogram of image intensities (Matlab: imhist) Color Representation • RGB, HSV (hue, saturation, value), YUV, etc. • Luminance: Perceived intensity • Chrominance: Perceived color – HS(V), (Y)UV, etc. – Normalized RGB removes some illumination dependence: Binary Operations • Dilation, erosion (Matlab: imdilate, imerode) – Dilation: All 0’s next to a 1 → 1 (Enlarge foreground) – Erosion: All 1’s next to a 0 → 0 (Enlarge background) • Connected components – Uniquely label each n-connected region in binary image – 4- and 8-connectedness –Matlab: bwfill, bwselect • Moments: Region statistics – Zeroth-order: Size – First-order: Position (centroid)
    [Show full text]
  • A Survey of Feature Extraction Techniques in Content-Based Illicit Image Detection
    Journal of Theoretical and Applied Information Technology 10 th May 2016. Vol.87. No.1 © 2005 - 2016 JATIT & LLS. All rights reserved . ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195 A SURVEY OF FEATURE EXTRACTION TECHNIQUES IN CONTENT-BASED ILLICIT IMAGE DETECTION 1,2 S.HADI YAGHOUBYAN, 1MOHD AIZAINI MAAROF, 1ANAZIDA ZAINAL, 1MAHDI MAKTABDAR OGHAZ 1Faculty of Computing, Universiti Teknologi Malaysia (UTM), Malaysia 2 Department of Computer Engineering, Islamic Azad University, Yasooj Branch, Yasooj, Iran E-mail: 1,2 [email protected], [email protected], [email protected] ABSTRACT For many of today’s youngsters and children, the Internet, mobile phones and generally digital devices are integral part of their life and they can barely imagine their life without a social networking systems. Despite many advantages of the Internet, it is hard to neglect the Internet side effects in people life. Exposure to illicit images is very common among adolescent and children, with a variety of significant and often upsetting effects on their growth and thoughts. Thus, detecting and filtering illicit images is a hot and fast evolving topic in computer vision. In this research we tried to summarize the existing visual feature extraction techniques used for illicit image detection. Feature extraction can be separate into two sub- techniques feature detection and description. This research presents the-state-of-the-art techniques in each group. The evaluation measurements and metrics used in other researches are summarized at the end of the paper. We hope that this research help the readers to better find the proper feature extraction technique or develop a robust and accurate visual feature extraction technique for illicit image detection and filtering purpose.
    [Show full text]
  • Computer Vision Based Human Detection Md Ashikur
    Computer Vision Based Human Detection Md Ashikur. Rahman To cite this version: Md Ashikur. Rahman. Computer Vision Based Human Detection. International Journal of Engineer- ing and Information Systems (IJEAIS), 2017, 1 (5), pp.62 - 85. hal-01571292 HAL Id: hal-01571292 https://hal.archives-ouvertes.fr/hal-01571292 Submitted on 2 Aug 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2000-000X Vol. 1 Issue 5, July– 2017, Pages: 62-85 Computer Vision Based Human Detection Md. Ashikur Rahman Dept. of Computer Science and Engineering Shaikh Burhanuddin Post Graduate College Under National University, Dhaka, Bangladesh [email protected] Abstract: From still images human detection is challenging and important task for computer vision-based researchers. By detecting Human intelligence vehicles can control itself or can inform the driver using some alarming techniques. Human detection is one of the most important parts in image processing. A computer system is trained by various images and after making comparison with the input image and the database previously stored a machine can identify the human to be tested. This paper describes an approach to detect different shape of human using image processing.
    [Show full text]
  • Edge Detection Low Level
    Image Processing Image Processing - Computer Vision Edge Detection Low Level • Edge detection masks • Gradient Detectors Image Processing representation, compression,transmission • Second Derivative - Laplace detectors • Edge Linking image enhancement • Hough Transform edge/feature finding image "understanding" Computer Vision High Level UFO - Unidentified Flying Object Origin of Edges surface normal discontinuity depth discontinuity surface color discontinuity illumination discontinuity Edges are caused by a variety of factors 1 Edge detection Profiles of image intensity edges Step Edge Line Edge How can you tell that a pixel is on an edge? gray value gray gray value gray x x edge edge edge edge Edge Detection by Differentiation Edge detection 1D image f(x) gray value gray 1. Detection of short linear edge segments (edgels) x 2. Aggregation of edgels into extended edges 1st derivative f'(x) threshold |f'(x)| - threshold Pixels that passed the threshold are Edge Pixels 2 Image gradient The discrete gradient The gradient of an image: How can we differentiate a digital image f[x,y]? • Option 1: reconstruct a continuous image, then take gradient • Option 2: take discrete derivative (finite difference) The gradient points in the direction of most rapid change in intensity How would you implement this as a convolution? The gradient direction is given by: The edge strength is given by the gradient magnitude Effects of noise Solution: smooth first Consider a single row or column of the image • Plotting intensity as a function of position gives
    [Show full text]
  • A Survey of Feature Extraction Techniques in Content-Based Illicit Image Detection
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universiti Teknologi Malaysia Institutional Repository Journal of Theoretical and Applied Information Technology 10 th May 2016. Vol.87. No.1 © 2005 - 2016 JATIT & LLS. All rights reserved . ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195 A SURVEY OF FEATURE EXTRACTION TECHNIQUES IN CONTENT-BASED ILLICIT IMAGE DETECTION 1,2 S.HADI YAGHOUBYAN, 1MOHD AIZAINI MAAROF, 1ANAZIDA ZAINAL, 1MAHDI MAKTABDAR OGHAZ 1Faculty of Computing, Universiti Teknologi Malaysia (UTM), Malaysia 2 Department of Computer Engineering, Islamic Azad University, Yasooj Branch, Yasooj, Iran E-mail: 1,2 [email protected], [email protected], [email protected] ABSTRACT For many of today’s youngsters and children, the Internet, mobile phones and generally digital devices are integral part of their life and they can barely imagine their life without a social networking systems. Despite many advantages of the Internet, it is hard to neglect the Internet side effects in people life. Exposure to illicit images is very common among adolescent and children, with a variety of significant and often upsetting effects on their growth and thoughts. Thus, detecting and filtering illicit images is a hot and fast evolving topic in computer vision. In this research we tried to summarize the existing visual feature extraction techniques used for illicit image detection. Feature extraction can be separate into two sub- techniques feature detection and description. This research presents the-state-of-the-art techniques in each group. The evaluation measurements and metrics used in other researches are summarized at the end of the paper.
    [Show full text]
  • Edge Detection CS 111
    Edge Detection CS 111 Slides from Cornelia Fermüller and Marc Pollefeys Edge detection • Convert a 2D image into a set of curves – Extracts salient features of the scene – More compact than pixels Origin of Edges surface normal discontinuity depth discontinuity surface color discontinuity illumination discontinuity • Edges are caused by a variety of factors Edge detection 1.Detection of short linear edge segments (edgels) 2.Aggregation of edgels into extended edges 3.Maybe parametric description Edge is Where Change Occurs • Change is measured by derivative in 1D • Biggest change, derivative has maximum magnitude •Or 2nd derivative is zero. Image gradient • The gradient of an image: • The gradient points in the direction of most rapid change in intensity • The gradient direction is given by: – Perpendicular to the edge •The edge strength is given by the magnitude How discrete gradient? • By finite differences f(x+1,y) – f(x,y) f(x, y+1) – f(x,y) The Sobel operator • Better approximations of the derivatives exist –The Sobel operators below are very commonly used -1 0 1 121 -2 0 2 000 -1 0 1 -1 -2 -1 – The standard defn. of the Sobel operator omits the 1/8 term • doesn’t make a difference for edge detection • the 1/8 term is needed to get the right gradient value, however Gradient operators (a): Roberts’ cross operator (b): 3x3 Prewitt operator (c): Sobel operator (d) 4x4 Prewitt operator Finite differences responding to noise Increasing noise -> (this is zero mean additive gaussian noise) Solution: smooth first • Look for peaks in Derivative
    [Show full text]
  • Vision Based Real-Time Navigation with Unknown and Uncooperative Space Target Abstract
    Vision based real-time navigation with Unknown and Uncooperative Space Target Abstract Hundreds of satellites are launched every year, and the failure rate during their op- erational time frame, combined with the four to five percent failure rate of launch vehicles means that approximately one of every seven satellites will fail before reach- ing their planned working life. This generates an enormous amount of space debris, which can be a danger to working space platforms such as the International Space Station (ISS), shuttles, spacecrafts, and other vehicles. If debris collides with a ve- hicle with human passengers, it could cause significant damage and threaten the life and safety of those aboard, plus the collisions themselves add more junk, thereby creating more risk. Thus, active space debris removal operations are essential. The removal of space debris requires pose (position and orientation) information and mo- tion estimation of targets; thus, real-time detection and tracking of uncooperative targets are critical. In order to estimate a target's pose and motion, it must track over the entire frame. In addition, due to the harsh space environment, different types of sensors are required, which means practical sensor fusion algorithms are essential. However, as there is little prior information about a target's structure and motion, detection and tracking, pose and motion estimation and multi-sensor fusion tasks are very challenging. This thesis develops new approaches for target tracking, pose and motion estima- tion and multi-sensor fusion. For the target-tracking step, a new adaptation scheme iii of the Unscented Kalman Filter (UKF) is proposed to manage difficulties associated with real-time tracking of an uncooperative space target.
    [Show full text]
  • UNIVERSIDAD POLITÉCNICA DE MADRID Marta Luna Serrano
    UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN Automated detection and classification of brain injury lesions on structural magnetic resonance imaging TESIS DOCTORAL Marta Luna Serrano Ingeniero de Telecomunicación Madrid, 2016 Departamento de Tecnología Fotónica y Bioingeniería Grupo de Bioingeniería y Telemedicina E.T.S.I. de Telecomunicación UNIVERSIDAD POLITÉCNICA DE MADRID Automated detection and classification of brain injury lesions on structural magnetic resonance imaging TESIS DOCTORAL Autor: Marta Luna Serrano Directores: Enrique J. Gómez Aguilera José María Tormos Muñoz Madrid, Febrero 2016 Tribunal formado por el Magnífico y Excelentísimo Sr. Rector de la Universidad Politécnica de Madrid. Presidente: Dª. Mª Elena Hernando Pérez Doctora Ingeniera de Telecomunicación Profesora Titular de Universidad Universidad Politécnica de Madrid Vocales: D. César Cáceres Taladriz Doctor Ingeniero de Telecomunicación Profesor Contratado Doctor Universidad Rey Juan Carlos D. Pablo Lamata de la Orden Doctor Ingeniero de Telecomunicación Sir Henry Dale Fellow & Lecturer King’s College of London D. Alberto García Molina Doctor en Neurociencias Neuropsicólogo adjunto Hospital de Neurorehabilitación Institut Guttmann Secretaria: Dª. Patricia Sánchez González Doctora Ingeniera de Telecomunicación Profesora Ayudante Doctor Universidad Politécnica de Madrid Suplentes: Dña. Laura Roa Romero Doctora en Ciencias Físicas Catedrática de Universidad Universidad de Sevilla D. Javier Resina Tosina Doctor Ingeniero
    [Show full text]
  • CITS 4402 Computer Vision
    CITS 4402 Computer Vision Ajmal Mian Lecture 05 Edge Detection & Hough Transform 26/03/2018 Objectives of this lecture To understand what are edges To study the Sobel operator for gradient extraction To learn the Canny edge detection algorithm To study the general concept of the Hough transform To use the Hough transform for line and circle detection 26/03/2018 Computer Vision - Lecture 05 - Edge Detection & Hough Transform The University of Western Australia 2 Significance of Edges in Images There is strong evidence that some form of data compression occurs at an early stage in the human visual system Research suggests that one form of this compression involves finding edges and other information-high features in images From edges we can construct a line drawing of the scene. This results in a huge data compression, but the information content remains very high When we look at a sketch of a scene we do not feel that we are missing a great deal of information 26/03/2018 Computer Vision - Lecture 05 - Edge Detection & Hough Transform The University of Western Australia 3 What is an Edge? This is not well defined but the classical approach is to define edges as being step discontinuities in the image Edge detection then becomes a task of finding local maxima in the first derivative or zero-crossing of the 2nd derivative This idea was first suggested by David Marr at MIT in the late 70’s. 26/03/2018 Computer Vision - Lecture 05 - Edge Detection & Hough Transform The University of Western Australia 4 Edge Detection Goal: Identify
    [Show full text]
  • Robust Corner Detector Based on Corner Candidate Region
    Robust Corner Detector Based on Corner Candidate Region Seungryong Kim Hunjae Yoo Kwanghoon Sohn Dept. of Electrical and Electronic Eng., Dept. of Electrical and Electronic Eng., Dept. of Electrical and Electronic Eng., Yonsei University, Seoul, Korea Yonsei University, Seoul, Korea Yonsei University, Seoul, Korea Email: [email protected] Email: [email protected] Email: [email protected] Abstract—Corner detection is a fundamental step for many Speeded-Up Robust Features (SURF) [5] which approximates computer vision applications to detect the salient image features. to SIFT and outperforms other methods. Recently, Edward Recently, FAST corner detector has been proposed to detect Rosten et al. propose the Feature from Accelerated Segment the high repeatable corners with efficient computational time. Test (FAST) [6]. It improved from SUSAN tests rapidly on However, FAST is very sensitive to noise and detects too many a circle of candidate pixel to find corners, which meets the unnecessary corners on the noise or texture region. In this conditions for real-time applications. paper, we propose a robust corner detector improved from FAST in terms of the localization accuracy and the computational FAST not only requires very low computation time but time. First, we construct a gradient map using the Haar-wavelet also represents the best localization accuracy performance. response by integral image for efficiency. Second, we define a However, FAST is very sensitive to noise. Furthermore, FAST corner candidate region which has large gradient magnitude detects many unnecessary texture corners in the outdoor scene. enough to be corner. Finally, we detect the corner on the corner candidate region by FAST.
    [Show full text]