Michael Borinsky Graphs in Perturbation Theory Algebraic Structure and Asymptotics Springer Theses

Total Page:16

File Type:pdf, Size:1020Kb

Michael Borinsky Graphs in Perturbation Theory Algebraic Structure and Asymptotics Springer Theses Springer Theses Recognizing Outstanding Ph.D. Research Michael Borinsky Graphs in Perturbation Theory Algebraic Structure and Asymptotics Springer Theses Recognizing Outstanding Ph.D. Research Aims and Scope The series “Springer Theses” brings together a selection of the very best Ph.D. theses from around the world and across the physical sciences. Nominated and endorsed by two recognized specialists, each published volume has been selected for its scientific excellence and the high impact of its contents for the pertinent field of research. For greater accessibility to non-specialists, the published versions include an extended introduction, as well as a foreword by the student’s supervisor explaining the special relevance of the work for the field. As a whole, the series will provide a valuable resource both for newcomers to the research fields described, and for other scientists seeking detailed background information on special questions. Finally, it provides an accredited documentation of the valuable contributions made by today’s younger generation of scientists. Theses are accepted into the series by invited nomination only and must fulfill all of the following criteria • They must be written in good English. • The topic should fall within the confines of Chemistry, Physics, Earth Sciences, Engineering and related interdisciplinary fields such as Materials, Nanoscience, Chemical Engineering, Complex Systems and Biophysics. • The work reported in the thesis must represent a significant scientific advance. • If the thesis includes previously published material, permission to reproduce this must be gained from the respective copyright holder. • They must have been examined and passed during the 12 months prior to nomination. • Each thesis should include a foreword by the supervisor outlining the signifi- cance of its content. • The theses should have a clearly defined structure including an introduction accessible to scientists not expert in that particular field. More information about this series at http://www.springer.com/series/8790 Michael Borinsky Graphs in Perturbation Theory Algebraic Structure and Asymptotics Doctoral Thesis accepted by the Humboldt-Universität zu Berlin, Germany 123 Author Supervisor Dr. Michael Borinsky Prof. Dirk Kreimer Departments of Physics and of Mathematics Departments of Physics and of Mathematics Humboldt-Universität zu Berlin Humboldt-Universität zu Berlin Berlin, Germany Berlin, Germany ISSN 2190-5053 ISSN 2190-5061 (electronic) Springer Theses ISBN 978-3-030-03540-2 ISBN 978-3-030-03541-9 (eBook) https://doi.org/10.1007/978-3-030-03541-9 Library of Congress Control Number: 2018960214 © Springer Nature Switzerland AG 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Supervisor’s Foreword Perturbation theory is one of the cornerstones of theoretical and mathematical physics, in particular for quantum field theory through its famed expansion in terms of Feynman diagrams. It expands the solution of a non-linear fixed point equation, the Dyson–Schwinger equation in the case of quantum fields, in terms of a Taylor series in a small coupling parameter. Even low orders reveal fascinating connec- tions to algebraic and arithmetic geometry, which have been at the forefront of recent research through the clarification of the nature of periods seen in the com- putation of each single Feynman diagram in terms of the mathematical theory of motives. To gain insights though into the all-orders behaviour of quantum field theory amplitudes, an understanding of the summation of such diagrams at high orders is needed. For a start, one has to simply understand the asymptotics of graph counting. The fact that such perturbative expansions are generically divergent series—the magnitude of the coefficients is of rapid growth—necessitates to compute with formal power series. Whilst this study of counting Feynman graphs is a time-honoured problem, many questions have been left unanswered, in particular with regard to the counting of the skeleton diagrams which are the driving integral kernels in the Dyson–Schwinger equations. This thesis studies recently developed novel structures in perturbation theory combining graph-theoretic, combinatorial and Hopf algebraic formalisms. It derives computational methods which allow to calculate asymptotic properties of pertur- bative expansions in a generic manner. Michael Borinsky has developed a new mathematical tool for the handling of asymptotic series: he defines a map from the coefficients of a divergent series to the coefficients appearing in their large-order behaviour. This map has distinguished mathematical properties: it is in fact a derivation, with Leibniz and chain rules. It also gives a well-defined ring structure on such formal series. This result, in its generality, will find applications far beyond problems in quantum field theory allowing to study series at high order, where before results were only accessible at very low orders and by much more primitive and labour-intensive methods. v vi Supervisor’s Foreword As examples, Borinsky calculates the large-order asymptotics of the generating function of connected chord diagrams and simple permutations. He uses the Hopf algebraic structure in perturbative quantum field theory in the context of general graphs, and here the main result for physical applications is the correspondence between bridgeless graphs and the Legendre transformation. The outcome is a complete combinatorial dictionary for zero-dimensional quantum field theory, which is the basic underlying theory for the enumeration problem in quantum field theory. It is exhibited in the study of the most prominent quantum field theories, including the full Standard Model of particle physics. The resulting computations would be inaccessible by conventional textbook perturbative methods. To summarize, Borinsky provides us with a complete analysis of the asymptotics of graph counting for renormalizable quantum fields and at the same time gives a very detailed and pedagogical introduction to new techniques of asymptotic anal- ysis applicable in many other areas of science. Berlin, Germany Dirk Kreimer October 2018 Abstract This thesis provides an extension of the work of Dirk Kreimer and Alain Connes on the Hopf algebra structure of Feynman graphs and renormalization to general graphs. Additionally, an algebraic structure of the asymptotics of formal power series with factorial growth, which is compatible with the Hopf algebraic structure, is introduced. The Hopf algebraic structure permits the explicit enumeration of graphs with constraints for the allowed subgraphs. In the case of Feynman diagrams, a lattice structure, which will be introduced, exposes additional unique properties for physical quantum field theories. The differential ring of factorially divergent power series allows the extraction of asymptotic results of implicitly defined power series with vanishing radius of convergence. Together, both structures provide an alge- braic formulation of large graphs with constraints on the allowed subgraphs. These structures are motivated by and used to analyse renormalized zero-dimensional quantum field theory at high orders in perturbation theory. As a pure application of the Hopf algebra structure, an Hopf algebraic inter- pretation of the Legendre transformation in quantum field theory is given. The differential ring of factorially divergent power series will be used to solve two asymptotic counting problems from combinatorics: the asymptotic number of connected chord diagrams and the number of simple permutations. For both asymptotic solutions, all order asymptotic expansions are provided as generating functions in closed form. Both structures are combined and applied to zero-dimensional quantum field theory. Various quantities are explicitly given in the zero-dimensional version of u3, u4, QED, quenched QED and Yukawa theory with their all order asymptotic expansions. vii List of Publications Journal Articles [1] M Borinsky. “Renormalized asymptotic enumeration of Feynman diagrams”. In: Annals of Physics 385 (2017), pp. 95–135. [2] M Borinsky. “Generating asymptotics for factorially divergent sequences”. In: Manuscript accepted for publication in the Electronic
Recommended publications
  • Graphs Based on Hoop Algebras
    mathematics Article Graphs Based on Hoop Algebras Mona Aaly Kologani 1, Rajab Ali Borzooei 2 and Hee Sik Kim 3,* 1 Hatef Higher Education Institute, Zahedan 8301, Iran; [email protected] 2 Department of Mathematics, Shahid Beheshti University, Tehran 7561, Iran; [email protected] 3 Research Institute for Natural Science, Department of Mathematics, Hanyang University, Seoul 04763, Korea * Correspondence: [email protected]; Tel.: +82-2-2220-0897 Received: 14 March 2019; Accepted: 17 April 2019 Published: 21 April 2019 Abstract: In this paper, we investigate the graph structures on hoop algebras. First, by using the quasi-filters and r-prime (one-prime) filters, we construct an implicative graph and show that it is connected and under which conditions it is a star or tree. By using zero divisor elements, we construct a productive graph and prove that it is connected and both complete and a tree under some conditions. Keywords: hoop algebra; zero divisor; implicative graph; productive graph MSC: 06F99; 03G25; 18B35; 22A26 1. Introduction Non-classical logic has become a formal and useful tool for computer science to deal with uncertain information and fuzzy information. The algebraic counterparts of some non-classical logics satisfy residuation and those logics can be considered in a frame of residuated lattices [1]. For example, Hájek’s BL (basic logixc [2]), Lukasiewicz’s MV (many-valued logic [3]) and MTL (monoidal t-norm-based logic [4]) are determined by the class of BL-algebras, MV-algebras and MTL-algebras, respectively. All of these algebras have lattices with residuation as a common support set.
    [Show full text]
  • 2020 Ural Workshop on Group Theory and Combinatorics
    Institute of Natural Sciences and Mathematics of the Ural Federal University named after the first President of Russia B.N.Yeltsin N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences The Ural Mathematical Center 2020 Ural Workshop on Group Theory and Combinatorics Yekaterinburg – Online, Russia, August 24-30, 2020 Abstracts Yekaterinburg 2020 2020 Ural Workshop on Group Theory and Combinatorics: Abstracts of 2020 Ural Workshop on Group Theory and Combinatorics. Yekaterinburg: N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, 2020. DOI Editor in Chief Natalia Maslova Editors Vladislav Kabanov Anatoly Kondrat’ev Managing Editors Nikolai Minigulov Kristina Ilenko Booklet Cover Desiner Natalia Maslova c Institute of Natural Sciences and Mathematics of Ural Federal University named after the first President of Russia B.N.Yeltsin N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences The Ural Mathematical Center, 2020 2020 Ural Workshop on Group Theory and Combinatorics Conents Contents Conference program 5 Plenary Talks 8 Bailey R. A., Latin cubes . 9 Cameron P. J., From de Bruijn graphs to automorphisms of the shift . 10 Gorshkov I. B., On Thompson’s conjecture for finite simple groups . 11 Ito T., The Weisfeiler–Leman stabilization revisited from the viewpoint of Terwilliger algebras . 12 Ivanov A. A., Densely embedded subgraphs in locally projective graphs . 13 Kabanov V. V., On strongly Deza graphs . 14 Khachay M. Yu., Efficient approximation of vehicle routing problems in metrics of a fixed doubling dimension .
    [Show full text]
  • On Amenable and Congenial Bases for Infinite Dimensional Algebras
    On Amenable and Congenial Bases for Infinite Dimensional Algebras A dissertation presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Rebin A. Muhammad May 2020 © 2020 Rebin A. Muhammad. All Rights Reserved. 2 This dissertation titled On Amenable and Congenial Bases for Infinite Dimensional Algebras by REBIN A. MUHAMMAD has been approved for the Department of Mathematics and the College of Arts and Sciences by Sergio R. Lopez-Permouth´ Professor of Mathematics Florenz Plassmann Dean, College of Arts and Sciences 3 Abstract MUHAMMAD, REBIN A., Ph.D., May 2020, Mathematics On Amenable and Congenial Bases for Infinite Dimensional Algebras (72 pp.) Director of Dissertation: Sergio R. Lopez-Permouth´ The study of the recently introduced notions of amenability, congeniality and simplicity of bases for infinite dimensional algebras is furthered. A basis B over an infinite dimensional F-algebra A is called amenable if FB, the direct product indexed by B of copies of the field F, can be made into an A-module in a natural way. (Mutual) congeniality is a relation that serves to identify cases when different amenable bases yield isomorphic A-modules. If B is congenial to C but C is not congenial to B, then we say that B is properly congenial to C. An amenable basis B is called simple if it is not properly congenial to any other amenable basis and it is called projective if there does not exist any amenable basis which is properly congenial to B.
    [Show full text]
  • Algebraic Structures on the Set of All Binary Operations Over a Fixed Set
    Algebraic Structures on the Set of all Binary Operations over a Fixed Set A dissertation presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Isaac Owusu-Mensah May 2020 © 2020 Isaac Owusu-Mensah. All Rights Reserved. 2 This dissertation titled Algebraic Structures on the Set of all Binary Operations over a Fixed Set by ISAAC OWUSU-MENSAH has been approved for the Department of Mathematics and the College of Arts and Sciences by Sergio R. Lopez-Permouth´ Professor of Mathematics Florenz Plassmann Dean, College of Art and Sciences 3 Abstract OWUSU-MENSAH, ISAAC, Ph.D., May 2020, Mathematics Algebraic Structures on the Set of all Binary Operations over a Fixed Set (91 pp.) Director of Dissertation: Sergio R. Lopez-Permouth´ The word magma is often used to designate a pair of the form (S; ∗) where ∗ is a binary operation on the set S . We use the notation M(S ) (the magma of S ) to denote the set of all binary operations on the set S (i.e. all magmas with underlying set S .) Our work on this set was motivated initially by an intention to better understand the distributivity relation among operations over a fixed set; however, our research has yielded structural and combinatoric questions that are interesting in their own right. Given a set S , its (left, right, two-sided) hierarchy graph is the directed graph that has M(S ) as its set of vertices and such that there is an edge from an operation ∗ to another one ◦ if ∗ distributes over ◦ (on the left, right, or both sides.) The graph-theoretic setting allows us to describe easily various interesting algebraic scenarios.
    [Show full text]
  • Subvarieties of Varieties Generated by Graph Algebras
    Acta Sci. Math., 54 (1990), 57—75 Subvarieties of varieties generated by graph algebras EMIL W. KISS, REINHARD PÖSCHEL and PÉTER PRÖHLE 1. Introduction. Graph algebras have been invented by C. SHALLON [14] to obtain examples of nonfinitely based finite algebras (see G. MCNULTY, C. SHALLON [5] for an account on these results, and K. BAKER, G. MCNULTY; H. WERNER [1] on the newer developments). To recall this concept, let G=(V,E) be a (directed) graph with vertex set V and edges EQVX V. Define the graph algebra A(G) corresponding to G to have underlying set VU where »is a symbol outside V, and two basic operations, a nullary operation pointing to °° and a binary one denoted by juxta- position, given by uv=u if (u,v)ZE and uv=°° otherwise. One of the first examples of a nonfinitely based finite algebra has been a particular three element graph algebra, called Murskii's groupoid after its discoverer (see [6]). Here is its multiplication table and the picture of the corresponding graph G0. A(G0) - 0 1 1 oo oo o© oo 0 OO oo 0 1 oo 1 1 Figure 1 It has been observed by S. OATES-WILLIAMS and M. VAUGHAN-LEE [7] that the lattice of subvarieties of the variety generated by Murskii's groupoid is also very interesting. According to the main result of S. OATES-WILLIAMS [10], this lattice con- tains a chain isomorphic to that of the real numbers, hence it is uncountable, and satisfies neither the minimum nor the maximum condition. Very little is known about lattices of subvarieties in general.
    [Show full text]
  • Graph Algebras Iain Raeburn
    Graph Algebras Iain Raeburn School of Mathematical and Physical Sciences, University of New- castle, Callaghan, NSW 2308, Australia 1991 Mathematics Subject Classification. Primary 46L05; Secondary 46L08, 46L35, 46L55, 46L80, 22D35 Key words and phrases. directed graph, C∗-algebra, Cuntz-Krieger algebra The author’s research in this area has been supported by the Australian Research Council through the ARC Centre for Complex Dynamic Systems and Control at the University of Newcastle. Abstract. These notes are the written version of the author’s lectures at the CBMS-NSF conference on Graph Algebras: Operator Algebras We Can See, held at the University of Iowa from 30 May to 4 June 2004. They discuss the structure theory of the Cuntz-Krieger algebras of directed graphs, together with some applications and some recent generalisations of that theory. Contents Preface vii Introduction 1 Chapter 1. Directed graphs and Cuntz-Krieger families 5 Chapter 2. Uniqueness theorems for graph algebras 15 Chapter 3. Proofs of the uniqueness theorems 25 Chapter 4. Simplicity and ideal structure 33 Chapter 5. Arbitrary graphs 41 Chapter 6. Applications to non-abelian duality 51 Chapter 7. K-theory of graph algebras 61 Chapter 8. Cuntz-Pimsner algebras 71 Chapter 9. Topological graphs 79 Chapter 10. Higher-rank graphs 89 Appendix A. Background material 99 A.1. Projections and partial isometries 99 A.2. Matrix algebras and direct sums 102 Bibliography 105 Index 111 v Preface These notes were mainly written while I was preparing my lectures for the CBMS-NSF conference on Graph Algebras: Operator Algebras We Can See, which was held at the University of Iowa from 30 May to 4 June 2004.
    [Show full text]
  • View This Volume's Front and Back
    Graph Algebra s This page intentionally left blank http://dx.doi.org/10.1090/cbms/103 Conference Boar d o f the Mathematical Science s CBMS Regional Conference Series in Mathematics Number 10 3 Graph Algebra s Iain Raebur n Published fo r th e Conference Boar d of the Mathematica l Science s by the v^^c^ America n Mathematica l Societ y Providence, Rhod e Islan d with support fro m th e National Scienc e Foundatio n NSF-CBMS Regiona l Researc h Conferenc e o n Grap h Algebras : Operator Algebra s W e Ca n See , hel d a t th e Universit y o f Iowa , May 31-Jun e 4 , 200 4 Partially supporte d b y th e Nationa l Scienc e Foundatio n Research partiall y supporte d b y the Australia n Researc h Counci l through th e AR C Centr e fo r Comple x Dynami c System s an d Contro l at th e Universit y o f Newcastle . 2000 Mathematics Subject Classification. Primar y 46L05 ; Secondary 46L08 , 46L35 , 46L55, 46L80 , 22D35 . For additiona l informatio n an d update s o n thi s book , visi t www.ams.org/bookpages/cbms-103 Library o f Congres s Cataloging-in-Publicatio n Dat a Raeburn, Iain , 1949- Graph algebra s / Iai n Raeburn . p. cm . — (CBMS regiona l conferenc e serie s i n mathematics, ISS N 0160-764 2 ; no. 103 ) Includes bibliographica l reference s an d index. ISBN 0-8218-3660- 9 (alk .
    [Show full text]
  • Power Graphs: a Survey
    Electronic Journal of Graph Theory and Applications 1 (2) (2013), 125–147 Power Graphs: A Survey Jemal Abawajya, Andrei Kelareva,b, Morshed Chowdhurya aSchool of Information Technology, Deakin University 221 Burwood Hwy, Burwood, Melbourne, Victoria 3125, Australia bCARMA Priority Research Center, School of Mathematical and Physical Sciences University of Newcastle, University Drive, Callaghan, Newcastle, NSW 2308, Australia {jemal.abawajy,morshed.chowdhury}@deakin.edu.au, [email protected] Abstract This article gives a survey of all results on the power graphs of groups and semigroups obtained in the literature. Various conjectures due to other authors, questions and open problems are also included. Keywords: power graphs, Eulerian graphs, Hamiltonian graphs, connectivity. Mathematics Subject Classification : 05C25, 05C40, 05C45, 05C78. 1. Introduction Many interesting results on the power graphs have been obtained recently. This article gives a survey of the current state of knowledge on this research direction by presenting all results and open questions recorded in the literature dealing with power graphs. Various conjectures formulated by other authors and several new open problems are also included. This is the first survey devoted to the power graphs. 2. Definition of power graphs Let us begin with the definitions of the directed and undirected power graphs, which are the main concepts considered in this survey. In the literature, the power graphs have been defined and considered for groups and semigroups. Section 4 contains concise prerequisites on the terminology Received: 5 October 2013, Revised: 23 October, Accepted: 26 October 2013. 125 www.ejgta.org Power Graphs: A Survey | J. Abawajy, A. V. Kelarev, M. Chowdhury of the group and semigroup theories used in the results (cf.
    [Show full text]
  • Symmetry in Graph Theory
    Symmetry in Graph Theory Edited by Jose Manuel Rodriguez Garcia Printed Edition of the Special Issue Published in Symmetry www.mdpi.com/journal/symmetry Symmetry in Graph Theory Symmetry in Graph Theory Special Issue Editor Jose Manuel Rodriguez Garcia MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Jose Manuel Rodriguez Garcia Universidad Carlos III de Madrid Spain Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issues published online in the open access journal Symmetry (ISSN 2073-8994) from 2017 to 2018 (available at: https:// www.mdpi.com/journal/symmetry/special issues/Graph Theory, https://www.mdpi.com/ journal/symmetry/special issues/Symmetry Graph Theory) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-658-5 (Pbk) ISBN 978-3-03897-659-2 (PDF) c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editor ...................................... vii Jose M. Rodriguez Graph Theory Reprinted from: Symmetry 2018, 10, 32, doi:10.3390/sym10010032 .................
    [Show full text]
  • A Calculus and Algebra Derived from Directed Graph Algebras
    International J.Math. Combin. Vol.3(2015), 01-32 A Calculus and Algebra Derived from Directed Graph Algebras Kh.Shahbazpour and Mahdihe Nouri (Department of Mathematics, University of Urmia, Urmia, I.R.Iran, P.O.BOX, 57135-165) E-mail: [email protected] Abstract: Shallon invented a means of deriving algebras from graphs, yielding numerous examples of so-called graph algebras with interesting equational properties. Here we study directed graph algebras, derived from directed graphs in the same way that Shallon’s undi- rected graph algebras are derived from graphs. Also we will define a new map, that obtained by Cartesian product of two simple graphs pn, that we will say from now the mah-graph. Next we will discuss algebraic operations on mah-graphs. Finally we suggest a new algebra, the mah-graph algebra (Mah-Algebra), which is derived from directed graph algebras. Key Words: Direct product, directed graph, Mah-graph, Shallon algebra, kM-algebra AMS(2010): 08B15, 08B05. §1. Introduction Graph theory is one of the most practical branches in mathematics. This branch of mathematics has a lot of use in other fields of studies and engineering, and has competency in solving lots of problems in mathematics. The Cartesian product of two graphs are mentioned in[18]. We can define a graph plane with the use of mentioned product, that can be considered as isomorphic with the plane Z+ Z+. ∗ Our basic idea is originated from the nature. Rivers of one area always acts as unilateral courses and at last, they finished in the sea/ocean with different sources.
    [Show full text]
  • Power Graphs: a Survey
    Electronic Journal of Graph Theory and Applications 1 (2) (2013), 125–147 Power Graphs: A Survey Jemal Abawajya, Andrei Kelareva;b, Morshed Chowdhurya aSchool of Information Technology, Deakin University 221 Burwood Hwy, Burwood, Melbourne, Victoria 3125, Australia bCARMA Priority Research Center, School of Mathematical and Physical Sciences University of Newcastle, University Drive, Callaghan, Newcastle, NSW 2308, Australia fjemal.abawajy,[email protected], [email protected] Abstract This article gives a survey of all results on the power graphs of groups and semigroups obtained in the literature. Various conjectures due to other authors, questions and open problems are also included. Keywords: power graphs, Eulerian graphs, Hamiltonian graphs, connectivity. Mathematics Subject Classification : 05C25, 05C40, 05C45, 05C78. 1. Introduction Many interesting results on the power graphs have been obtained recently. This article gives a survey of the current state of knowledge on this research direction by presenting all results and open questions recorded in the literature dealing with power graphs. Various conjectures formulated by other authors and several new open problems are also included. This is the first survey devoted to the power graphs. 2. Definition of power graphs Let us begin with the definitions of the directed and undirected power graphs, which are the main concepts considered in this survey. In the literature, the power graphs have been defined and considered for groups and semigroups. Section 4 contains concise prerequisites on the terminology Received: 5 October 2013, Revised: 23 October, Accepted: 26 October 2013. 125 www.ejgta.org Power Graphs: A Survey j J. Abawajy, A. V. Kelarev, M.
    [Show full text]