Transduction TLR4- Versus TLR2-Mediated Signal Domain

Total Page:16

File Type:pdf, Size:1020Kb

Transduction TLR4- Versus TLR2-Mediated Signal Domain Differential Involvement of BB Loops of Toll-IL-1 Resistance (TIR) Domain-Containing Adapter Proteins in TLR4- versus TLR2-Mediated Signal This information is current as Transduction of September 28, 2021. Vladimir U. Toshchakov, Subhendu Basu, Matthew J. Fenton and Stefanie N. Vogel J Immunol 2005; 175:494-500; ; doi: 10.4049/jimmunol.175.1.494 Downloaded from http://www.jimmunol.org/content/175/1/494 References This article cites 44 articles, 17 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/175/1/494.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 28, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Differential Involvement of BB Loops of Toll-IL-1 Resistance (TIR) Domain-Containing Adapter Proteins in TLR4- versus TLR2-Mediated Signal Transduction1 Vladimir U. Toshchakov,* Subhendu Basu,† Matthew J. Fenton,2*† and Stefanie N. Vogel2,3*† TLRs sense pathogens and transmit intracellular signals via the use of specific adapter proteins. We designed a set of “blocking peptides” (BPs) comprised of the 14 aa that correspond to the sequences of the BB loops of the four known Toll-IL-1 resistance (TIR) domain-containing adapter proteins (i.e., MyD88, TIR domain-containing adapter inducing IFN-␤ (TRIF), TRIF-related adapter molecule (TRAM), and TIR-domain containing adapter protein (TIRAP)) linked to the cell-penetrating segment of the antennapedia homeodomain. LPS (TLR4)-mediated gene expression, as well as MAPK and transcription factor activation asso- ciated with both MyD88-dependent and -independent signaling pathways, were disrupted by all four BPs (TRAM Ϸ MyD88 > Downloaded from TRIF > TIRAP), but not by a control peptide. In contrast, none of the BPs inhibited TLR2-mediated activation of MAPKs. Only the MyD88 BP significantly blocked Pam3Cys-induced IL-1␤ mRNA; however, the inhibitory effect was much less than observed for LPS. Our data suggest that the interactions required for a fully functional TLR4 signaling “platform” are disrupted by these BPs, and that the adapter BB loops may serve distinct roles in TLR4 and TLR2 signalosome assembly. The Journal of Immu- nology, 2005, 175: 494–500. http://www.jimmunol.org/ oll-like receptors are a family of signaling molecules that domain-containing adapter molecule-1 (7); and TRIF-related act as sensors for recognition of diverse pathogen-asso- adapter molecule (TRAM) (8), also named as TIR-containing pro- T ciated molecular patterns. All TLRs share a similar do- tein (9) or TIR domain-containing adapter molecule-2 (10). main architecture: an extracellular region that contains multiple MyD88 and TRIF have a more complex domain architecture leucine-rich repeat regions (1) that function in recognition of than TIRAP and TRAM. In addition to the TIR domain, MyD88 pathogen-associated molecular patterns and coreceptors (2); a has a mid-region and an N-terminal death domain that enable in- transmembrane domain comprised of one membrane-spanning teraction with IL-1R-associated kinase 4 (IRAK-4) and IRAK-1, ␣-helix; and an intracellular “Toll-IL-1 resistance” (TIR)4 domain respectively, serine/threonine kinases that signal downstream of located within the C terminus (1). IL-1R (11) and TLRs (3), leading to NF-␬B activation (reviewed by guest on September 28, 2021 In addition to TLRs, a group of TIR domain-containing proteins in Ref. 12). TRIF is the largest member of adapter family, with the that lack a transmembrane domain has been identified. MyD88 was TIR domain located in the middle of its sequence. The N terminus the first TIR domain-containing protein that was shown to serve as of TRIF is necessary for activation of NF-␬B and IFN regulatory an adapter for IL-1R, and later, for TLR signaling (3). With rapid factor (IRF)-3 (6), a transcription factor responsible for induction progress in sequencing and gene annotation, this family grew of IFN-␤ and other genes. I␬B kinase (IKK)-⑀ and TRAF family quickly and now includes five members, four of which are in- member-associated NF-␬B binding kinase (TANK)-binding ki- volved in TLR4 signaling: MyD88; TIR-domain containing nase-1 (TBK-1), act downstream of TRIF to phosphorylate IRF-3 adapter protein (TIRAP) (4), also known as Mal (5); TIR domain- (13). Recruitment of IKK-⑀ and TBK-1 to TRIF does not require containing adapter inducing IFN-␤ (TRIF) (6), also referred as TIR TIR domain of the protein (8), and overexpression of a TRIF mu- tant that lacks the C terminus still activates NF-␬B and IFN-␤ reporter constructs (6, 7). *Department of Microbiology and Immunology and †Department of Medicine, Uni- versity of Maryland, Baltimore, MD 21201 TIRAP and TRAM are the smallest adapters involved in TLR Received for publication January 10, 2005. Accepted for publication April 16, 2005. signaling. The N terminus of TRAM has a myristoylation site, the The costs of publication of this article were defrayed in part by the payment of page mutation of which alters its normal membrane localization (14). charges. This article must therefore be hereby marked advertisement in accordance Both TIRAP and TRAM have been found to associate constitu- with 18 U.S.C. Section 1734 solely to indicate this fact. tively with TLR4 (5, 8). Current models of TLR signaling ascribe 1 This work was supported by National Institutes of Health Grants AI-18797 and different roles to the adapters (10, 14). TIRAP and TRAM have AI-44936 (to S.N.V.) and AI-57490 (to M.J.F.). been suggested to serve as “platform-forming” components re- 2 M.J.F. and S.N.V. contributed equally to this work. sponsible for recruitment of the larger adapters, MyD88 and TRIF, 3 Address correspondence and reprint requests to Dr. Stefanie N. Vogel, Depart- respectively, that in turn, recruit downstream effector molecules ment of Microbiology and Immunology, University of Maryland, Baltimore, 655 West Baltimore Street, 13-009, Baltimore, MD 21201. E-mail address: (e.g., IRAK-1 and IRAK-4 to MyD88 and TBK-1, TRAF6, and [email protected] IKK-⑀ to TRIF via non-TIR domains). Distinct combinations of 4 Abbreviations used in this paper: TIR, Toll-IL-1 resistance; BP, blocking peptide; adapters involved in a signaling platform differ among TLRs and CP, control peptide; TIRAP, TIR-domain containing adapter protein; TRIF, TIR do- have been postulated as the basis for the observed specificity of main-containing adapter inducing IFN-␤; TRAM, TRIF-related adapter molecule; TBK-1, TRAF family member-associated NF-␬B binding kinase (TANK)-binding gene subsets induced by different TLR agonists (see Refs. 14 and ⑀ ␬ ⑀ kinase-1; IKK- ,I B kinase ; IRAK-1/4, IL-1R-associated kinase 1/4; Pam3Cys, 15 for review). (S-[2,3-bis(palmitoyloxy)-(2-RS)-propyl]-N-palmitoyl-(R)-Cys-Ser-Lys4-OH); HPRT, hy- poxanthine phosphoribosyltransferase; IRF, IFN regulatory facto; GI, GenBank ID The structure of TLR TIR domains was first predicted by Rock number. et al. (1). Analysis of sequences of five human TLRs and their Copyright © 2005 by The American Association of Immunologists, Inc. 0022-1767/05/$02.00 The Journal of Immunology 495 diverse homologues led the authors to conclude that TIR domains ited TLR2-mediated induction of IL-1␤ mRNA; however, its in- are composed of five ␤-strands alternating with five ␣-helices. hibitory effect was considerably weaker than its effect on TLR4- Resolution of crystal structures of human TLR1 and TLR2 con- mediated IL-1␤ gene expression. Collectively, our findings firmed these theoretical findings and suggested that a functionally suggest that these BPs interfere with protein-protein interactions important proline-glycine combination that is highly conserved involved in the assembly and/or stabilization of the TLR4 “plat- among TIR domains is located in the loop connecting the second form” and support the hypothesis that surfaces on MyD88 and ␤-strand with the second helix, the “BB loop,” using the termi- TIRAP apart from the BB loop enable their interaction with TLR2. nology proposed by Xu et al. (16). The importance of BB loops in TLR signaling derives from Materials and Methods observations that the function of TIR domain-containing proteins Animals is highly susceptible to mutations in this region. A naturally oc- curring point mutation (P712H) in murine TLR4, which leads to C3H/OuJ mice were purchased from The Jackson Laboratory. Thioglyco- late-elicited peritoneal macrophages were harvested and cultured in the complete unresponsiveness of the C3H/HeJ mouse to LPS (17, presence of Escherichia coli K235 LPS or (S-[2,3-bis(palmitoyloxy)-(2- 681 18), lies in this region. Similarly, replacement of Pro with His RS)-propyl]-N-palmitoyl-(R)-Cys-Ser-Lys4-OH) (Pam3Cys) as described in human TLR2 was reported to disrupt signal transduction in- previously (29). duced by Gram-positive bacteria and essentially abolishes MyD88 Design of peptides recruitment (16); however, this finding was not confirmed by Dunne et al. (19). Mutations of residues in the vicinity of the The peptides were composed of 16-aa carrier sequence from Drosophila conserved BB loop proline also led to the decreased activity of homeodomain protein (aa 366–381, GenBank ID number (GI): 4389425), Downloaded from the C terminus of which was synthesized in tandem with the N terminus of TLR2 (16) and TLR4 (20).
Recommended publications
  • TLR3-Dependent Activation of TLR2 Endogenous Ligands Via the Myd88 Signaling Pathway Augments the Innate Immune Response
    cells Article TLR3-Dependent Activation of TLR2 Endogenous Ligands via the MyD88 Signaling Pathway Augments the Innate Immune Response 1 2, 1 3 Hellen S. Teixeira , Jiawei Zhao y, Ethan Kazmierski , Denis F. Kinane and Manjunatha R. Benakanakere 2,* 1 Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19004, USA; [email protected] (H.S.T.); [email protected] (E.K.) 2 Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19004, USA; [email protected] 3 Periodontology Department, Bern Dental School, University of Bern, 3012 Bern, Switzerland; [email protected] * Correspondence: [email protected] Present address: Department of Pathology, Wayne State University School of Medicine, y 541 East Canfield Ave., Scott Hall 9215, Detroit, MI 48201, USA. Received: 30 June 2020; Accepted: 12 August 2020; Published: 17 August 2020 Abstract: The role of the adaptor molecule MyD88 is thought to be independent of Toll-like receptor 3 (TLR3) signaling. In this report, we demonstrate a previously unknown role of MyD88 in TLR3 signaling in inducing endogenous ligands of TLR2 to elicit innate immune responses. Of the various TLR ligands examined, the TLR3-specific ligand polyinosinic:polycytidylic acid (poly I:C), significantly induced TNF production and the upregulation of other TLR transcripts, in particular, TLR2. Accordingly, TLR3 stimulation also led to a significant upregulation of endogenous TLR2 ligands mainly, HMGB1 and Hsp60. By contrast, the silencing of TLR3 significantly downregulated MyD88 and TLR2 gene expression and pro-inflammatory IL1β, TNF, and IL8 secretion. The silencing of MyD88 similarly led to the downregulation of TLR2, IL1β, TNF and IL8, thus suggesting MyD88 / to somehow act downstream of TLR3.
    [Show full text]
  • TLR4 and TLR9 Ligands Macrophages Induces Cross
    Lymphotoxin β Receptor Activation on Macrophages Induces Cross-Tolerance to TLR4 and TLR9 Ligands This information is current as Nadin Wimmer, Barbara Huber, Nicola Barabas, Johann of September 27, 2021. Röhrl, Klaus Pfeffer and Thomas Hehlgans J Immunol 2012; 188:3426-3433; Prepublished online 22 February 2012; doi: 10.4049/jimmunol.1103324 http://www.jimmunol.org/content/188/7/3426 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2012/02/23/jimmunol.110332 Material 4.DC1 http://www.jimmunol.org/ References This article cites 42 articles, 13 of which you can access for free at: http://www.jimmunol.org/content/188/7/3426.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Lymphotoxin b Receptor Activation on Macrophages Induces Cross-Tolerance to TLR4 and TLR9 Ligands Nadin Wimmer,* Barbara Huber,* Nicola Barabas,* Johann Ro¨hrl,* Klaus Pfeffer,† and Thomas Hehlgans* Our previous studies indicated that lymphotoxin b receptor (LTbR) activation controls and downregulates inflammatory reac- tions.
    [Show full text]
  • Nonredundant Roles of TIRAP and Myd88 in Airway Response to Endotoxin, Independent of TRIF, IL-1 and IL-18 Pathways
    Laboratory Investigation (2006) 86, 1126–1135 & 2006 USCAP, Inc All rights reserved 0023-6837/06 $30.00 www.laboratoryinvestigation.org Nonredundant roles of TIRAP and MyD88 in airway response to endotoxin, independent of TRIF, IL-1 and IL-18 pathways Dieudonne´e Togbe1, Gorse Aurore1, Nicolas Noulin1,2, Vale´rie FJ Quesniaux1, Silvia Schnyder-Candrian1, Bruno Schnyder1, Virginie Vasseur1, Shizuo Akira3, Kasper Hoebe4, Bruce Beutler4, Bernhard Ryffel1,* and Isabelle Couillin1,* 1Molecular Immunology and Embryology, CNRS UMR6218, Transgenose Institute, Orleans, France; 2R&D Department, Key-Obs, Orleans, France; 3Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan and 4Department of Immunology, Scripps Research Institute, La Jolla, CA, USA Inhaled endotoxins induce an acute inflammatory response in the airways mediated through Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). However, the relative roles of the TLR4 adaptor proteins TIRAP and TRIF and of the MyD88-dependent IL-1 and IL-18 receptor pathways in this response are unclear. Here, we demonstrate that endotoxin-induced acute bronchoconstriction, vascular damage resulting in protein leak, Th1 cytokine and chemokine secretion and neutrophil recruitment in the airways are abrogated in mice deficient for either TIRAP or MyD88, but not in TRIF deficient mice. The contribution of other TLR-independent, MyD88-dependent signaling pathways was investigated in IL-1R1, IL-18R and caspase-1 (ICE)-deficient mice, which displayed normal airway responses to endotoxin. In conclusion, the TLR4-mediated, bronchoconstric- tion and acute inflammatory lung pathology to inhaled endotoxin critically depend on the expression of both adaptor proteins, TIRAP and MyD88, suggesting cooperative roles, while TRIF, IL-1R1, IL-18R signaling pathways are dispensable.
    [Show full text]
  • Signaling Molecules§ Erin E
    Veterinary Immunology and Immunopathology 112 (2006) 302–308 www.elsevier.com/locate/vetimm Short communication Cloning and radiation hybrid mapping of bovine toll-like receptor-4 (TLR-4) signaling molecules§ Erin E. Connor a, Elizabeth A. Cates a,b, John L. Williams c, Douglas D. Bannerman a,* a Bovine Functional Genomics Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA b University of Maryland, College Park, MD 20742, USA c Roslin Institute (Edinburgh), Roslin, Midlothian, Scotland, UK Received 17 January 2006; accepted 7 March 2006 Abstract Toll-like receptor (TLR)-4 is a transmembrane receptor for lipopolysaccharide, a highly pro-inflammatory component of the outer membrane of Gram-negative bacteria. To date, molecules of the TLR-4 signaling pathway have not been well characterized in cattle. The goal of this study was to clone and sequence the full-length coding regions of bovine genes involved in TLR-4 signaling including CASP8, IRAK1, LY96 (MD-2), TICAM2, TIRAP, TOLLIP and TRAF 6 and to position these genes, as well as MyD88 and TICAM1, on the bovine genome using radiation hybrid mapping. Results of this work indicate differences with a previously published bovine sequence for LY96 and a predicted sequence in the GenBank database for TIRAP based on the most recent assembly of the bovine genome. In addition, discrepancies between actual and predicted chromosomal map positions based on the Btau_2.0 genome assembly release were identified, although map positions were consistent with predicted locations based on the current bovine-human comparative map. Alignment of the bovine amino acid sequences with human and murine sequences showed a broad range in conservation, from 52 to 93%.
    [Show full text]
  • Dissecting Negative Regulation of Toll-Like Receptor Signaling
    Review Dissecting negative regulation of Toll-like receptor signaling 1,2 1,2 1,2 Takeshi Kondo , Taro Kawai and Shizuo Akira 1 Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan 2 Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Toll-like receptors (TLRs) sense invading microbial pathogens. MyD88 is recruited to all TLRs except for pathogens and play crucial roles in the activation of TLR3 and associates with IL-1R-associated kinases (IRAKs) innate and adaptive immunity. However, excessive and TNFR-associated factor 6 (TRAF6), resulting in activa- TLR activation can disrupt immune homeostasis, and tion of canonical inhibitor of kappa light polypeptide gene may be responsible for the development of autoimmune enhancer in B-cells, kinases (IKKs) (IKKa and IKKb) and and inflammatory diseases. As such, the molecules and nuclear factor (NF)-kBs (Figure 1). In contrast, TRIF is pathways that negatively control TLR signaling have recruited to TLR3 and TLR4, leading to activation of been intensively investigated. Here, we discuss recent NF-kB as well as noncanonical IKKs (TRAF-family- insights into the negative regulation of TLR signaling, member-associated NF-kB activator (TANK) binding kinase with focus on three major mechanisms: (i) dissociation 1 (TBK1) and IKKi) and interferon (IFN) regulatory factor of adaptor complexes; (ii) degradation of signal proteins; (IRF)3 via TRAF proteins (Figure 2). TIRAP functions as a and (iii) transcriptional regulation. We also highlight sorting adapter that recruits MyD88 to TLR2 and TLR4, how pathogens negatively target TLR signaling as a whereas TRAM functions as a bridge adapter between TLR4 strategy to evade the host immune response.
    [Show full text]
  • TLR4 Signaling and Macrophage Inflammatory Responses Are Dampened by GIV/Girdin
    TLR4 signaling and macrophage inflammatory responses are dampened by GIV/Girdin Lee Swansona, Gajanan D. Katkara, Julian Tama, Rama F. Pranadinataa, Yogitha Chareddya, Jane Coatesa, Mahitha Shree Anandachara, Vanessa Castilloa, Joshua Olsonb, Victor Nizetb,c, Irina Kufarevac, Soumita Dasd, and Pradipta Ghosha,e,1 aDepartment of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093; bDepartment of Pediatrics, University of California San Diego, La Jolla, CA 92093; cSkaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093; dDepartment of Pathology, University of California San Diego, La Jolla, CA 92093; and eDepartment of Medicine, University of California San Diego, La Jolla, CA 92093 Edited by Shizuo Akira, Osaka University, Osaka, Japan, and approved September 18, 2020 (received for review June 10, 2020) Sensing of pathogens by Toll-like receptor 4 (TLR4) induces an inflam- and integrins (reviewed in refs. 5, 6), here we studied if and how matory response; controlled responses confer immunity but uncon- GIV may impact the LPS/TLR4 signaling in the most relevant trolled responses cause harm. Here we define how a multimodular cell line, i.e., macrophages. We dissect the relevance of those scaffold, GIV (a.k.a. Girdin), titrates such inflammatory response in findings in murine disease models and its broader relevance macrophages. Upon challenge with either live microbes or microbe- among other TLRs. derived lipopolysaccharides (a ligand for TLR4), macrophages with GIV mount a more tolerant (hypo-reactive) transcriptional response and Results and Discussion suppress proinflammatory cytokines and signaling pathways GIV Is Preferentially Expressed in the Myeloid Cells of Our Immune (i.e., NFkB and CREB) downstream of TLR4 compared to their System.
    [Show full text]
  • RT² Profiler PCR Array (96-Well Format and 384-Well [4 X 96] Format)
    RT² Profiler PCR Array (96-Well Format and 384-Well [4 x 96] Format) Human Toll-Like Receptor Signaling Pathway Cat. no. 330231 PAHS-018ZA For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 5700, 7000, 7300, 7500, Format A 7700, 7900HT, ViiA™ 7 (96-well block); Bio-Rad® models iCycler®, iQ™5, MyiQ™, MyiQ2; Bio-Rad/MJ Research Chromo4™; Eppendorf® Mastercycler® ep realplex models 2, 2s, 4, 4s; Stratagene® models Mx3005P®, Mx3000P®; Takara TP-800 RT² Profiler PCR Array, Applied Biosystems models 7500 (Fast block), 7900HT (Fast Format C block), StepOnePlus™, ViiA 7 (Fast block) RT² Profiler PCR Array, Bio-Rad CFX96™; Bio-Rad/MJ Research models DNA Format D Engine Opticon®, DNA Engine Opticon 2; Stratagene Mx4000® RT² Profiler PCR Array, Applied Biosystems models 7900HT (384-well block), ViiA 7 Format E (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (96-well block) Format F RT² Profiler PCR Array, Roche LightCycler 480 (384-well block) Format G RT² Profiler PCR Array, Fluidigm® BioMark™ Format H Sample & Assay Technologies Description The Human Toll-Like Receptor (TLR) Signaling Pathway RT² Profiler PCR Array profiles the expression of 84 genes central to TLR-mediated signal transduction and innate immunity. The TLR family of pattern recognition receptors (PRRs) detects a wide range of bacteria, viruses, fungi and parasites via pathogen-associated molecular patterns (PAMPs). Each receptor binds to specific ligands, initiates a tailored innate immune response to the specific class of pathogen, and activates the adaptive immune response.
    [Show full text]
  • Fcγriib Attenuates TLR4‑Mediated NF‑Κb Signaling in B Cells
    MOLECULAR MEDICINE REPORTS 16: 5693-5698, 2017 FcγRIIb attenuates TLR4‑mediated NF‑κB signaling in B cells LI QIAN1-3, WENYAN CHEN1, SHAOQING WANG1, YANG LIU1, XIAOQIN JIA1, YI FU1, WEIJUAN GONG1 and FANG TIAN1 1Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001; 2Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009; 3Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu 225001, P.R. China Received September 26, 2016; Accepted June 28, 2017 DOI: 10.3892/mmr.2017.7269 Abstract. Toll-like receptors (TLRs) serve a vital role in (TLRs) are triggered to induce pro‑inflammatory cytokines activating the innate immune system by sensing conserved production, thus serving important roles in the initiation of microbial products. Fc γ receptor IIb (FcγRIIb), the inhibitory innate immunity (1). The TLR intracellular signaling pathway Fc receptor, exerts its immune regulatory functions by binding has been studied intensively. Binding of TLR4 agonist, to the immunoglobulin G Fc domain. Although the individual LPS, to TLR4 activates myeloid differentiation protein 88 roles of TLRs and FcγRIIb have been studied intensively, the (MyD88)-dependent signaling, leading to the activation cross-talk between FcγRIIb and TLR4 on B cells remains of mitogen-activated protein kinase (MAPK) and nuclear unknown. The present study demonstrated that FcγRIIb ligation factor (NF)-κΒ pathways, and contributing to the release of by the immune complex (IC) attenuated the TLR4-triggered pro‑inflammatory cytokines (2,3). Increased production of nuclear factor (NF)-κΒ activation, and decreased the release pro‑inflammatory cytokines causes damage to the host and of interleukin (IL)-6 from B cells, via enhancing LYN induces pathological inflammation.
    [Show full text]
  • TLR Signaling Pathways
    Seminars in Immunology 16 (2004) 3–9 TLR signaling pathways Kiyoshi Takeda, Shizuo Akira∗ Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, and ERATO, Japan Science and Technology Corporation, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Abstract Toll-like receptors (TLRs) have been established to play an essential role in the activation of innate immunity by recognizing spe- cific patterns of microbial components. TLR signaling pathways arise from intracytoplasmic TIR domains, which are conserved among all TLRs. Recent accumulating evidence has demonstrated that TIR domain-containing adaptors, such as MyD88, TIRAP, and TRIF, modulate TLR signaling pathways. MyD88 is essential for the induction of inflammatory cytokines triggered by all TLRs. TIRAP is specifically involved in the MyD88-dependent pathway via TLR2 and TLR4, whereas TRIF is implicated in the TLR3- and TLR4-mediated MyD88-independent pathway. Thus, TIR domain-containing adaptors provide specificity of TLR signaling. © 2003 Elsevier Ltd. All rights reserved. Keywords: TLR; Innate immunity; Signal transduction; TIR domain 1. Introduction 2. Toll-like receptors Toll receptor was originally identified in Drosophila as an A mammalian homologue of Drosophila Toll receptor essential receptor for the establishment of the dorso-ventral (now termed TLR4) was shown to induce the expression pattern in developing embryos [1]. In 1996, Hoffmann and of genes involved in inflammatory responses [3]. In addi- colleagues demonstrated that Toll-mutant flies were highly tion, a mutation in the Tlr4 gene was identified in mouse susceptible to fungal infection [2]. This study made us strains that were hyporesponsive to lipopolysaccharide [4]. aware that the immune system, particularly the innate im- Since then, Toll receptors in mammals have been a major mune system, has a skilful means of detecting invasion by focus in the immunology field.
    [Show full text]
  • TLR4 Signalling
    RESEA r CH HIGHLIGHTS INNATE IMMUNITY TLR4 signalling Toll-like receptor 4 (TLR4) is unique plasma membrane. Now, a study from sufficient to allow TRAM to localize among TLRs in its ability to activate Ruslan Medzhitov’s laboratory shows specifically to endosomes. These 20 two distinct signalling pathways that the two signalling pathways amino acids constitute a bipartite — one pathway is activated by the are induced sequentially and that localization domain — consisting of adaptors TIRAP (Toll/interleukin-1- the TRAM–TRIF pathway is only a myristoylation motif (the first 7 receptor (TIR)-domain-containing operational from early endosomes amino acids) and a polybasic domain adaptor protein) and MyD88, following endocytosis of TLR4. — that is commonly found in other which leads to the induction of The authors found it puzzling proteins that shuttle between the pro‑inflammatory cytokines, and that TLR4 is the only known TLR plasma membrane and endosomes. the second pathway is activated by capable of inducing the production Mutational analysis showed that the the adaptors TRIF (TIR-domain- of type I interferons from the plasma myristoylation motif is necessary containing adaptor protein inducing membrane so they decided to take for endosomal localization but interferon‑β) and TRAM (TRIF- a closer look at TLR4 signalling. both parts of the bipartite motif related adaptor molecule), which First, they assessed the subcellular are required for plasma-membrane leads to the induction of type I inter- localization of tagged TLR4 and found targeting. A TRAM transgene of ferons. Until now, it had been believed that it localized to both the plasma which the protein product resided that these two signalling pathways membrane and endosomal vesicles.
    [Show full text]
  • Platelet Toll-Like Receptor 4-Related Innate Immunity Potentially Participates in Transfusion Reactions Independent of ABO Compatibility: an Ex Vivo Study
    Platelet Toll-like Receptor 4-related Innate Immunity Potentially Participates in Transfusion Reactions Independent of ABO Compatibility: An ex Vivo Study Chien-Sung Tsai Tri-Service General Hospital Mei-Hua Hu Linkou Chang Gung Memorial Hospital Yung-Chi Hsu Tri-Service General Hospital Go-Shine Huang ( [email protected] ) Tri-Service General Hospital Research Article Keywords: Toll-like receptor 4, innate immunity, platelet, blood mixing, transfusion reaction Posted Date: August 4th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-762879/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/18 Abstract Purpose: The role of platelet TLR4 in transfusion reactions remains unclear. This study analyzed platelet TLR4, certain DAMPs, and the effect of ABO compatibility on TLR4 expression after a simulated transfusion ex vivo. Methods: Donor red blood cells were harvested from a blood bank. Recipient blood from patients undergoing cardiac surgery was processed to generate a washed platelet suspension. Donor blood was added to the washed platelets at 1%, 5%, or 10% (v/v). Blood mixing experiments were performed using four groups: 0.9% saline control group (n = 31); M, matched blood type mixing (n = 20); S, uncross- matched ABO type-specic mixing (n = 20); and I, ABO incompatible blood mixing (n = 20). Platelet TLR4 expression was determined after blood mixing. Levels of TLR4-binding DAMPs (HMGB1, S100A8, S100A9, and SAA) and that of LPS-binding protein and endpoint proteins (TNF-α, IL-1β, and IL-6) in the TLR4 signaling pathway were evaluated. Results: The 1%, 5%, and 10% blood mixtures signicantly increased TLR4 expression in three groups (M, S, and I; all P < 0.001) in a concentration-dependent manner.
    [Show full text]
  • TLR4 Signaling Pathway Modulators As Potential Therapeutics in Inflammation and Sepsis
    vaccines Review TLR4 Signaling Pathway Modulators as Potential Therapeutics in Inflammation and Sepsis Nikolay N. Kuzmich 1,2,*, Konstantin V. Sivak 1, Vladimir N. Chubarev 3, Yury B. Porozov 2,4, Tatiana N. Savateeva-Lyubimova 1 and Francesco Peri 5,* ID 1 Department of Drug Safety, Research Institute of Influenza, WHO National Influenza Centre of Russia, 15/17 Professor Popov St, Saint-Petersburg 197376, Russia; [email protected] (K.V.S.); [email protected] (T.N.S.-L.) 2 Laboratory of Bioinformatics, Institute of Pharmacy and Translational medicine, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119991, Russia; [email protected] 3 Department of Pharmacology, Institute of Pharmacy and Translational medicine, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119991, Russia; [email protected] 4 Laboratory of Bioinformatics, ITMO University, 49 Kronverkskiy Pr., Saint Petersburg 197101, Russia 5 Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy * Correspondence: [email protected] (N.N.K.); Tel.: +7-921-3491-750 (N.N.K.); [email protected] (F.P.); Tel.: +39-026-448-3453 (F.P.); Fax: +7-812-499-15-15 (N.N.K.) Academic Editor: Paola Massari Received: 5 September 2017; Accepted: 1 October 2017; Published: 4 October 2017 Abstract: Toll-Like Receptor 4 (TLR4) signal pathway plays an important role in initiating the innate immune response and its activation by bacterial endotoxin is responsible for chronic and acute inflammatory disorders that are becoming more and more frequent in developed countries.
    [Show full text]