Acute Poststreptococcal Glomerulonephritis: Immune Deposit Disease * ALFRED F

Total Page:16

File Type:pdf, Size:1020Kb

Acute Poststreptococcal Glomerulonephritis: Immune Deposit Disease * ALFRED F Journal of Clinical Investigation Vol. 45, No. 2, 1966 Acute Poststreptococcal Glomerulonephritis: Immune Deposit Disease * ALFRED F. MICHAEL, JR.,t KEITH N. DRUMMOND,t ROBERT A. GOOD,§ AND ROBERT L. VERNIER || WITH THE TECHNICAL ASSISTANCE OF AGNES M. OPSTAD AND JOYCE E. LOUNBERG (From the Pediatric Research Laboratories of the Variety Club Heart Hospital and the Department of Pediatrics, University of Minnesota, Minneapolis, Minn.) The possible role of immunologic mechanisms in the kidney in acute glomerulonephritis have also acute poststreptococcal glomerulonephritis was revealed the presence of discrete electron dense suggested in 1908 by Schick (2), who compared masses adjacent to the epithelial surface of the the delay in appearance of serum sickness after glomerular basement membrane (11-18). injection of heterologous serum to the latent pe- The purpose of this paper is to describe immuno- riod between scarlet fever and onset of acute glo- fluorescent and electron microscopic observations merulonephritis. Evidence in support of this con- of the kidney in 16 children with acute poststrepto- cept is the depression of serum complement during coccal glomerulonephritis. This study demon- the early stages of the disease (3) and glomerular strates 1) the presence of discrete deposits of yG- localization of immunoglobulin. Immunofluores- and fl3c-globulins along the glomerular basement cent studies have revealed either no glomerular membrane and its epithelial surface that are similar deposition of a-globulin (4) or a diffuse involve- in size and location to the dense masses seen by ment of the capillary wall (5-9). Seegal, Andres, both thin section microscopy and electron micros- Hsu, and Zabriskie (10) demonstrated the pres- copy; 2) the characteristic and unique specificity of ence of 7 S y-globulin, /31c-globulin, and strepto- this lesion in acute poststreptococcal glomerulo- coccal antigen in the glomeruli of most patients nephritis, its difference from other glomerular dis- with this disease. By studies employing ferritin- eases, and the similarity to experimental antigen- labeled antibodies, these proteins could be demon- antibody complex nephritis; and 3) the resolution strated in the mesangium, between the endothelial of these deposits during recovery from the disease cells, and within and adjacent to the basement and their absence from the glomeruli 10 years af- membrane. Electron microscopic observations of ter epidemic acute poststreptococcal glomerulo- nephritis. * Submitted for publication May 3, 1965; accepted No- vember 4, 1965. Methods Aided by grants from the U. S. Public Health Service (AI-02168 and HE-05662), the American Heart Associ- Patients. The major portion of the study concerned ation, and the Cardiovascular Clinical Research Center sixteen children with acute poststreptococcal glomerulo- (HE-06314). nephritis having the characteristic clinical course and re- Presented in part at the American Society for Clinical nal histology as well as prior P-hemolytic streptococcal Investigation, Fifty-sixth Annual Meeting, May 4, 1964, infections and elevated or rising antistreptococcal anti- Atlantic City, N. J. (1). body titers. A total of 22 renal biopsies were performed t Established Investigator, American Heart Associa- on these patients by the method previously described tion. (19) and at the times indicated in Table I. As part of t Present address: Dept. of Pediatrics, McGill Uni- a separate follow-up study (20) 10 years after well- versity, Montreal Children's Hospital, Montreal, Canada. documented acute poststreptococcal glomerulonephritis § American Legion Memorial Heart Research Profes- (Red Lake, Minnesota, epidemic of 1953), additional re- sor of Pediatrics and Microbiology. nal biopsies were performed on 14 children and studied Address requests for reprints to Dr. Robert A. Good, by fluorescent microscopy. Dept. of Pediatrics, University of Minnesota Medical Electron and fluorescent microscopic observations of School, Minneapolis, Minn. 55455. the kidney were also made in one patient with lupus 11 Established Investigator, American Heart Association. nephritis and one with Goodpasture's disease. Present address: Dept. of Pediatrics, Center for Health Histologic methods. Part of each biopsy was placed Sciences, University of California, Los Angeles, Calif. in 10% buffered formalin (pH 7.35) for standard paraffin 237 238 MICHAEL, DRUMMOND, GOOD, AND VERNIER embedding and sectioning and subsequently stained with man fibrinogen was prepared from human Fraction I 5 hematoxylin-eosin, azocarmine, and periodic-acid Schiff. according to the method of Laki (30, 31). 4) Human Light microscopy was carried out on 21 of the 22 biopsies. fibrin was prepared from human fibrinogen; 25.0 mg of A total of 12 to 30 glomeruli were evaluated in 17 of the fibrinogen was diluted in isotonic saline to a final con- 21 biopsies; in each of the remaining specimens, five to centration of 5.0 mg per ml, and then 10.0 ml of 0.075 M six glomeruli were present. sodium chloride in phosphate buffer (pH 6.1) and 0.5 ml Another portion of the biopsy specimen was immedi- of bovine thrombin were added. After standing for 1 ately cut into cubes (0.5 mme) under a drop of buffered hour, the clots were washed with distilled water, lyophi- (1%o) osmic acid solution, dehydrated by standard tech- lized, and suspended in particulate form in 0.15 M saline. niques, and embedded in Vestopal-W1 polyester resin. Antisera were also prepared against 5) human albumin Frac- Sections 0.5 to 1.0 j in thickness cut from these blocks (Cohn Fraction V),6 6) rabbit y-globulin (Cohn were stained by either the Wright-Giemsa (21) or basic tion II), and 7) heat-killed and ground-cell suspension fuchsin method (22) and examined under oil immersion of nephritogenic, type 1, group A, fi-hemolytic strepto- light microscopy. Very thin sections for electron micros- coccus. 8) Extracellular products of the same strepto- copy were stained with either uranyl acetate (23) or lead coccus were prepared according to the method of Wan- citrate (24) and examined with either an RCA EMU-3D namaker (32) and concentrated by ammonium sulfate or a Phillips EMU-200 electron microscope at original precipitation or by pervaporation. magnifications of 2,500 to 75,000 times and enlarged Preparation of antibody. Antibody to these human anti- photographically as desired. gens was prepared in rabbits. Immunizations were car- Immunofluorescent methods (25-27) were carried out ried out with alum-precipitated human 'yG-globulin and on renal biopsy tissue that had been frozen in isopentane albumin, fibrin and Pic-globulin incorporated in complete in liquid nitrogen, fixed to a small cellulose sponge,2 and Freund's adjuvant,8 and a saline solution of fibrinogen. sectioned in a Lipshaw cryostat. Fluorescent staining of Alum-precipitated rabbit y-globulin was injected into unfixed tissue was carried out according to the method goats. The specificity of the antisera was shown by im- of Ortega and Mellors (28). In some instances an indi- munoelectrophoresis of the immunizing antigen and whole rect technique was also employed. Inhibition of fluores- serum developed against the antisera. Antisera showing cence was carried out by pretreating the section once or more than one major precipitin band were not used. twice with unlabeled antiserum. A horse anti-'yM-globulin serum,9 employed in these The sections were viewed in a Zeiss microscope with studies, formed one major line on immunoelectrophoresis an HB-200 light source or a mercury lamp (GE-AHG) against normal serum; an additional faint line was also mounted in a Scopicon water-cooled unit. The ultra- seen in the a2-globulin .region. violet activating and heat absorption filters were UG-1 Antisera to the various streptococcal preparations were and KG-1, respectively. The barrier filters consisted of obtained by immunizing rabbits three times weekly for OG-4 and a 2A Wratten (Kodak). Photographs were a total of 2 months with 0.5 ml of antigen in solution or taken with an Exacta camera using Kodak Tri-X or suspension. Antigen preparations were injected intra- high speed Ektachrome film. The intensity and amount venously during the first month and subcutaneously dur- of fluorescence were arbitrarily graded as negative, trace, ing the second month of immunization. The development 1+, 2 +, and 3 +. Six to 18 glomeruli were available of antibodies to multiple antigens in these crude vaccine for evaluation from each of the 22 biopsies. materials was demonstrated by the appearance of a num- Preparation of antisera. Antisera were prepared against ber of lines of precipitation in a double-diffusion agar the following antigens: 1) Human -yG-globulin was iso- system. lated by DEAE Sephadex A-50 chromatography; 3 im- The ammonium sulfate-precipitated globulins were di- munoelectrophoresis of this antigen against antihuman alyzed and then conjugated with fluorescein-isothiocya- serum revealed a single precipitin line. 2) Human Pic- nate 10 (33, 34) with 0.015 g per g of protein. The la- globulin, a part of the third component of complement, beled antiserum was then passed through a column of was prepared from 400 ml of fresh human serum by the Sephadex G-25 to remove the free fluorescein (35, 36). column chromatographic method of Muller-Eberhard, Antisera were stored as small portions at - 220 C until Nilsson, and Aronsson (29); the 8,c-globulin isolated used. Immediately before use, the antisera were ab- formed one precipitin line with both antihuman serum and with known rabbit anti-Pic-globulin serum.4 3) Hu- 5 Provided by the American Red Cross and Dr. Rich- of 1 ard von Korff, Department Biochemistry, University Martin Jaeger Co., Geneva, Switzerland. of Minnesota, Minneapolis, Minn. 2 no. 1, obtained from Histomed, Paterson, Onkosponge 6 Cutter's normal human serum albumin, Cutter Labora- N. J. tories, Berkeley, Calif. 8 Some of the -yG-globulin used was obtained from Im- munology, Inc., Lombard, Ill. 7 Rabbit y-globulin (Fraction II), Nutritional Bio- 4 During the initial part of this investigation the rab- chemical Corp., Cleveland, Ohio.
Recommended publications
  • The Case for Lupus Nephritis
    Journal of Clinical Medicine Review Expanding the Role of Complement Therapies: The Case for Lupus Nephritis Nicholas L. Li * , Daniel J. Birmingham and Brad H. Rovin Department of Internal Medicine, Division of Nephrology, The Ohio State University, Columbus, OH 43210, USA; [email protected] (D.J.B.); [email protected] (B.H.R.) * Correspondence: [email protected]; Tel.: +1-614-293-4997; Fax: +1-614-293-3073 Abstract: The complement system is an innate immune surveillance network that provides defense against microorganisms and clearance of immune complexes and cellular debris and bridges innate and adaptive immunity. In the context of autoimmune disease, activation and dysregulation of complement can lead to uncontrolled inflammation and organ damage, especially to the kidney. Systemic lupus erythematosus (SLE) is characterized by loss of tolerance, autoantibody production, and immune complex deposition in tissues including the kidney, with inflammatory consequences. Effective clearance of immune complexes and cellular waste by early complement components protects against the development of lupus nephritis, while uncontrolled activation of complement, especially the alternative pathway, promotes kidney damage in SLE. Therefore, complement plays a dual role in the pathogenesis of lupus nephritis. Improved understanding of the contribution of the various complement pathways to the development of kidney disease in SLE has created an opportunity to target the complement system with novel therapies to improve outcomes in lupus nephritis. In this review, we explore the interactions between complement and the kidney in SLE and their implications for the treatment of lupus nephritis. Keywords: lupus nephritis; complement; systemic lupus erythematosus; glomerulonephritis Citation: Li, N.L.; Birmingham, D.J.; Rovin, B.H.
    [Show full text]
  • Renal Biopsy in Children with Nephrotic Syndrome at Tripoli Children Hospital
    RESULTS OF RENAL BIOPSY IN CHILDREN WITH NEPHROTIC SYNDROME AT TRIPOLI CHILDREN HOSPITAL Naziha R. Rhuma1, Mabruka Ahmed Zletni1, Mohamed Turki1, Omar Ahmed Fituri1, Awatif. El Boeshi2 1- Faculty of medicine, University of Tripoli, Libya. 2- Nephrology Unit, Children Hospital of Tripoli, Libya. ABSTRACT Nephrotic syndrome is an important renal disorder in children. The role of renal biopsy in children with nephrotic syndrome is controversial, especially in children with frequent relapses or steroid-dependent nephrotic syndrome. The aims of this study are to verify indications of renal biopsy in children with nephrotic syndrome, to identify pat- terns of glomerular disease and its corresponding outcomes. This is a descriptive study reviewed retrospectively a 25 renal biopsies from children with nephrotic syndrome who followed up in nephrology unit at Tripoli Children Hos- pital from Jun. 1995 to Jan. 2006. Children with either steroid resistant or steroid dependent who underwent renal biopsy were included. Twenty five of children (14 male and 11 female) with nephrotic syndrome were included. The mean age 5.2±4.6years (range was from 1-14 years). 14(56%) children were steroid resistant and 11(44%) children were steroid dependent. Minimal-change disease (MCD) accounted for 12(48%) children, focal and segmental scle- rosis (FSGS) was accounted for 10(40%) children and 3(12%) children accounted for other histopathological types. 7(87.5%) of children with FSGS had progressed to end stage renal disease. Steroid resistant was the main indication for renal biopsy in children with nephrotic syndrome. There was increased frequency of FSGS nephrotic syndrome among children with steroid resistant type with poor outcomes.
    [Show full text]
  • Glomerulonephritis Management in General Practice
    Renal disease • THEME Glomerulonephritis Management in general practice Nicole M Isbel MBBS, FRACP, is Consultant Nephrologist, Princess Alexandra lomerular disease remains an important cause Hospital, Brisbane, BACKGROUND Glomerulonephritis (GN) is an G and Senior Lecturer in important cause of both acute and chronic kidney of renal impairment (and is the commonest cause Medicine, University disease, however the diagnosis can be difficult of end stage kidney disease [ESKD] in Australia).1 of Queensland. nikky_ due to the variability of presenting features. Early diagnosis is essential as intervention can make [email protected] a significant impact on improving patient outcomes. OBJECTIVE This article aims to develop However, presentation can be variable – from indolent a structured approach to the investigation of patients with markers of kidney disease, and and asymptomatic to explosive with rapid loss of kidney promote the recognition of patients who need function. Pathology may be localised to the kidney or further assessment. Consideration is given to the part of a systemic illness. Therefore diagnosis involves importance of general measures required in the a systematic approach using a combination of clinical care of patients with GN. features, directed laboratory and radiological testing, DISCUSSION Glomerulonephritis is not an and in many (but not all) cases, a kidney biopsy to everyday presentation, however recognition establish the histological diagnosis. Management of and appropriate management is important to glomerulonephritis (GN) involves specific therapies prevent loss of kidney function. Disease specific directed at the underlying, often immunological cause treatment of GN may require specialist care, of the disease and more general strategies aimed at however much of the management involves delaying progression of kidney impairment.
    [Show full text]
  • Childhood Nephrotic Syndrome -A Single Centre Experience in Althawra Central Hospital, Albaida- Libya During 2005-2016
    MOJ Surgery Case Report Open Access Childhood nephrotic syndrome -a single centre experience in Althawra central hospital, Albaida- Libya during 2005-2016 Abstract Volume 6 Issue 6 - 2018 The aim of this study is to determine response to treatment in terms of remission Mabrouka A M Bofarraj,1 Fatma S Ben and relapse, related risk factors, type of management and complications of nephrotic 2 1 syndrome among studied patients. Khaial, Najwa H Abduljawad, Rima Alshowbki1 Design: Retrospective, analytical study. 1Department of Pediatric Medicine, Al Thawra Central Teaching Hospital, Libya Setting: Pediatric nephrology clinic at Althawra Central Teaching Hospital-Albida, 2Department of Family and Community Medicine, Faculty of Participants/patients: All patients with idiopathic nephrotic syndrome (INS) were Medicine, Benghazi University, Libya evaluated during 2005- 2016. Patients divided into two groups, group I 46 (39%) is non-relapse and group II 72 (62.7%) is relapse group. Group II are sub divided into Correspondence: Mabrouka A M Bofarraj, Department of group A: frequent relapse steroid dependent (FRNS/SDNS) and group B: infrequent Pediatric Medicine, Al Thawra Central Teaching Hospital, Faculty relapse nephrotic syndrome (IRNS). of medicine, Omar Al Moukhtar University, Albaida-Libya, Tel 00218927445625, Email Results: Records of 118 children with INS were studied and 74 (62.7%) were boys, male to female ratio 1.7:1. There was no significance difference between group I and Received: October 24, 2018 | Published: November 23, 2018 group II in the following parameters; age group, sex, family history, initial hypertension and hematuria (p value = >0.05). Mean proteinuria was significantly higher in group II (p=0.001), while mean S.
    [Show full text]
  • What Is Lupus Nephritis
    What is lupus nephritis (LN)? Lupus nephritis (LN) is inflammation of the kidney that occurs as a common symptom of systemic lupus erythematosus (SLE), also known as lupus. Proteins in the immune system called antibodies damage important structures in the kidney. ⅱ Why are the kidneys important? To understand how lupus nephritis damages the kidney, it is important to understand how the kidneys work. The kidneys’ main function is to filter out excess waste and water from the blood through the urine. Kidneys also balance the salts and minerals circulating in the blood, help control blood pressure and make red blood cells. So, when the kidneys are damaged or fail, they can’t do their job as well. As a result, the kidneys are not able to filter out waste and water into the urine causing it to stay in the blood. What are the signs and symptoms of LN? Signs to ask the doctor about include blood in the urine or foamy urine which can mean that there is excess protein. Other signs to notice are swelling of legs, ankles, hands or tissue around the eyes as well as weight gain that can be caused by fluid the body isn’t getting rid of. ⅲ Symptoms of lupus nephritis also include high blood pressure, joint/muscle pain, high levels of waste (creatinine) in the blood, or impaired/failing kidney. ⅳ How common is LN? Lupus nephritis is the most common complication of lupus. Five out of 10 adults with lupus will have lupus nephritis, while eight out of 10 children with lupus will have kidney damage, which usually stems from lupus nephritis.
    [Show full text]
  • Management of Lupus Nephritis
    Journal of Clinical Medicine Review Management of Lupus Nephritis Farah Tamirou * and Frédéric A. Houssiau Department of Rheumatology, Cliniques Universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UCLouvain, 1200 Bruxelles, Belgium; [email protected] * Correspondence: [email protected] Abstract: Lupus nephritis (LN) is a frequent and severe manifestation of systemic lupus erythemato- sus. The main goal of the management of LN is to avoid chronic kidney disease (CKD). Current treatment strategies remain unsatisfactory in terms of complete renal response, prevention of relapses, CKD, and progression to end-stage kidney disease. To improve the prognosis of LN, recent data suggest that we should (i) modify our treat-to-target approach by including, in addition to a clinical target, a pathological target and (ii) switch from conventional sequential therapy to combination therapy. Here, we also review the results of recent controlled randomized trials. Keywords: lupus nephritis; treat-to-target approach; repeat kidney biopsy; combination therapy 1. Introduction Lupus nephritis (LN) occurs in 12 to 69% of patients suffering from systemic lupus erythematosus (SLE), depending on case series [1]. Based on clinical and laboratory findings, it affects around 50% of SLE patients, while the rates of biopsy-proven LN are somewhat lower [2]. LN is more prevalent in Asian than in African or Hispanic and European patients [3]. 2. Pathophysiology of Lupus Nephritis Citation: Tamirou, F.; Houssiau, F.A. Management of Lupus Immune complexes (IC), produced in lymph nodes, spleen, or other lymphoid tissues Nephritis. J. Clin. Med. 2021, 10, 670. are deposited in the glomeruli of LN patients [4].
    [Show full text]
  • Diffuse Proliferative Glomerulonephritis and Acute Renal Failure Associated with Acute Staphylococcal Osteomyelitis
    Diffuse Proliferative Glomerulonephritis and Acute Renal Failure Associated with Acute Staphylococcal Osteomyelitis MATTHEW D. GRIFFIN,* JOHANNES BJORNSSON,t and STEPHEN B. ERICKSON* *Department of Internal Medicine, Division of Nephrology, and tDepartment of Pathology, Mayo Clinic and Mayo Foundation, Rochester, Minnesota. Abstract. A 72-year-old man developed acute renal failure after peated surgical debridement. Spontaneous recovery of renal coronary bypass surgery that had been complicated by sternal function occurred after eradication of infection and final sur- osteomyelitis caused by the Staphylococcus aureus bacterium. gical wound repair. The relationship between acute bacterial Bacteremia and sepsis were not present. Renal biopsy demon- infections and glomerulonephritis and, in particular, the causal strated a florid, diffuse, proliferative glomerulonephritis with role of staphylococcal antigens in the pathogenesis of such glomerular immune complex deposition. Management in- lesions is discussed. (J Am Soc Nephrol 8: 1633-1639, 1997) cluded hemodialysis, prolonged antibiotic therapy, and re- Coagulase-positive staphylococcus (Staphylococcus aureus) is mg/dl]) and in the immediate postoperative period. Over the the most common causative organism in acute osteomyelitis following days, the patient’s serum creatinine concentration (1). Along with coagulase-negative staphylococcal species, it increased progressively, and hemodialysis was instituted on has also been implicated in the pathogenesis of immune com- day 23 after CABG. There was no past or family history of plex (IC)-mediated diffuse proliferative glomerulonephritis renal disease and no known drug allergies. Prior medical (DPGN) in a variety of infections. These include bacterial history had included degenerative disc disease, stable abdom- endocarditis, ventriculoatrial shunt infections, pneumonia, and inal aortic aneurysm, stable benign prostatic hyperplasia, and visceral abscesses with or without septicemia (2-6).
    [Show full text]
  • ICD-10 International Statistical Classification of Diseases and Related Health Problems
    ICD-10 International Statistical Classification of Diseases and Related Health Problems 10th Revision Volume 2 Instruction manual 2010 Edition WHO Library Cataloguing-in-Publication Data International statistical classification of diseases and related health problems. - 10th revision, edition 2010. 3 v. Contents: v. 1. Tabular list – v. 2. Instruction manual – v. 3. Alphabetical index. 1.Diseases - classification. 2.Classification. 3.Manuals. I.World Health Organization. II.ICD-10. ISBN 978 92 4 154834 2 (NLM classification: WB 15) © World Health Organization 2011 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press through the WHO web site (http://www.who.int/about/licensing/copyright_form). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Lupus Nephropathy
    Rev. Colomb. Nefrol. 2014; 1(2): 101- 114. http//www.revistanefrologia.org Rev. Colomb.Review Nefrol. article2014; 1(2): 101-114 http//doi.org/10.22265/acnef.1.2.182 Lupus nephropathy Luis Fernando Pinto Peñaranda1 1Internal Medicine - Rheumatology, Medical Specialties - Research Unit, Hospital Pablo Tobón Uribe, Medellín – Colombia Abstract Lupus nephritis (LN) occurs between 30% and 70% of patients with systemic lupus erythematosus (SLE), depending on race and sex. LN appears early in the disease with prevalence of severe forms such as classes III, IV and mixed (V + III IV or V +). 50% of adults and 70% of children with lupus born in Colombia, suffer LN sometime in their lifetime; in this population 25% of children and 38% of adults have nephrotic syndrome. The remission rate at six months is low, the proteinuria in nephrotic range, and the incraease of baseline creatinine predict failure to achieve remission at 6 months. Key words: Lupus, Nephritis, Nephrotic Syndrome, Proliferative glomerulonephritis. Nefropatía lúpica Resumen La nefritis lúpica (NL) se presenta entre el 30 y 70% de los pacientes con lupus eritematoso sistémico (LES), dependiendo de la raza y el sexo, ocurre temprano en la enfermedad y predominan las formas gra- ves, clases III, IV y mixtas (V + III o V + IV). El 50% de los adultos y 70% de los niños colombianos con lupus sufren NL en algún momento de la vida; en esta población el 25% de los niños y el 38% de los adultos presentan síndrome nefrótico, la tasa de remisión a 6 meses es baja, la proteinuria en rango nefrótico y la elevación de creatinina basal, predicen falla en el logro de remisión a 6 meses.
    [Show full text]
  • Pathogenesis of Human Systemic Lupus Erythematosus: a Cellular Perspective Vaishali R
    Feature Review Pathogenesis of Human Systemic Lupus Erythematosus: A Cellular Perspective Vaishali R. Moulton,1,* Abel Suarez-Fueyo,1 Esra Meidan,1,2 Hao Li,1 Masayuki Mizui,3 and George C. Tsokos1,* Systemic lupus erythematosus (SLE) is a chronic autoimmune disease affecting Trends multiple organs. A complex interaction of genetics, environment, and hormones Recent work has identified patterns of leads to immune dysregulation and breakdown of tolerance to self-antigens, altered gene expression denoting resulting in autoantibody production, inflammation, and destruction of end- molecular pathways operating in organs. Emerging evidence on the role of these factors has increased our groups of SLE patients. knowledge of this complex disease, guiding therapeutic strategies and identi- Studies have identified local, organ- fying putative biomarkers. Recent findings include the characterization of specific factors enabling or ameliorat- ing SLE tissue damage, thereby dis- genetic/epigenetic factors linked to SLE, as well as cellular effectors. Novel sociating autoimmunity and end-organ observations have provided an improved understanding of the contribution of damage. tissue-specific factors and associated damage, T and B lymphocytes, as well Novel subsets of adaptive immune as innate immune cell subsets and their corresponding abnormalities. The effectors, and the contributions of intricate web of involved factors and pathways dictates the adoption of tailored innate immune cells including platelets therapeutic approaches to conquer this disease. and neutrophils, are being increasingly recognized in lupus pathogenesis. Studies have revealed metabolic cellu- SLE, a Devastating Disease for Young Women lar aberrations, which underwrite cell SLE afflicts mostly women [1] in which the autoimmune response is directed against practically and organ injury, as important contri- all organs, leading to protean clinical manifestations including arthritis, skin disease, blood cell butors to lupus disease.
    [Show full text]
  • Glomerulonephritis Histopathological Pattern Change
    AlYousef et al. BMC Nephrology (2020) 21:186 https://doi.org/10.1186/s12882-020-01836-3 RESEARCH ARTICLE Open Access Glomerulonephritis Histopathological Pattern Change Anas AlYousef1* , Ali AlSahow2, Bassam AlHelal3, Ahmed Alqallaf4, Emad Abdallah3, Mohammed Abdellatif1, Hani Nawar2 and Riham Elmahalawy4 Abstract Background: Glomerulonephritides (GN) are relatively rare kidney diseases with substantial morbidity and mortality. They are often difficult to treat, sometimes with no cure, and can lead to chronic kidney disease (CKD) and end stage kidney disease (ESKD). Kidney biopsy is the diagnostic procedure of choice with variable indications from center to center. It helps in identifying the exact specific diagnosis, assessing the level of disease activity and severity, and hence aids in proper therapy and helps predicting prognosis. There is a global change of pattern of glomerular disease over the last five decades. Methods: Retrospective analysis of all kidney biopsies (545 cases) that were done in patients over 12 year-old over last six years in four major hospitals in Kuwait. The indications for kidney biopsy were categorized into six clinical syndromes: nephrotic syndrome, sub-nephrotic proteinuria, nephrotic syndrome plus acute kidney injury (AKI), sub- nephrotic proteinuria plus AKI, isolated hematuria, and Unexplained renal impairment. We calculated the incidence of each type of kidney disease and indication of biopsy. Results: most common indication of kidney biopsy was sub-nephrotic proteinuria associated with AKI in 179 cases (32.8%). Primary Glomerulonephritis was the main diagnosis that was reported in 356 cases (65.3%). Immunoglobulin A Nephropathy (IgAN) was the commonest lesion in primary glomerulonephritis in 85 (23.9%) cases.
    [Show full text]
  • Glomerulonephritis
    Adolesc Med 16 (2005) 67–85 Glomerulonephritis Keith K. Lau, MDa,b, Robert J. Wyatt, MD, MSa,b,* aDivision of Pediatric Nephrology, Department of Pediatrics, University of Tennessee Health Sciences Center, Room 301, WPT, 50 North Dunlap, Memphis, TN 38103, USA bChildren’s Foundation Research Center at the Le Bonheur Children’s Medical Center, Room 301, WPT, 50 North Dunlap, Memphis, TN 38103, USA Early diagnosis of glomerulonephritis (GN) in the adolescent is important in initiating appropriate treatment and controlling chronic glomerular injury that may eventually lead to end-stage renal disease (ESRD). The spectrum of GN in adolescents is more similar to that seen in young and middle-aged adults than to that observed in prepubertal children. In this article, the authors discuss the clinical features associated with GN and the diagnostic evaluation required to determine the specific type of GN. With the exception of hereditary nephritis (Alport’s disease), virtually all types of GN are immunologically mediated with glomerular deposition of immunoglobulins and complement proteins. The inflammatory events leading to GN may be triggered by a number of factors. Most commonly, immune complexes deposit in the glomeruli or are formed in situ with the antigen as a structural component of the glomerulus. The immune complexes then initiate the production of proinflammatory mediators, such as complement proteins and cytokines. Subsequently, the processes of sclerosis within the glomeruli and fibrosis in the tubulointerstitial cells lead to chronic or even irreversible renal injury [1]. Less commonly, these processes occur without involvement of immune complexes—so-called ‘‘pauci-immune GN.’’ * Corresponding author.
    [Show full text]