Tunelab Piano Tuner

Total Page:16

File Type:pdf, Size:1020Kb

Tunelab Piano Tuner TuneLab Piano Tuner FOR ANDROID 1. What is TuneLab Piano Tuner? 1 - basics and definitions of terms used in later chapters. 2. Normal Tuning Procedure 10 - your first tuning with TuneLab. 3. The Tuning Curve 15 - what it is and how to modify it. 4. All About Offsets 19 - four different kinds of cents offsets used by TuneLab. 5. Over-pull (Pitch-Raise) Tuning Procedure 21 - how to make a pitch raise more accurate. 6. Calibration Procedure 24 - to ensure absolutely accurate pitches. 7. Historical Temperaments 27 - unequal temperaments for period music, or for modern development. 8. Working with Tuning Files 29 - how to select files & folders for saving tunings. 9. PTG Tuning Exam 33 - how to capture a master or examinee tuning, detune, and score the exam. 10. Split-Scale Tuning 36 - (Classic tuning mode only) how to tune poorly-scaled spinets. © 2019 Real-Time Specialties August 2019 (734) 434-2412 version 2.4 www.tunelab-world.com Chapter What is TuneLab Piano Tuner for Android? 1 TuneLab is software that helps you to tune pianos. This form of the software runs on Android devices with Android 4.0 or later. Other versions of TuneLab are also available for iPhone/iPad/iPod Touch devices and for Windows computers. There are other manuals to describe these other forms of TuneLab, and they can be found on our web site at tunelab-world.com. This manual describes only the Android version of TuneLab. Visual Tuning TuneLab is a software program that turns an Android device (phone or tablet) into a professional Electronic Tuning Device, which provides a piano tuner with real-time visual guidance in tuning. The sound of a note as it is played is picked up by a microphone and analyzed. The results of the analysis are displayed in visual patterns. TuneLab displays two main visual patterns - the phase display and the spectrum display. Both of these displays indicate if the pitch of a note should be raised or lowered, but each display has its own unique advantages. Seeing both displays simultaneously gives the piano tuner the best of both worlds. Note Selection Terminology In this manual we will be referring to notes on the piano by note name and octave number. For example, A4 is the A above middle C. Each numbered octave runs from C up to the next higher B. So the lowest complete octave on a standard piano is octave 1, and it includes C1...B1. The notes below that are A0, A#0, and B0. The highest note on the piano is C8. Notes that are sharps or flats will always be designated as sharps. So, for example, we write A#0, not Bb0. Phase Display The phase display is the horizontal band shown here. This display is used for fine tuning. The black squares move to the left if the note is flat and to the right if the note is sharp. The closer you get to the correct tuning, the slower the black squares will move. The goal is to make the black squares come as much to a stop as possible. If the piano string has any false beats the black squares may appear to move in an irregular fashion, sometimes moving back and forth. When there is no note playing, or when the note being played is far from the correct pitch, the black squares will disappear or move randomly. This display is called the phase display because it displays the phase of the sound from the microphone as compared to the phase of an internally generated reference pitch, and is therefore similar to listening to beats. Using the phase display gives the most precise measure of the pitch of a note. 1 Spectrum Display The spectrum display is the graph shown here with the zoom set to ±50 cents around the desired pitch. This display can be configured for other zoom levels. This display shows how the sound energy is distributed across the frequency spectrum. If TuneLab is listening to a pure tone, then the spectrum graph will show a single peak, as shown here. This example was made from the note C6, which happened to be about 3.8 cents flat. The red line in the center of the display marks the correct pitch. The green lines nearest the center mark the points that are 10 cents above and below the correct pitch. The objective in tuning with the spectrum display is to tune the note until the peak of the graph is centered on the red line. The spectrum display has several advantages over the phase display. One is that it shows where the pitch of the piano is, even when that pitch is far from the correct pitch. The other advantage is that the spectrum display can show several peaks at once. The picture here shows what you would get when playing a poorly tuned unison. Here the piano note C6 is being played with one string tuned nine cents higher than the other two strings. In this display the zoom has been set to its most zoomed-in level, ±50 cents. By looking at individual peaks it is possible to do a rough tuning without mutes! You simply tune one of the strings and watch which peak moves, then move that peak to the central red line. In addition to zoom levels of “wide”, ±260 cents, ±130 cents, and ±50 cents, the spectrum display can also be zoomed in on the center ±10 cents in the center of the display, while still showing ±130 cents or ±260 cents overall. When one of these “dual-zoom” modes is selected, the numbers at the bottom of the graph show offsets in cents rather than frequencies in Hz. The picture shown here is of one such setting of the spectrum display showing two simultaneous notes - one at C6 and the other at C#6. This picture also illustrates the use of the “Wide spectrum traces” option in Settings. A faster way to change the zoom setting is to use a two-fingered pinch gesture in the Spectrum Display itself. One advantage of the phase display is that it generally provides more resolution than the spectrum display, except in the highest octave where the resolutions of the two displays are about the same. For this reason the spectrum display is used for rough tuning and the phase display is used for fine tuning. False beats can confuse the phase display, though. So you may prefer the spectrum display even for fine tuning in the highest octave. In any case, both displays are available; so you can use whichever display seems to be giving the clearest indication. 2 Action Bar (top of Main Tuning screen) At the top of the Main Tuning screen there is button for Help and a button for the Files menu. Use the File menu to load and store tuning files, to start a new tuning, and to switch to and from Dropbox cloud storage for tuning files. The Help button shows help for items on that screen. Look for a Help button at the top of most other screens in TuneLab too. Command Buttons (bottom of Main Tuning screen) This button switches to the view of the tuning curve and the deviation curve. The tuning curve shows a graph of the stretch offset for all notes, and the deviation curve analyzes selected intervals for the bass and treble. On this page you can adjust the tuning curve to achieve an appropriate amount of stretch tuning for the particular piano. See “Adjusting the Tuning Curve” in chapter 2 for more information on the tuning curve. This button starts a measurement of inharmonicity, which is needed when you create a new custom tuning. After pressing this button, play the selected note and hold it for up to six seconds. You should have all but one string muted so that TuneLab hears a single string. You need to measure at least four and preferably five or six notes in order to establish the inharmonicity pattern for the particular piano. After the measurements are made, you can adjust the tuning curve to match them, or just let the tuning curve be adjusted automatically. This button turns on locking mode. In this mode, TuneLab listens to the sound from the microphone and tries to adjust the offset to match it. You can see the offset changing and you can see the phase display and the spectrum display indicating an in-tune condition. This is used for matching an offset to an existing tuning to measure an existing tuning or to establish a non- standard offset for a tuning. Be sure to turn off locking mode promptly when the sound stops, otherwise TuneLab will continue to try to lock to noise, resulting in a random offset. The offset produced by locking mode can be reset to zero by tapping on the offset display. This button switches to sound-generating mode. In this mode TuneLab generates a tone in the speaker or headphones, rather than listening to the microphone. This is not generally used for tuning, but it can be useful for chipping after restringing a piano. This is the Settings button, and it switches to a list of various settings and configuration actions, such as loading and saving tuning files, doing a calibration, configuring the spectrum display, and controlling auto note switching. This image appears in place of a command button when a mode has been entered that needs to be able to end. This button will stop inharmonicity measurements, locking mode, sound- generation mode, calibration, and over-pull mode.
Recommended publications
  • Fftuner Basic Instructions. (For Chrome Or Firefox, Not
    FFTuner basic instructions. (for Chrome or Firefox, not IE) A) Overview B) Graphical User Interface elements defined C) Measuring inharmonicity of a string D) Demonstration of just and equal temperament scales E) Basic tuning sequence F) Tuning hardware and techniques G) Guitars H) Drums I) Disclaimer A) Overview Why FFTuner (piano)? There are many excellent piano-tuning applications available (both for free and for charge). This one is designed to also demonstrate a little music theory (and physics for the ‘engineer’ in all of us). It displays and helps interpret the full audio spectra produced when striking a piano key, including its harmonics. Since it does not lock in on the primary note struck (like many other tuners do), you can tune the interval between two keys by examining the spectral regions where their harmonics should overlap in frequency. You can also clearly see (and measure) the inharmonicity driving ‘stretch’ tuning (where the spacing of real-string harmonics is not constant, but increases with higher harmonics). The tuning sequence described here effectively incorporates your piano’s specific inharmonicity directly, key by key, (and makes it visually clear why choices have to be made). You can also use a (very) simple calculated stretch if desired. Other tuner apps have pre-defined stretch curves available (or record keys and then algorithmically calculate their own). Some are much more sophisticated indeed! B) Graphical User Interface elements defined A) Complete interface. Green: Fast Fourier Transform of microphone input (linear display in this case) Yellow: Left fundamental and harmonics (dotted lines) up to output frequency (dashed line).
    [Show full text]
  • SBHS Finally Open "We're Not Getting a Revised Site Plan in (Time for the Scheduled Meeting)," Schaefer Argued
    IN THIS ISSUE IN THE NEWS Football Community Unity Day Page 17 Pages 12-13 SEPTEMBER 18, 1997 40 CENTS VOLUME 4, NUMBER 48 Rezoning ordinance introduced Public hearing on Deans- Rhode Hall Road site is scheduled for Nov. 5 BY JOHN P. POWGIN Staff Writer n ordinance to rezone approximately 120 acres surrounding the intersection of A Route 130 and Deans-Rhode Hall Road in South Brunswick to allow for more concentrat- ed development cleared its first hurdle Tuesday when the Township Committee voted 4-1 to offi- cially introduce the proposal. Committeeman David Schaefer cast the lone vote against introducing the ordinance, saying he felt that his colleagues were "rushing this along for no reason." The ordinance's second reading, which will be accompanied by public comment on the matter followed by the final vote on its adoption, has been scheduled for the committee's Nov. 5 regu- Senior Greg Merritt takes a test on the first day of school at the new South Brunswick High School: figuring out his lar meeting. locker combination. For more pictures of the opening, see pages 3 and 9. The committee previously asked Forsgate (Jackie Pollack/Greater Media) Industries, the South Brunswick-based firm which has requested the land in question be rezoned from light industrial (LI) 3 to LI 2, to provide fur- ther information on its proposal, including a revised site plan and traffic impact studies. SBHS finally open "We're not getting a revised site plan in (time for the scheduled meeting)," Schaefer argued. Revised calendar day, early-release schedule on school delays, "they sought the guid- "Let's be realistic.
    [Show full text]
  • The Carillon United Church of Christ, Congregational (585) 492-4530 Editor: Marilyn Pirdy (585) 322-8823
    The Carillon United Church of Christ, Congregational (585) 492-4530 Editor: Marilyn Pirdy (585) 322-8823 May 2013 As May is rapidly approaching, we are gearing up for the splendors of this Merry Month. We anxiously and Then, just 3 days later in the month, we come to one gratefully await the grandeur of the budding trees and of America’s most favorite holidays – Mother’s Day, shrubs, the lawns which are becoming green and May 12. On this day we honor our mothers – those increasingly lush, the birds busily gathering nesting persons who either by birth or by their actions are as materials for their about-to-be new families, and fields mothers to us through love, kindness, compassion, being diligently groomed and planted for the year’s caring, encouraging, and so much more. It’s on this day growing season. In addition to looking forward to we acknowledge our mother’s influence on our lives, experiencing all these spIendors, I scan the calendar and whether they are yet in our midst or have gone before can’t help but think that May is really a month of us to God’s heavenly realm. On this day also, we remembrance. Let me share my reasoning, and celebrate the blessing of the Christian Home. It’s a perhaps you will agree. special day, indeed – this day when we again remember May 1 is May Day – originally a day to remember the our mothers! Haymarket Riot of 1886 in Chicago, Illinois. Even And then, on May 27, we celebrate yet another day though the riot occurred on May 4, it was the of tribute – Memorial Day.
    [Show full text]
  • FORW ARD , MARC H • Zn• Pian Os
    FORW ARD , MARC H • zn• pian os The Research Laboratory of this Company is constantly working to Improve the piano-in design and in \vorking parts. It is our policy to follow up every idea that may hold the germ of advanc~n1ent in piano­ building. Because of this constant striving for improve­ ment, plus the care and conscience that goes into every instrument we produce, money cannot buy grca ter val ue than that in the pianos listed below. M ..~t---------------____-tl~ MASON {1 HAMLIN KNA.BE CHICKERING IVIARSHALL {1 WENDELL J. {1 C. FISCHER THE AMPICO DEVOTED TO THE PRACTICAL. SCIENTIFIC and EDUCATIONAL ADVANCE1\tlENT of the TUNER .·+-)Ge1- ------ ------ ------ -I19JI-4-· AMERICAN PIANO COMPANY Volume 8 52.00 a year Number 12 Ampico Hall (Canada, $2.50; Foreign, $3.00) 25 cents a copy 584 Fifth Avenue New York Published on th ] 5th dn.y of each month P. O. Box 396 Kansas City. fissourl Entered a. Second Class Matter July, 14, 1921, at the Post DHice at Kansas City, Mo., Under Act of March 3, 1879. MAY, 1929 457 The Aeolian Factory at Garwood, New Jersey, where the wonderful Duo_Art tions are manufa tured. Are You a Gulbransen Registered Mechanic? If not you should be. You can if you have had five or more years experi­ ence as a player mechanic and tuner and are fami1iar with The George Steck Piano fa c­ the Gulbransen. tory at Neponset, Mass. , ne of the Great Plants of the Send us this coupon and we will tell you how to reg­ Aeolian Company.
    [Show full text]
  • Piano Manufacturing an Art and a Craft
    Nikolaus W. Schimmel Piano Manufacturing An Art and a Craft Gesa Lücker (Concert pianist and professor of piano, University for Music and Drama, Hannover) Nikolaus W. Schimmel Piano Manufacturing An Art and a Craft Since time immemorial, music has accompanied mankind. The earliest instrumentological finds date back 50,000 years. The first known musical instrument with fibers under ten sion serving as strings and a resonator is the stick zither. From this small beginning, a vast array of plucked and struck stringed instruments evolved, eventually resulting in the first stringed keyboard instruments. With the invention of the hammer harpsichord (gravi cembalo col piano e forte, “harpsichord with piano and forte”, i.e. with the capability of dynamic modulation) in Italy by Bartolomeo Cristofori toward the beginning of the eighteenth century, the pianoforte was born, which over the following centuries evolved into the most versitile and widely disseminated musical instrument of all time. This was possible only in the context of the high level of devel- opment of artistry and craftsmanship worldwide, particu- larly in the German-speaking part of Europe. Since 1885, the Schimmel family has belonged to a circle of German manufacturers preserving the traditional art and craft of piano building, advancing it to ever greater perfection. Today Schimmel ranks first among the resident German piano manufacturers still owned and operated by Contents the original founding family, now in its fourth generation. Schimmel pianos enjoy an excellent reputation worldwide. 09 The Fascination of the Piano This booklet, now in its completely revised and 15 The Evolution of the Piano up dated eighth edition, was first published in 1985 on The Origin of Music and Stringed Instruments the occa sion of the centennial of Wilhelm Schimmel, 18 Early Stringed Instruments – Plucked Wood Pianofortefa brik GmbH.
    [Show full text]
  • Achieving 21St Century Standards of Excellence in Tuning
    Achieving 21st Century Standards of Excellence in Tuning Midrange Piano Tuning How to pass the mandatory aural portion of the PTG RPT Tuning Exam Bill Bremmer RPT Madison, Wisconsin June, 2007 Introduction Piano Tuning standards have taken a Quantum leap during the past 30 years. Listen to any Pop, Jazz, Country and even some Classical recordings with piano from the 1960's or 70's and you will hear immediately how piano tuning has improved. While I have been able to put many ideas from many PTG members into practice, it has been the teachings of Owen Jorgensen RPT and Jim Coleman, Sr. RPT which have made the most difference in my work. I hope to be able to help you tune the piano in a more enlightened way through this article. The subject here is Equal Temperament (ET). I have adapted some techniques used to tune Historical Temperaments which will make your efforts easier to execute and lead to greater precision and accuracy. I will also include techniques learned from Jim Coleman involving coincident partials (explanation of the term to follow). Also included will be techniques used by PTG’s Certified Tuning Examiners (CTE) to both effect the Exam Master Tuning and to verify errors on the Exam. Understanding each of these combined Techniques will help you pass and hopefully excel not only at the Exam but in all of your professional work to follow. ET is the model used for the PTG RPT Tuning Exam. Tuning standards have advanced in recent times principally because of two forces: Electronic Tuning Devices (ETD) and the Exam itself.
    [Show full text]
  • 100+ of the Best Resources for Learning Music Apps, Games, Courses & More!
    100+ of the Best Resources for Learning Music Apps, Games, Courses & More! 1 Making Music Matter Seemingly every day, dedicated musicians are leveraging technology to create AMAZING new tools for students of all levels. We put together this e-book to inspire you to try new ideas, hone your skills, make new music and have fun while doing it. There are THOUSANDS of apps & websites out there that promise to help you learn music, which is really exciting, but can also be pretty intimidating. We spent way too much time combing through the Apple App & Google Play stores, various blogs, and asking our professional colleagues, so you could have these high-quality recommendations. If you have any feedback, we’d love to hear it! App you’d like us to consider for the next edition? Good or bad experience you had with a website we recommended? Difficulty getting an app working with the gear you bought from us? Cool song that you wrote using one of these tools? Just email [email protected] – he’ll be glad to hear from you and help however he can, if warranted. 2 Here’s how we’ve organized this book: • We have 4 main units, with 4-5 segments in each unit, with 8-15 resources for each segment. • Many of the resources could be in multiple segments, but to reduce duplication, we simply put it in the segment we thought it best fit. We have a “See Also” blurb to recommend other segments you might want to check out for related apps.
    [Show full text]
  • Tuning Ancient Keyboard Instruments - a Rough Guide for Amateur Owners
    Tuning Ancient Keyboard Instruments - A Rough Guide for Amateur Owners. Piano tuning is of course a specialized and noble art, requiring considerable skill and training. So it is presumptuous for me to offer any sort of Pocket Guide. However, it needs to be recognized that old instruments (and replicas) are not as stable as modern iron-framed pianos, and few of us can afford to retain the services of a professional tuner on a frequent basis. Also, some of us may be restoring old instruments, or making new ones, and we need to do something. So, with apologies to the professionals, here is a short guide for amateurs. If you know how to set a temperament by ear, and know what that means, please read no further. But if not, a short introductory background might be useful. Some Theory We have got used to music played in (or at least based around) the major and minor scales, which are in turn descended from the ancient modes. In these, there are simple mathematical ratios between the notes of the scale, which are the basis of our perception of harmony. For example, the frequency of the note we call G is 3/2 that of the C below. This interval is a pure, or perfect fifth. When ratios are not exact, we hear ‘beats’, as the two notes come in and out of phase. For example, if we have one string tuned to A415 (cycles per second, or ‘Hertz’ and its neighbour a bit flat at A413, we will hear ‘wow-wow-wow’ beats at two per second.
    [Show full text]
  • CN4 Featuring Alfred’S Basic Piano Library
    Digital Piano CN4 featuring Alfred’s Basic Piano Library Owner’s Manual Important Safety Instructions SAVE THESE INSTRUCTIONS INSTRUCTIONS PERTAINING TO A RISK OF FIRE, ELECTRIC SHOCK, OR INJURY TO PERSONS WARNING TO REDUCE THE RISK OF CAUTION FIRE OR ELECTRIC RISK OF ELECTRIC SHOCK SHOCK, DO NOT EXPOSE DO NOT OPEN THIS PRODUCT TO RAIN OR MOISTURE. AVIS : RISQUE DE CHOC ELECTRIQUE - NE PAS OUVRIR. TO REDUCE THE RISK OF ELECTRIC SHOCK, DO NOT REMOVE COVER (OR BACK). NO USER-SERVICEABLE PARTS INSIDE. REFER SERVICING TO QUALIFIED SERVICE PERSONNEL. The lighting flash with arrowhead symbol, within an equilateral triangle, is intended to alert the user The exclamation point within an equilateral triangle to the presence of uninsulated "dangerous voltage" is intended to alert the user to the presence of within the product's enclosure that may be of important operating and maintenance (servicing) sufficient magnitude to constitute a risk of electric instructions in the leterature accompanying the shock to persons. product. Examples of Picture Symbols denotes that care should be taken. The example instructs the user to take care not to allow fingers to be trapped. denotes a prohibited operation. The example instructs that disassembly of the product is prohibited. denotes an operation that should be carried out. The example instructs the user to remove the power cord plug from the AC outlet. Read all the instructions before using the product. WARNING - When using electric products, basic precautions should always be followed, including the following. Indicates a potential hazard that could result in death WARNING or serious injury if the product is handled incorrectly.
    [Show full text]
  • Multiphonics of the Grand Piano – Timbral Composition and Performance with Flageolets
    Multiphonics of the Grand Piano – Timbral Composition and Performance with Flageolets Juhani VESIKKALA Written work, Composition MA Department of Classical Music Sibelius Academy / University of the Arts, Helsinki 2016 SIBELIUS-ACADEMY Abstract Kirjallinen työ Title Number of pages Multiphonics of the Grand Piano - Timbral Composition and Performance with Flageolets 86 + appendices Author(s) Term Juhani Topias VESIKKALA Spring 2016 Degree programme Study Line Sävellys ja musiikinteoria Department Klassisen musiikin osasto Abstract The aim of my study is to enable a broader knowledge and compositional use of the piano multiphonics in current music. This corpus of text will benefit pianists and composers alike, and it provides the answers to the questions "what is a piano multiphonic", "what does a multiphonic sound like," and "how to notate a multiphonic sound". New terminology will be defined and inaccuracies in existing terminology will be dealt with. The multiphonic "mode of playing" will be separated from "playing technique" and from flageolets. Moreover, multiphonics in the repertoire are compared from the aspects of composition and notation, and the portability of multiphonics to the sounds of other instruments or to other mobile playing modes of the manipulated grand piano are examined. Composers tend to use multiphonics in a different manner, making for differing notational choices. This study examines notational choices and proposes a notation suitable for most situations, and notates the most commonly produceable multiphonic chords. The existence of piano multiphonics will be verified mathematically, supported by acoustic recordings and camera measurements. In my work, the correspondence of FFT analysis and hearing will be touched on, and by virtue of audio excerpts I offer ways to improve as a listener of multiphonics.
    [Show full text]
  • Terms Relating to Slack Key Guitar and Hawaiian Music in General
    Page 1 Dancing Cat Records Hawaiian Slack Key Information Booklet, SECTION VII: GLOSSARY - TERMS RELATING TO SLACK KEY GUITAR AND HAWAIIAN MUSIC IN GENERAL A Four Forty (A 440): Means 440 cycles are the “A” pitch in music physics. The “A” note on piano is tuned to 440 cycles; thus “A 440.” Sometimes just called “Four Forty” (440). (Also see piano tuning). A Tuning: Tunings pitched in the key of A. They can be tuned up to the keys of B or Bb, or down to the keys of Ab, G, F#, or F. Also, it is a term occasionally used for when the G Major “Taro Patch” Tuning is tuned up to the key of A, which is accomplished by tuning the second (B), third (G), and fourth (D) strings up two half steps to C#, A, and E, respectively, from Standard Tuning, and leaving the first (E), fifth (A), and sixth (E) strings as is. Thus Standard Tuning E-A-D-G-B-E, from the lowest pitched string to the highest (also see SECTIONS III, IV, IVa, V, and VI in this book for more about tunings - it is labeled as Tuning #C-33), yields E-A-E-A-C#-E, a higher pitched open A Major chord, if that is the desired sound by the guitarist. This is the opposite way that the G Major Tuning is usually derived from the Standard Tuning, where the first (E), fifth (A), and sixth (E) strings are tuned down two half steps to D, G, and D, respectively, yielding D-G-D-G-B-D, from the lowest pitched string to the highest.
    [Show full text]
  • The Basics of Harpsichord Tuning Fred Sturm, NM Chapter Norfolk, 2016
    The Basics of Harpsichord Tuning Fred Sturm, NM Chapter Norfolk, 2016 Basic categories of harpsichord • “Historical”: those made before 1800 or so, and those modern ones that more or less faithfully copy or emulate original instruments. Characteristics include use of simple levers to shift registers, relatively simple jack designs, use of either quill or delrin for plectra, all-wood construction (no metal frame or bars). • 20th century re-engineered instruments, applying 20th century tastes and engineering to the basic principle of a plucked instrument. Pleyel, Sperrhake, Sabathil, Wittmeyer, and Neupert are examples. Characteristics include pedals to shift registers, complicated jack designs, leather plectra, and metal frames. • Kit instruments, many of which fall under the historical category. • A wide range of in between instruments, including many made by inventive amateurs. Harpsichords come in many shapes and designs. • They may have one keyboard or two. • They may have only one string per key, or as many as four. • The pitch level of each register of strings may be standard, or an octave higher or lower. These are called, respectively, 8-foot, 4-foot, and 16-foot. • The harpsichord may be designed for A440, for A415, or possibly for some other pitch. • Tuning pins may be laid out as in a grand piano, or they may be on the side of the case. • When there are multiple strings per note, the different registers may be turned on and off using levers or pedals. We’ll start by looking at some of these variables, and how that impacts tuning. Single string instruments These are the simplest instruments, and the easiest to tune.
    [Show full text]