Complex Double-Precision Evaluation of the Wright Ω Function

Total Page:16

File Type:pdf, Size:1020Kb

Complex Double-Precision Evaluation of the Wright Ω Function Algorithm 917: Complex Double-Precision Evaluation of the Wright ω Function PIERS W. LAWRENCE, ROBERT M. CORLESS, and DAVID J. JEFFREY, The University of Western Ontario This article describes an efficient and robust algorithm and implementation for the evaluation of the Wright ω function in IEEE double precision arithmetic over the complex plane. Categories and Subject Descriptors: G.1.2 [Numerical Analysis]: Approximation—Special function approximations; G.1.5 [Numerical Analysis]: Roots of Nonlinear Equations—Error analysis, iterative methods General Terms: Algorithms, Design Additional Key Words and Phrases: Wright omega function, double-precision evaluation over C ACM Reference Format: Lawrence, P. W., Corless, R. M., and Jeffrey, D. J. 2012. Algorithm 917: Complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Softw. 38, 3, Article 20 (April 2012), 17 pages. DOI = 10.1145/2168773.2168779 http://doi.acm.org/10.1145/2168773.2168779 1. INTRODUCTION The Wright ω function was studied implicitly, without being named, by Wright [1959], and named and defined by Corless and Jeffrey [2002]. Although the function has been incorporated into the MAPLE system and is indirectly available in other systems 20 (through the Lambert W function), there has been no development of an algorithm for floating-point evaluation. Here we describe an efficient algorithm, and implementa- tion in C for the IEEE double-precision evaluation of Wright ω over the complex plane. We discuss the conditioning of the evaluation, including a novel discussion of the sep- arate conditioning of the real and imaginary parts of the function and the efficiency of different iterative schemes. Wright ω can be thought of informally as the solution for complex z of the algebraic equation ω +lnω = z . (1) A more direct definition can be given in terms of the Lambert W function [Corless et al. 1996] by z ω (z) = WK(z) e . (2) This research was supported in part by the Natural Sciences and Engineering Research Council of Canada. Authors’ address: P. W. Lawrence, R. M. Corless, and D. J. Jeffrey, Ontario Research Centre for Computer Algebra and the Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5BT; email: {plawren, rcorless, djeffrey}@uwo.ca. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permit- ted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212) 869-0481, or [email protected]. c 2012 ACM 0098-3500/2012/04-ART20 $10.00 DOI 10.1145/2168773.2168779 http://doi.acm.org/10.1145/2168773.2168779 ACM Transactions on Mathematical Software, Vol. 38, No. 3, Article 20, Publication date: April 2012. 20:2 P. W. Lawrence et al. Here K(z)= (Im(z) − π)/(2π) is the unwinding number of z [Corless and Jeffrey 1996], which corrects for the fact that ln ez does not simplify to z when ln z stands for the principal branch of the logarithm of z [Corless et al. 2000]. Throughout this article, as indeed throughout computational mathematics nowadays, ln z, always denotes the principal branch only. Wright ω is of interest for many reasons. In applications, many problems soluble in terms of Lambert W have solutions in terms of the composition W(ez), and so are better expressed using ω. Further, ω is single valued, whereas Lambert W is multi- valued, and thus the complications of branches are avoided. From a numerical point of view, the floating-point computation of W(ez) suffers from unnecessary overflow. For large Re z, Lambert W behaves like ln z, meaning that the argument ez can overflow and prevent the accurate computation of ω(z) ∼ z. Additionally, both the unwinding number K(z) and the Lambert W function are discontinuous on their branch cuts, but (except in two cases) these discontinuities cancel out for Wright ω. Computation of a continuous function via discontinuous functions is a dubious numerical strategy. For these reasons, we describe a direct method here, meaning one that avoids any compu- tation of Lambert W. We recall some properties of Wright ω noted by Corless and Jeffrey [2002]. Wright ω is single valued but discontinuous along two straight lines in C described parametri- cally by zt = t+ iπ and its conjugate ref lection zt = t− iπ for t ≤−1. The discontinuities arise because if z lies on one of the lines, then ω is real and negative, implying that the term ln ω in (1) will be discontinuous, because of the branch cut of logarithm. Alterna- tively, the lines are images under the mapping z → ez of the branch cut of Lambert W, 1 with the end points zs = −1 ± iπ being images of the Lambert W branch point. The values of Wright ω on the lines of discontinuity are chosen so that the function is con- tinuous from below the lines, that is, ω(t ± iπ) = lim→0 ω(t ± iπ − i). The lines of discontinuity are shown in Figure 1 and their images are shown in Figure 2. Below, we shall need the derivative of Wright ω : dω ω = . (3) dz 1+ω In Table I, special values for ω are given. Values of z giving real values to ω are given first, followed by some complex values. The aim of this article is to describe a general-purpose IEEE double precision rou- tine to calculate the value of ω over the complex plane. We do not aim for a correctly rounded implementation [de Dinechin et al. 2007; Defour et al. 2004], which we ac- knowledge would be better, but rather only a reliable routine that gives uniformly small error for all possible valid complex floating-point input, and to return useful information in NaN form otherwise. To this end, we deploy and test several iterative schemes, which improve initial ap- proximations to ω obtained by series approximations and rational approximations over the various regions of the complex plane. This article looks at three different iterative schemes: Newton’s method, Halley’s method, and a fourth-order scheme similar to one used by Fritsch et al. [1973] for the Lambert W function. 1In the earlier publication [Corless and Jeffrey 2002], the line t + πi, t ≤−1 was called ‘the doubling line’. This terminology is a fossil from an earlier definition of the function, based on (1), and it is better replaced by ‘line of discontinuity’. Likewise, the endpoints have been called branch points, but simply calling them singular points is clearer, because Wright ω is single valued. ACM Transactions on Mathematical Software, Vol. 38, No. 3, Article 20, Publication date: April 2012. Algorithm 917: Double-Precision Evaluation of Wright ω 20:3 Fig. 1. The lines of discontinuity in the z plane and their images under z → ω(z). The vertical hatching shows that the value of ω on the lines is defined by taking the limit from below. The images of the lines in the ω plane cover the negative real axis, the branch cut of logarithm. The singular points at the ends of the lines of discontinuity, labeled b, c, f, g,allmaptoω = −1. Fig. 2. This plot shows the images of vertical and horizontal lines under the map z → ω(z). Two singular points are evident in the plot, at ω = −1andω =0.Thepointω = −1 corresponds to the points z = −1 ± π, labelled b, c, f, g in figure 1, and the square-root nature of the singularity is evident. The point ω =0 corresponds to z = −∞ + it,where−π<t ≤ π, labeled d, e in Figure 1. 2. CONDITIONING OF THE WRIGHT ω FUNCTION Before considering computational schemes, we establish the conditioning of the eval- uation problem in the complex plane, in order to highlight regions of difficulty requir- ing special treatment. Function evaluation, as a numerical problem, focuses on the forward error, but precisely how the forward error is measured remains a matter of ACM Transactions on Mathematical Software, Vol. 38, No. 3, Article 20, Publication date: April 2012. 20:4 P. W. Lawrence et al. Table I. Special Values of ω(z) z ω(z) −∞ 0 0 W0(1) = 0.56714 ... 1 1 1+e e −1+iπ −1 − − π − 1 i 1 − π − −2 − . ... 2+ln2+i W0 2e = 0 40638 − − π − −2 − 2+ln2 i W−1 2e = 2 1 π i 1+ 2 i iπ W0(−1) = −0.31813 + 1.3372 i 1+i 0.93721 + 0.50542 i choice. If ωe is an approximation to an exact complex value ω, then one can require |ω − ωe|/|ω| to be less than a small multiple of machine epsilon, or one can require the more stringent conditions that | Re(ω − ωe)|/| Re(ω)| and | Im(ω − ωe)|/| Im(ω)| be each less than a small multiple of machine epsilon. Here we use the first measure of accuracy, although we check the condition numbers for the real and imaginary parts also. We begin by noting that along the lines of discontinuity the Wright ω function is infinitely ill-conditioned.
Recommended publications
  • Lecture 5: Complex Logarithm and Trigonometric Functions
    LECTURE 5: COMPLEX LOGARITHM AND TRIGONOMETRIC FUNCTIONS Let C∗ = C \{0}. Recall that exp : C → C∗ is surjective (onto), that is, given w ∈ C∗ with w = ρ(cos φ + i sin φ), ρ = |w|, φ = Arg w we have ez = w where z = ln ρ + iφ (ln stands for the real log) Since exponential is not injective (one one) it does not make sense to talk about the inverse of this function. However, we also know that exp : H → C∗ is bijective. So, what is the inverse of this function? Well, that is the logarithm. We start with a general definition Definition 1. For z ∈ C∗ we define log z = ln |z| + i argz. Here ln |z| stands for the real logarithm of |z|. Since argz = Argz + 2kπ, k ∈ Z it follows that log z is not well defined as a function (it is multivalued), which is something we find difficult to handle. It is time for another definition. Definition 2. For z ∈ C∗ the principal value of the logarithm is defined as Log z = ln |z| + i Argz. Thus the connection between the two definitions is Log z + 2kπ = log z for some k ∈ Z. Also note that Log : C∗ → H is well defined (now it is single valued). Remark: We have the following observations to make, (1) If z 6= 0 then eLog z = eln |z|+i Argz = z (What about Log (ez)?). (2) Suppose x is a positive real number then Log x = ln x + i Argx = ln x (for positive real numbers we do not get anything new).
    [Show full text]
  • 3 Elementary Functions
    3 Elementary Functions We already know a great deal about polynomials and rational functions: these are analytic on their entire domains. We have thought a little about the square-root function and seen some difficulties. The remaining elementary functions are the exponential, logarithmic and trigonometric functions. 3.1 The Exponential and Logarithmic Functions (§30–32, 34) We have already defined the exponential function exp : C ! C : z 7! ez using Euler’s formula ez := ex cos y + iex sin y (∗) and seen that its real and imaginary parts satisfy the Cauchy–Riemann equations on C, whence exp C d z = z is entire (analytic on ). Indeed recall that dz e e . We have also seen several of the basic properties of the exponential function, we state these and several others for reference. Lemma 3.1. Throughout let z, w 2 C. 1. ez 6= 0. ez 2. ez+w = ezew and ez−w = ew 3. For all n 2 Z, (ez)n = enz. 4. ez is periodic with period 2pi. Indeed more is true: ez = ew () z − w = 2pin for some n 2 Z Proof. Part 1 follows trivially from (∗). To prove 2, recall the multiple-angle formulae for cosine and sine. Part 3 requires an induction using part 2 with z = w. Part 4 is more interesting: certainly ew+2pin = ew by the periodicity of sine and cosine. Now suppose ez = ew where z = x + iy and w = u + iv. Then, by considering the modulus and argument, ( ex = eu exeiy = eueiv =) y = v + 2pin for some n 2 Z We conclude that x = u and so z − w = i(y − v) = 2pin.
    [Show full text]
  • Complex Analysis
    Complex Analysis Andrew Kobin Fall 2010 Contents Contents Contents 0 Introduction 1 1 The Complex Plane 2 1.1 A Formal View of Complex Numbers . .2 1.2 Properties of Complex Numbers . .4 1.3 Subsets of the Complex Plane . .5 2 Complex-Valued Functions 7 2.1 Functions and Limits . .7 2.2 Infinite Series . 10 2.3 Exponential and Logarithmic Functions . 11 2.4 Trigonometric Functions . 14 3 Calculus in the Complex Plane 16 3.1 Line Integrals . 16 3.2 Differentiability . 19 3.3 Power Series . 23 3.4 Cauchy's Theorem . 25 3.5 Cauchy's Integral Formula . 27 3.6 Analytic Functions . 30 3.7 Harmonic Functions . 33 3.8 The Maximum Principle . 36 4 Meromorphic Functions and Singularities 37 4.1 Laurent Series . 37 4.2 Isolated Singularities . 40 4.3 The Residue Theorem . 42 4.4 Some Fourier Analysis . 45 4.5 The Argument Principle . 46 5 Complex Mappings 47 5.1 M¨obiusTransformations . 47 5.2 Conformal Mappings . 47 5.3 The Riemann Mapping Theorem . 47 6 Riemann Surfaces 48 6.1 Holomorphic and Meromorphic Maps . 48 6.2 Covering Spaces . 52 7 Elliptic Functions 55 7.1 Elliptic Functions . 55 7.2 Elliptic Curves . 61 7.3 The Classical Jacobian . 67 7.4 Jacobians of Higher Genus Curves . 72 i 0 Introduction 0 Introduction These notes come from a semester course on complex analysis taught by Dr. Richard Carmichael at Wake Forest University during the fall of 2010. The main topics covered include Complex numbers and their properties Complex-valued functions Line integrals Derivatives and power series Cauchy's Integral Formula Singularities and the Residue Theorem The primary reference for the course and throughout these notes is Fisher's Complex Vari- ables, 2nd edition.
    [Show full text]
  • Complex Analysis
    COMPLEX ANALYSIS MARCO M. PELOSO Contents 1. Holomorphic functions 1 1.1. The complex numbers and power series 1 1.2. Holomorphic functions 3 1.3. Exercises 7 2. Complex integration and Cauchy's theorem 9 2.1. Cauchy's theorem for a rectangle 12 2.2. Cauchy's theorem in a disk 13 2.3. Cauchy's formula 15 2.4. Exercises 17 3. Examples of holomorphic functions 18 3.1. Power series 18 3.2. The complex logarithm 20 3.3. The binomial series 23 3.4. Exercises 23 4. Consequences of Cauchy's integral formula 25 4.1. Expansion of a holomorphic function in Taylor series 25 4.2. Further consequences of Cauchy's integral formula 26 4.3. The identity principle 29 4.4. The open mapping theorem and the principle of maximum modulus 30 4.5. The general form of Cauchy's theorem 31 4.6. Exercises 36 5. Isolated singularities of holomorphic functions 37 5.1. The residue theorem 40 5.2. The Riemann sphere 42 5.3. Evalutation of definite integrals 43 5.4. The argument principle and Rouch´e's theorem 48 5.5. Consequences of Rouch´e'stheorem 49 5.6. Exercises 51 6. Conformal mappings 53 6.1. Fractional linear transformations 56 6.2. The Riemann mapping theorem 58 6.3. Exercises 63 7. Harmonic functions 65 7.1. Maximum principle 65 7.2. The Dirichlet problem 68 7.3. Exercises 71 8. Entire functions 72 8.1. Infinite products 72 Appunti per il corso Analisi Complessa per i Corsi di Laurea in Matematica dell'Universit`adi Milano.
    [Show full text]
  • Complex Numbers and Functions
    Complex Numbers and Functions Richard Crew January 20, 2018 This is a brief review of the basic facts of complex numbers, intended for students in my section of MAP 4305/5304. I will discuss basic facts of com- plex arithmetic, limits and derivatives of complex functions, power series and functions like the complex exponential, sine and cosine which can be defined by convergent power series. This is a preliminary version and will be added to later. 1 Complex Numbers 1.1 Arithmetic. A complex number is an expression a + bi where i2 = −1. Here the real number a is the real part of the complex number and bi is the imaginary part. If z is a complex number we write <(z) and =(z) for the real and imaginary parts respectively. Two complex numbers are equal if and only if their real and imaginary parts are equal. In particular a + bi = 0 only when a = b = 0. The set of complex numbers is denoted by C. Complex numbers are added, subtracted and multiplied according to the usual rules of algebra: (a + bi) + (c + di) = (a + c) + (b + di) (1.1) (a + bi) − (c + di) = (a − c) + (b − di) (1.2) (a + bi)(c + di) = (ac − bd) + (ad + bc)i (1.3) (note how i2 = −1 has been used in the last equation). Division performed by rationalizing the denominator: a + bi (a + bi)(c − di) (ac − bd) + (bc − ad)i = = (1.4) c + di (c + di)(c − di) c2 + d2 Note that denominator only vanishes if c + di = 0, so that a complex number can be divided by any nonzero complex number.
    [Show full text]
  • Universit`A Degli Studi Di Perugia the Lambert W Function on Matrices
    Universita` degli Studi di Perugia Facolta` di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Informatica The Lambert W function on matrices Candidato Relatore MassimilianoFasi BrunoIannazzo Contents Preface iii 1 The Lambert W function 1 1.1 Definitions............................. 1 1.2 Branches.............................. 2 1.3 Seriesexpansions ......................... 10 1.3.1 Taylor series and the Lagrange Inversion Theorem. 10 1.3.2 Asymptoticexpansions. 13 2 Lambert W function for scalar values 15 2.1 Iterativeroot-findingmethods. 16 2.1.1 Newton’smethod. 17 2.1.2 Halley’smethod . 18 2.1.3 K¨onig’s family of iterative methods . 20 2.2 Computing W ........................... 22 2.2.1 Choiceoftheinitialvalue . 23 2.2.2 Iteration.......................... 26 3 Lambert W function for matrices 29 3.1 Iterativeroot-findingmethods. 29 3.1.1 Newton’smethod. 31 3.2 Computing W ........................... 34 3.2.1 Computing W (A)trougheigenvectors . 34 3.2.2 Computing W (A) trough an iterative method . 36 A Complex numbers 45 A.1 Definitionandrepresentations. 45 B Functions of matrices 47 B.1 Definitions............................. 47 i ii CONTENTS C Source code 51 C.1 mixW(<branch>, <argument>) ................. 51 C.2 blockW(<branch>, <argument>, <guess>) .......... 52 C.3 matW(<branch>, <argument>) ................. 53 Preface Main aim of the present work was learning something about a not- so-widely known special function, that we will formally call Lambert W function. This function has many useful applications, although its presence goes sometimes unrecognised, in mathematics and in physics as well, and we found some of them very curious and amusing. One of the strangest situation in which it comes out is in writing in a simpler form the function .
    [Show full text]
  • Chapter 2 Complex Analysis
    Chapter 2 Complex Analysis In this part of the course we will study some basic complex analysis. This is an extremely useful and beautiful part of mathematics and forms the basis of many techniques employed in many branches of mathematics and physics. We will extend the notions of derivatives and integrals, familiar from calculus, to the case of complex functions of a complex variable. In so doing we will come across analytic functions, which form the centerpiece of this part of the course. In fact, to a large extent complex analysis is the study of analytic functions. After a brief review of complex numbers as points in the complex plane, we will ¯rst discuss analyticity and give plenty of examples of analytic functions. We will then discuss complex integration, culminating with the generalised Cauchy Integral Formula, and some of its applications. We then go on to discuss the power series representations of analytic functions and the residue calculus, which will allow us to compute many real integrals and in¯nite sums very easily via complex integration. 2.1 Analytic functions In this section we will study complex functions of a complex variable. We will see that di®erentiability of such a function is a non-trivial property, giving rise to the concept of an analytic function. We will then study many examples of analytic functions. In fact, the construction of analytic functions will form a basic leitmotif for this part of the course. 2.1.1 The complex plane We already discussed complex numbers briefly in Section 1.3.5.
    [Show full text]
  • An Example of a Covering Surface with Movable Natural Boundaries
    An example of a covering surface with movable natural boundaries Claudi Meneghin November 13, 2018 Abstract We exhibit a covering surface of the punctured complex plane (with no points over 0) whose natural projection mapping fails to be a topo- logical covering, due to the existence of branches with natural bound- ∗ aries, projecting over different slits in C . In [1], A.F.Beardon shows an example of a ’covering surface’ over a region in the unit disc which is not a topological covering (We recall that a ’covering surface’ of a region D ⊂ C is a Riemann surface S admitting a surjective conformal mapping onto D, among which there are the analytical continua- tions of holomorphic germs; a continuous mapping p of a topological space Y onto another one X is a ’topological covering’ provided that each point x ∈ X admits an open neighbourhood U such that the restriction of p to −1 each connected component Vi of p (U) is a homeomorphism of Vi onto U, see [2, 3]). Beardon’s example takes origin by the analytical continuation of a holo- morphic germ, namely a branch of the inverse of the Blaschke product arXiv:math/0408086v3 [math.CV] 11 Jul 2008 ∞ z − a B(z)= n , n 1 − anz Y=1 with suitable hypotheses about the an’s. It is shown that there is a sequence of inverse branches fk of B at 0 such that the radii of convergence of their Taylor developments tend to 0 as k →∞. This of course prevents the natural projection (taking a germ at z0 to the point z0) of the analytical continuation of any branch of B−1 to be a topological covering.
    [Show full text]
  • On the Lambert W Function 329
    On the Lambert W function 329 The text below is the same as that published in Advances in Computational Mathematics, Vol 5 (1996) 329 – 359, except for a minor correction after equation (1.1). The pagination matches the published version until the bibliography. On the Lambert W Function R. M. Corless1,G.H.Gonnet2,D.E.G.Hare3,D.J.Jeffrey1 andD.E.Knuth4 1Department of Applied Mathematics, University of Western Ontario, London, Canada, N6A 5B7 2Institut f¨ur Wissenschaftliches Rechnen, ETH Z¨urich, Switzerland 3Symbolic Computation Group, University of Waterloo, Waterloo, Canada, N2L 3G1 4Department of Computer Science, Stanford University, Stanford, California, USA 94305-2140 Abstract The Lambert W function is defined to be the multivalued inverse of the function w → wew. It has many applications in pure and applied mathematics, some of which are briefly described here. We present a new discussion of the complex branches of W ,an asymptotic expansion valid for all branches, an efficient numerical procedure for evaluating the function to arbitrary precision, and a method for the symbolic integration of expressions containing W . 1. Introduction In 1758, Lambert solved the trinomial equation x = q +xm by giving a series develop- ment for x in powers of q. Later, he extended the series to give powers of x as well [48,49]. In [28], Euler transformed Lambert’s equation into the more symmetrical form xα − xβ =(α − β)vxα+β (1.1) by substituting x−β for x and setting m = α/β and q =(α − β)v. Euler’s version of Lambert’s series solution was thus n 1 2 x =1+nv + 2 n(n + α + β)v + 1 n(n + α +2β)(n +2α + β)v3 6 (1.2) 1 4 + 24 n(n + α +3β)(n +2α +2β)(n +3α + β)v +etc.
    [Show full text]
  • Complex Numbers Sections 13.5, 13.6 & 13.7
    Complex exponential Trigonometric and hyperbolic functions Complex logarithm Complex power function Chapter 13: Complex Numbers Sections 13.5, 13.6 & 13.7 Chapter 13: Complex Numbers Complex exponential Trigonometric and hyperbolic functions Definition Complex logarithm Properties Complex power function 1. Complex exponential The exponential of a complex number z = x + iy is defined as exp(z)=exp(x + iy)=exp(x) exp(iy) =exp(x)(cos(y)+i sin(y)) . As for real numbers, the exponential function is equal to its derivative, i.e. d z z . dz exp( )=exp( ) (1) The exponential is therefore entire. You may also use the notation exp(z)=ez . Chapter 13: Complex Numbers Complex exponential Trigonometric and hyperbolic functions Definition Complex logarithm Properties Complex power function Properties of the exponential function The exponential function is periodic with period 2πi: indeed, for any integer k ∈ Z, exp(z +2kπi)=exp(x)(cos(y +2kπ)+i sin(y +2kπ)) =exp(x)(cos(y)+i sin(y)) = exp(z). Moreover, | exp(z)| = | exp(x)||exp(iy)| = exp(x) cos2(y)+sin2(y) = exp(x)=exp(e(z)) . As with real numbers, exp(z1 + z2)=exp(z1) exp(z2); exp(z) =0. Chapter 13: Complex Numbers Complex exponential Trigonometric and hyperbolic functions Trigonometric functions Complex logarithm Hyperbolic functions Complex power function 2. Trigonometric functions The complex sine and cosine functions are defined in a way similar to their real counterparts, eiz + e−iz eiz − e−iz cos(z)= , sin(z)= . (2) 2 2i The tangent, cotangent, secant and cosecant are defined as usual. For instance, sin(z) 1 tan(z)= , sec(z)= , etc.
    [Show full text]
  • The Complex Logarithm, Exponential and Power Functions
    Physics 116A Winter 2011 The complex logarithm, exponential and power functions In these notes, we examine the logarithm, exponential and power functions, where the arguments∗ of these functions can be complex numbers. In particular, we are interested in how their properties differ from the properties of the corresponding real-valued functions.† 1. Review of the properties of the argument of a complex number Before we begin, I shall review the properties of the argument of a non-zero complex number z, denoted by arg z (which is a multi-valued function), and the principal value of the argument, Arg z, which is single-valued and conventionally defined such that: π < Arg z π . (1) − ≤ Details can be found in the class handout entitled, The argument of a complex number. Here, we recall a number of results from that handout. One can regard arg z as a set consisting of the following elements, arg z = Arg z +2πn, n =0 , 1 , 2 , 3 ,..., π < Arg z π . (2) ± ± ± − ≤ One can also express Arg z in terms of arg z as follows: 1 arg z Arg z = arg z +2π , (3) 2 − 2π where [ ] denotes the greatest integer function. That is, [x] is defined to be the largest integer less than or equal to the real number x. Consequently, [x] is the unique integer that satisfies the inequality x 1 < [x] x , for real x and integer [x] . (4) − ≤ ∗Note that the word argument has two distinct meanings. In this context, given a function w = f(z), we say that z is the argument of the function f.
    [Show full text]
  • Complex Numbers Sections 13.5, 13.6 & 13.7
    Complex exponential Trigonometric and hyperbolic functions Complex logarithm Complex power function Chapter 13: Complex Numbers Sections 13.5, 13.6 & 13.7 Chapter 13: Complex Numbers Complex exponential Trigonometric and hyperbolic functions Definition Complex logarithm Properties Complex power function 1. Complex exponential The exponential of a complex number z = x + iy is defined as exp(z)=exp(x + iy)=exp(x) exp(iy) =exp(x)(cos(y)+i sin(y)) . As for real numbers, the exponential function is equal to its derivative, i.e. d exp(z)=exp(z). (1) dz The exponential is therefore entire. You may also use the notation exp(z)=ez . Chapter 13: Complex Numbers Complex exponential Trigonometric and hyperbolic functions Definition Complex logarithm Properties Complex power function Properties of the exponential function The exponential function is periodic with period 2πi: indeed, for any integer k ∈ Z, exp(z +2kπi)=exp(x)(cos(y +2kπ)+i sin(y +2kπ)) =exp(x)(cos(y)+i sin(y)) = exp(z). Moreover, | exp(z)| = | exp(x)||exp(iy)| = exp(x) cos2(y)+sin2(y) = exp(x)=exp(e(z)) . As with real numbers, exp(z1 + z2)=exp(z1) exp(z2); exp(z) =0. Chapter 13: Complex Numbers Complex exponential Trigonometric and hyperbolic functions Trigonometric functions Complex logarithm Hyperbolic functions Complex power function 2. Trigonometric functions The complex sine and cosine functions are defined in a way similar to their real counterparts, eiz + e−iz eiz − e−iz cos(z)= , sin(z)= . (2) 2 2i The tangent, cotangent, secant and cosecant are defined as usual. For instance, sin(z) 1 tan(z)= , sec(z)= , etc.
    [Show full text]