100 YEARS of RELATIVITY Space-Time Structure: Einstein and Beyond Copyright © 2005 by World Scientific Publishing Co

Total Page:16

File Type:pdf, Size:1020Kb

100 YEARS of RELATIVITY Space-Time Structure: Einstein and Beyond Copyright © 2005 by World Scientific Publishing Co This page intentionally left blank 100 Years Relativity Space-Time Structure: Einstein and Beyond This page intentionally left blank KMears Relativity Space-Time Structure: Einstein and Beyond editor Abhay Ashtekar Institute for Gravitational Physics and Geometry, Pennsylvania State University, USA "X Vfe World Scientific \ 11B^ NEW JERSEY' • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONHONG KONG • TAIPEI • CHENNAI Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Cover Art by Dr. Cliff Pickover, Pickover.Com 100 YEARS OF RELATIVITY Space-Time Structure: Einstein and Beyond Copyright © 2005 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN 981-256-394-6 Printed in Singapore. October 12, 2005 14:40 WSPC/Trim Size: 9in x 6in for Review Volume preface PREFACE The goal of this volume is to describe how our understanding of space-time structure has evolved since Einstein's path-breaking 1905 paper on special relativity and how it might further evolve in the next century. Preoccupation with notions of Space (the Heavens) and Time (the Beginning, the Change and the End) can be traced back to at least 2500 years ago. Early thinkers from Lao Tsu in China and Gautama Buddha in India to Aristotle in Greece discussed these issues at length. Over cen- turies, the essence of Aristotle's commentaries crystallized in the Western consciousness, providing us with mental images that we commonly use. We think of space as a three-dimensional continuum which envelops us. We think of time as flowing serenely, all by itself, unaffected by forces in the physical universe. Together, they provide a stage on which the drama of interactions unfolds. The actors are everything else | stars and planets, ra- diation and matter, you and me. In Newton's hands, these ideas evolved and acquired a mathematically precise form. In his masterpiece, the Principia, Newton spelled out properties of space and the absolute nature of time. The Principia proved to be an intellectual tour de force that advanced Science in an unprecedented fashion. Because of its magnificent success, the notions of space and time which lie at its foundations were soon taken to be obvious and self-evident. They constituted the pillars on which physics rested for over two centuries. It was young Einstein who overturned those notions in his paper on special relativity, published on 26th September 1905 in Annalen der Physik (Leipzig). Lorentz and Poincar´e had discovered many of the essential math- ematical underpinnings of that theory. However, it was Einstein, and Ein- stein alone, who discovered the key physical fact | the Newtonian notion of absolute simultaneity is physically incorrect. Lorentz transformations of time intervals and spatial lengths are not just convenient mathematical ways of reconciling experimental findings. They are physical facts. Newton's assertion that the time interval between events is absolute and observer- independent fails in the real world. The Galilean formula for transformation of spatial distances between two events is physically incorrect. What seemed obvious and self-evident for over two centuries is neither. Thus, the model v October 12, 2005 14:40 WSPC/Trim Size: 9in x 6in for Review Volume preface vi A. Ashtekar of space-time that emerged from special relativity was very different from that proposed in the Principia. Space-time structure of special relativity has numerous radical ramifica- tions | such as the twin \paradox" and the celebrated relation E = Mc2 between mass and energy | that are now well known to all physicists. However, as in the Principia, space-time continues to remain a backdrop, an inert arena for dynamics, which cannot be acted upon. This view was toppled in 1915, again by Einstein, through his discovery of general rela- tivity. The development of non-Euclidean geometries had led to the idea, expounded most eloquently by Bernhard Riemann in 1854, that the geom- etry of physical space may not obey Euclid's axioms | it may be curved due to the presence of matter in the universe. Karl Schwarzschild even tried to measure this curvature as early as 1900. But these ideas had remained speculative. General relativity provided both a comprehensive conceptual foundation and a precise mathematical framework for their realization. In general relativity, gravitational force is not like any other force of Nature; it is encoded in the very geometry of space-time. Curvature of space-time provides a direct measure of its strength. Consequently, space- time is not an inert entity. It acts on matter and can be acted upon. As John Wheeler puts it: Matter tells space-time how to bend and space-time tells matter how to move. There are no longer any spectators in the cosmic dance, nor a backdrop on which things happen. The stage itself joins the troupe of actors. This is a profound paradigm shift. Since all physical systems reside in space and time, this shift shook the very foundations of natural philosophy. It has taken decades for physicists to come to grips with the numerous ramifications of this shift and philosophers to come to terms with the new vision of reality that grew out of it. Einstein was motivated by two seemingly simple observations. First, as Galileo demonstrated through his famous experiments at the leaning tower of Pisa, the effect of gravity is universal: all bodies fall the same way if the only force acting on them is gravitational. This is a direct consequence of the equality of the inertial and gravitational mass. Second, gravity is always attractive. This is in striking contrast with, say, the electric force where unlike charges attract while like charges repel. As a result, while one can easily create regions in which the electric field vanishes, one cannot build gravity shields. Thus, gravity is omnipresent and nondiscriminating; it is everywhere and acts on everything the same way. These two facts make gravity unlike any other fundamental force and suggest that gravity is a manifestation of something deeper and universal. Since space-time is October 12, 2005 14:40 WSPC/Trim Size: 9in x 6in for Review Volume preface Preface vii also omnipresent and the same for all physical systems, Einstein was led to regard gravity not as a force but a manifestation of space-time geometry. Space-time of general relativity is supple, depicted in the popular literature as a rubber sheet, bent by massive bodies. The sun, for example, bends space-time nontrivially. Planets like earth move in this curved geometry. In a precise mathematical sense, they follow the simplest trajectories called geodesics | generalizations of straight lines of the flat geometry of Euclid to the curved geometry of Riemann. Therefore, the space-time trajectory of earth is as \straight" as it could be. When projected into spatial sec- tions defined by sun's rest frame, it appears elliptical from the flat space perspective of Euclid and Newton. The magic of general relativity is that, through elegant mathematics, it transforms these conceptually simple ideas into concrete equations and uses them to make astonishing predictions about the nature of physical re- ality. It predicts that clocks should tick faster on Mont Blanc than in Nice. Galactic nuclei should act as giant gravitational lenses and provide spectac- ular, multiple images of distant quasars. Two neutron stars orbiting around each other must lose energy through ripples in the curvature of space-time caused by their motion and spiral inward in an ever tightening embrace. Over the last thirty years, precise measurements have been performed to test if these and other even more exotic predictions are correct. Each time, general relativity has triumphed. The accuracy of some of these observa- tions exceeds that of the legendary tests of quantum electrodynamics. This combination of conceptual depth, mathematical elegance and observational success is unprecedented. This is why general relativity is widely regarded as the most sublime of all scientific creations. Perhaps the most dramatic ramifications of the dynamical nature of geometry are gravitational waves, black holes and the big-bang.a aHistory has a tinge of irony | Einstein had difficulty with all three! Like all his con- temporaries, he believed in a static universe. Because he could not find a static solution to his original field equations, in 1917 he introduced a cosmological constant term whose repulsive effect could balance the gravitational attraction, leading to a large scale time independence. His belief in the static universe was so strong that when Alexander Fried- mann discovered in 1922 that the original field equations admit a cosmological solution depicting an expanding universe, for a whole year, Einstein thought Friedmann had made an error. It was only in 1931, after Hubble's discovery that the universe is in fact dy- namical and expanding that Einstein abandoned the extra term and fully embraced the expanding universe. The story of gravitational waves is even more surprising. In 1936 Einstein and Nathan Rosen submitted a paper to Physical Review in which they argued that Einstein's 1917 weak field analysis was misleading and in fact gravitational waves do not exist in full general relativity.
Recommended publications
  • AST 541 Lecture Notes: Classical Cosmology Sep, 2018
    ClassicalCosmology | 1 AST 541 Lecture Notes: Classical Cosmology Sep, 2018 In the next two weeks, we will cover the basic classic cosmology. The material is covered in Longair Chap 5 - 8. We will start with discussions on the first basic assumptions of cosmology, that our universe obeys cosmological principles and is expanding. We will introduce the R-W metric, which describes how to measure distance in cosmology, and from there discuss the meaning of measurements in cosmology, such as redshift, size, distance, look-back time, etc. Then we will introduce the second basic assumption in cosmology, that the gravity in the universe is described by Einstein's GR. We will not discuss GR in any detail in this class. Instead, we will use a simple analogy to introduce the basic dynamical equation in cosmology, the Friedmann equations. We will look at the solutions of Friedmann equations, which will lead us to the definition of our basic cosmological parameters, the density parameters, Hubble constant, etc., and how are they related to each other. Finally, we will spend sometime discussing the measurements of these cosmological param- eters, how to arrive at our current so-called concordance cosmology, which is described as being geometrically flat, with low matter density and a dominant cosmological parameter term that gives the universe an acceleration in its expansion. These next few lectures are the foundations of our class. You might have learned some of it in your undergraduate astronomy class; now we are dealing with it in more detail and more rigorously. 1 Cosmological Principles The crucial principles guiding cosmology theory are homogeneity and expansion.
    [Show full text]
  • Expanding Space, Quasars and St. Augustine's Fireworks
    Universe 2015, 1, 307-356; doi:10.3390/universe1030307 OPEN ACCESS universe ISSN 2218-1997 www.mdpi.com/journal/universe Article Expanding Space, Quasars and St. Augustine’s Fireworks Olga I. Chashchina 1;2 and Zurab K. Silagadze 2;3;* 1 École Polytechnique, 91128 Palaiseau, France; E-Mail: [email protected] 2 Department of physics, Novosibirsk State University, Novosibirsk 630 090, Russia 3 Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk 630 090, Russia * Author to whom correspondence should be addressed; E-Mail: [email protected]. Academic Editors: Lorenzo Iorio and Elias C. Vagenas Received: 5 May 2015 / Accepted: 14 September 2015 / Published: 1 October 2015 Abstract: An attempt is made to explain time non-dilation allegedly observed in quasar light curves. The explanation is based on the assumption that quasar black holes are, in some sense, foreign for our Friedmann-Robertson-Walker universe and do not participate in the Hubble flow. Although at first sight such a weird explanation requires unreasonably fine-tuned Big Bang initial conditions, we find a natural justification for it using the Milne cosmological model as an inspiration. Keywords: quasar light curves; expanding space; Milne cosmological model; Hubble flow; St. Augustine’s objects PACS classifications: 98.80.-k, 98.54.-h You’d think capricious Hebe, feeding the eagle of Zeus, had raised a thunder-foaming goblet, unable to restrain her mirth, and tipped it on the earth. F.I.Tyutchev. A Spring Storm, 1828. Translated by F.Jude [1]. 1. Introduction “Quasar light curves do not show the effects of time dilation”—this result of the paper [2] seems incredible.
    [Show full text]
  • An Analysis of Gravitational Redshift from Rotating Body
    An analysis of gravitational redshift from rotating body Anuj Kumar Dubey∗ and A K Sen† Department of Physics, Assam University, Silchar-788011, Assam, India. (Dated: July 29, 2021) Gravitational redshift is generally calculated without considering the rotation of a body. Neglect- ing the rotation, the geometry of space time can be described by using the spherically symmetric Schwarzschild geometry. Rotation has great effect on general relativity, which gives new challenges on gravitational redshift. When rotation is taken into consideration spherical symmetry is lost and off diagonal terms appear in the metric. The geometry of space time can be then described by using the solutions of Kerr family. In the present paper we discuss the gravitational redshift for rotating body by using Kerr metric. The numerical calculations has been done under Newtonian approximation of angular momentum. It has been found that the value of gravitational redshift is influenced by the direction of spin of central body and also on the position (latitude) on the central body at which the photon is emitted. The variation of gravitational redshift from equatorial to non - equatorial region has been calculated and its implications are discussed in detail. I. INTRODUCTION from principle of equivalence. Snider in 1972 has mea- sured the redshift of the solar potassium absorption line General relativity is not only relativistic theory of grav- at 7699 A˚ by using an atomic - beam resonance - scat- itation proposed by Einstein, but it is the simplest theory tering technique [5]. Krisher et al. in 1993 had measured that is consistent with experimental data. Predictions of the gravitational redshift of Sun [6].
    [Show full text]
  • The Chiral De Rham Complex of Tori and Orbifolds
    The Chiral de Rham Complex of Tori and Orbifolds Dissertation zur Erlangung des Doktorgrades der Fakult¨atf¨urMathematik und Physik der Albert-Ludwigs-Universit¨at Freiburg im Breisgau vorgelegt von Felix Fritz Grimm Juni 2016 Betreuerin: Prof. Dr. Katrin Wendland ii Dekan: Prof. Dr. Gregor Herten Erstgutachterin: Prof. Dr. Katrin Wendland Zweitgutachter: Prof. Dr. Werner Nahm Datum der mundlichen¨ Prufung¨ : 19. Oktober 2016 Contents Introduction 1 1 Conformal Field Theory 4 1.1 Definition . .4 1.2 Toroidal CFT . .8 1.2.1 The free boson compatified on the circle . .8 1.2.2 Toroidal CFT in arbitrary dimension . 12 1.3 Vertex operator algebra . 13 1.3.1 Complex multiplication . 15 2 Superconformal field theory 17 2.1 Definition . 17 2.2 Ising model . 21 2.3 Dirac fermion and bosonization . 23 2.4 Toroidal SCFT . 25 2.5 Elliptic genus . 26 3 Orbifold construction 29 3.1 CFT orbifold construction . 29 3.1.1 Z2-orbifold of toroidal CFT . 32 3.2 SCFT orbifold . 34 3.2.1 Z2-orbifold of toroidal SCFT . 36 3.3 Intersection point of Z2-orbifold and torus models . 38 3.3.1 c = 1...................................... 38 3.3.2 c = 3...................................... 40 4 Chiral de Rham complex 41 4.1 Local chiral de Rham complex on CD ...................... 41 4.2 Chiral de Rham complex sheaf . 44 4.3 Cechˇ cohomology vertex algebra . 49 4.4 Identification with SCFT . 49 4.5 Toric geometry . 50 5 Chiral de Rham complex of tori and orbifold 53 5.1 Dolbeault type resolution . 53 5.2 Torus .
    [Show full text]
  • Higher AGT Correspondences, W-Algebras, and Higher Quantum
    Higher AGT Correspon- dences, W-algebras, and Higher Quantum Geometric Higher AGT Correspondences, W-algebras, Langlands Duality from M-Theory and Higher Quantum Geometric Langlands Meng-Chwan Duality from M-Theory Tan Introduction Review of 4d Meng-Chwan Tan AGT 5d/6d AGT National University of Singapore W-algebras + Higher QGL SUSY gauge August 3, 2016 theory + W-algebras + QGL Higher GL Conclusion Presentation Outline Higher AGT Correspon- dences, Introduction W-algebras, and Higher Quantum Lightning Review: A 4d AGT Correspondence for Compact Geometric Langlands Lie Groups Duality from M-Theory A 5d/6d AGT Correspondence for Compact Lie Groups Meng-Chwan Tan W-algebras and Higher Quantum Geometric Langlands Introduction Duality Review of 4d AGT Supersymmetric Gauge Theory, W-algebras and a 5d/6d AGT Quantum Geometric Langlands Correspondence W-algebras + Higher QGL SUSY gauge Higher Geometric Langlands Correspondences from theory + W-algebras + M-Theory QGL Higher GL Conclusion Conclusion 6d/5d/4d AGT Correspondence in Physics and Mathematics Higher AGT Correspon- Circa 2009, Alday-Gaiotto-Tachikawa [1] | showed that dences, W-algebras, the Nekrasov instanton partition function of a 4d N = 2 and Higher Quantum conformal SU(2) quiver theory is equivalent to a Geometric Langlands conformal block of a 2d CFT with W2-symmetry that is Duality from M-Theory Liouville theory. This was henceforth known as the Meng-Chwan celebrated 4d AGT correspondence. Tan Circa 2009, Wyllard [2] | the 4d AGT correspondence is Introduction Review of 4d proposed and checked (partially) to hold for a 4d N = 2 AGT conformal SU(N) quiver theory whereby the corresponding 5d/6d AGT 2d CFT is an AN−1 conformal Toda field theory which has W-algebras + Higher QGL WN -symmetry.
    [Show full text]
  • Arxiv:1109.4101V2 [Hep-Th]
    Quantum Open-Closed Homotopy Algebra and String Field Theory Korbinian M¨unster∗ Arnold Sommerfeld Center for Theoretical Physics, Theresienstrasse 37, D-80333 Munich, Germany Ivo Sachs† Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA 02138, USA and Arnold Sommerfeld Center for Theoretical Physics, Theresienstrasse 37, D-80333 Munich, Germany (Dated: September 28, 2018) Abstract We reformulate the algebraic structure of Zwiebach’s quantum open-closed string field theory in terms of homotopy algebras. We call it the quantum open-closed homotopy algebra (QOCHA) which is the generalization of the open-closed homo- topy algebra (OCHA) of Kajiura and Stasheff. The homotopy formulation reveals new insights about deformations of open string field theory by closed string back- grounds. In particular, deformations by Maurer Cartan elements of the quantum closed homotopy algebra define consistent quantum open string field theories. arXiv:1109.4101v2 [hep-th] 19 Oct 2011 ∗Electronic address: [email protected] †Electronic address: [email protected] 2 Contents I. Introduction 3 II. Summary 4 III. A∞- and L∞-algebras 7 A. A∞-algebras 7 B. L∞-algebras 10 IV. Homotopy involutive Lie bialgebras 12 A. Higher order coderivations 12 B. IBL∞-algebra 13 C. IBL∞-morphisms and Maurer Cartan elements 15 V. Quantum open-closed homotopy algebra 15 A. Loop homotopy algebra of closed strings 17 B. IBL structure on cyclic Hochschild complex 18 C. Quantum open-closed homotopy algebra 19 VI. Deformations and the quantum open-closed correspondence 23 A. Quantum open string field theory 23 B. Quantum open-closed correspondence 24 VII.
    [Show full text]
  • Fakultät Für Physik Und Astronomie Arxiv:1109.5551V1 [Astro-Ph.CO] 26
    Fakult¨at fur¨ Physik und Astronomie Ruprecht-Karls-Universit¨at Heidelberg Diplomarbeit im Studiengang Physik vorgelegt von Adrian Vollmer geboren in Ochsenfurt arXiv:1109.5551v1 [astro-ph.CO] 26 Sep 2011 2011 Forecasting Constraints on the Evolution of the Hubble Parameter and the Growth Function by Future Weak Lensing Surveys This diploma thesis has been carried out by Adrian Vollmer at the Institute for Theoretical Physics under the supervision of Prof. Luca Amendola Zusammenfassung. Die kosmologische Information, die im Signal des schwa- che-Gravitationslinsen-Effekts verborgen ist, l¨asst sich mit Hilfe des Potenzspek- trums der sogenannten Konvergenz analysieren. Wir verwenden den Fisher-In- formation-Formalismus mit dem Konvergenz-Potenzspektrum als Observable, um abzusch¨atzen, wie gut zukunftige¨ Vermessungen schwacher Gravitationslinsen die Expansionrate und die Wachstumsfunktion als Funktionen der Rotverschiebung einschr¨anken k¨onnen, ohne eine bestimmtes Modell zu deren Parametrisierung zu Grunde zu legen. Hierfur¨ unterteilen wir den Rotverschiebungsraum in Bins ein und interpolieren diese beiden Funktionen linear zwischen den Mittelpunkten der Rotverschiebungsbins als Stutzpunkte,¨ wobei wir fur¨ deren Berechnung ein Be- zugsmodell verwenden. Gleichzeitig verwenden wir diese Bins fur¨ Potenzspektrum- Tomographie, wo wir nicht nur das Potenzspektrum in jedem Bin sondern auch deren Kreuzkorrelation analysieren, um die extrahierte Information zu maximie- ren. Wir stellen fest, dass eine kleine Anzahl von Bins bei der gegebenen
    [Show full text]
  • Gravitational Redshift/Blueshift of Light Emitted by Geodesic
    Eur. Phys. J. C (2021) 81:147 https://doi.org/10.1140/epjc/s10052-021-08911-5 Regular Article - Theoretical Physics Gravitational redshift/blueshift of light emitted by geodesic test particles, frame-dragging and pericentre-shift effects, in the Kerr–Newman–de Sitter and Kerr–Newman black hole geometries G. V. Kraniotisa Section of Theoretical Physics, Physics Department, University of Ioannina, 451 10 Ioannina, Greece Received: 22 January 2020 / Accepted: 22 January 2021 / Published online: 11 February 2021 © The Author(s) 2021 Abstract We investigate the redshift and blueshift of light 1 Introduction emitted by timelike geodesic particles in orbits around a Kerr–Newman–(anti) de Sitter (KN(a)dS) black hole. Specif- General relativity (GR) [1] has triumphed all experimental ically we compute the redshift and blueshift of photons that tests so far which cover a wide range of field strengths and are emitted by geodesic massive particles and travel along physical scales that include: those in large scale cosmology null geodesics towards a distant observer-located at a finite [2–4], the prediction of solar system effects like the perihe- distance from the KN(a)dS black hole. For this purpose lion precession of Mercury with a very high precision [1,5], we use the killing-vector formalism and the associated first the recent discovery of gravitational waves in Nature [6–10], integrals-constants of motion. We consider in detail stable as well as the observation of the shadow of the M87 black timelike equatorial circular orbits of stars and express their hole [11], see also [12]. corresponding redshift/blueshift in terms of the metric physi- The orbits of short period stars in the central arcsecond cal black hole parameters (angular momentum per unit mass, (S-stars) of the Milky Way Galaxy provide the best current mass, electric charge and the cosmological constant) and the evidence for the existence of supermassive black holes, in orbital radii of both the emitter star and the distant observer.
    [Show full text]
  • A Hypothesis About the Predominantly Gravitational Nature of Redshift in the Electromagnetic Spectra of Space Objects Stepan G
    A Hypothesis about the Predominantly Gravitational Nature of Redshift in the Electromagnetic Spectra of Space Objects Stepan G. Tiguntsev Irkutsk National Research Technical University 83 Lermontov St., Irkutsk, 664074, Russia [email protected] Abstract. The study theoretically substantiates the relationship between the redshift in the electromagnetic spectrum of space objects and their gravity and demonstrates it with computational experiments. Redshift, in this case, is a consequence of a decrease in the speed of the photons emitted from the surface of objects, which is caused by the gravity of these objects. The decline in the speed of photons due to the gravity of space gravitating object (GO) is defined as ΔC = C-C ', where: C' is the photon speed changed by the time the receiver records it. Then, at a change in the photon speed between a stationary source and a receiver, the redshift factor is determined as Z = (C-C ')/C'. Computational experiments determined the gravitational redshift of the Earth, the Sun, a neutron star, and a quasar. Graph of the relationship between the redshift and the ratio of sizes to the mass of any space GOs was obtained. The findings indicate that the distance to space objects does not depend on the redshift of these objects. Keywords: redshift, computational experiment, space gravitating object, photon, radiation source, and receiver. 1. Introduction In the electromagnetic spectrum of space objects, redshift is assigned a significant role in creating a physical picture of the Universe. Redshift is observed in almost all space objects (stars, galaxies, quasars, and others). As a consequence of the Doppler effect, redshift indicates the movement of almost all space objects from an observer on the Earth [1].
    [Show full text]
  • An Interpretation of Milne Cosmology
    An Interpretation of Milne Cosmology Alasdair Macleod University of the Highlands and Islands Lews Castle College Stornoway Isle of Lewis HS2 0XR UK [email protected] Abstract The cosmological concordance model is consistent with all available observational data, including the apparent distance and redshift relationship for distant supernovae, but it is curious how the Milne cosmological model is able to make predictions that are similar to this preferred General Relativistic model. Milne’s cosmological model is based solely on Special Relativity and presumes a completely incompatible redshift mechanism; how then can the predictions be even remotely close to observational data? The puzzle is usually resolved by subsuming the Milne Cosmological model into General Relativistic cosmology as the special case of an empty Universe. This explanation may have to be reassessed with the finding that spacetime is approximately flat because of inflation, whereupon the projection of cosmological events onto the observer’s Minkowski spacetime must always be kinematically consistent with Special Relativity, although the specific dynamics of the underlying General Relativistic model can give rise to virtual forces in order to maintain consistency between the observation and model frames. I. INTRODUCTION argument is that a clear distinction must be made between models, which purport to explain structure and causes (the Edwin Hubble’s discovery in the 1920’s that light from extra- ‘Why?’), and observational frames which simply impart galactic nebulae is redshifted in linear proportion to apparent consistency and causality on observation (the ‘How?’). distance was quickly associated with General Relativity (GR), and explained by the model of a closed finite Universe curved However, it can also be argued this approach does not actually under its own gravity and expanding at a rate constrained by the explain the similarity in the predictive power of Milne enclosed mass.
    [Show full text]
  • Iterated Loop Modules and a Filtration for Vertex Representation of Toroidal Lie Algebras
    Pacific Journal of Mathematics ITERATED LOOP MODULES AND A FILTRATION FOR VERTEX REPRESENTATION OF TOROIDAL LIE ALGEBRAS S. ESWARA RAO Volume 171 No. 2 December 1995 PACIFIC JOURNAL OF MATHEMATICS Vol. 171, No. 2, 1995 ITERATED LOOP MODULES AND A FILTERATION FOR VERTEX REPRESENTATION OF TOROIDAL LIE ALGEBRAS S. ESWARA RAO The purpose of this paper is two fold. The first one is to construct a continuous new family of irreducible (some of them are unitarizable) modules for Toroidal algebras. The second one is to describe the sub-quotients of the (integrable) modules constructed through the use of Vertex operators. Introduction. Toroidal algebras r[d] are defined for every d > 1 and when d — 1 they are precisely the untwisted affine Lie-algebras. Such an affine algebra Q can be realized as the universal central extension of the loop algebra Q ®C[t, t"1] where Q is simple finite dimensional Lie-algebra over C. It is well known that Q is a one dimensional central extension of Q ®C[ί, ί"1]. The Toroidal algebras ηd] are the universal central extensions of the iterated loop algebra Q ®C[tfλ, tJ1] which, for d > 2, turnout to be infinite central extension. These algebras are interesting because they are related to the Lie-algebra of Map (X, G), the infinite dimensional group of polynomial maps of X to the complex algebraic group G where X is a d-dimensional torus. For additional material on recent developments in the theory of Toroidal algebras one may consult [BC], [FM] and [MS]. In [MEY] and [EM] a countable family of modules (also integrable see [EMY]) are constructed for Toroidal algebras on Fock space through the use of Vertex Operators (Theorem 3.4, [EM]).
    [Show full text]
  • Unified Approach to Redshift in Cosmological/Black Hole
    Unified approach to redshift in cosmological /black hole spacetimes and synchronous frame A. V. Toporensky Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetsky Prospect, 13, Moscow 119991, Russia and Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia∗ O. B. Zaslavskii Department of Physics and Technology, Kharkov V.N. Karazin National University, 4 Svoboda Square, Kharkov 61022, Ukraine and Kazan Federal University, Kremlevskaya 18, Kazan 420008 Russia† S. B. Popov Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetsky Prospect, 13, Moscow 119991, Russia Usually, interpretation of redshift in static spacetimes (for example, near black holes) is opposed to that in cosmology. In this methodological note we show that both explanations are unified in a natural picture. This is achieved if, considering the static spacetime, one (i) makes a transition to a synchronous frame, and (ii) returns to the original frame by means of local Lorentz boost. To reach our goal, we consider arXiv:1704.08308v3 [gr-qc] 1 Mar 2018 a rather general class of spherically symmetric spacetimes. In doing so, we construct frames that generalize the well-known Lemaitre and Painlev´e–Gullstand ones and elucidate the relation between them. This helps us to understand, in an unifying approach, how gravitation reveals itself in different branches of general relativity. This framework can be useful for general relativity university courses. PACS numbers: 04.20.-q; 04.20.Cv; 04.70.Bw ∗Electronic address: [email protected] †Electronic address: [email protected] 2 I. INTRODUCTION Though the calculation of redshifts in General Relativity (GR) has no principal diffi- culties, their interpretation continues to be a source of debates.
    [Show full text]