Mathematical Physics Studies

Total Page:16

File Type:pdf, Size:1020Kb

Mathematical Physics Studies Mathematical Physics Studies Series Editors Giuseppe Dito, Institut de Mathematiques de Bourgogne, Universite de Bourgogne, Dijon, France Edward Frenkel, Department of Mathematics, University of California at Berkley, Berkeley, CA, USA Sergei Gukov, California Institute of Technology, Pasadena, CA, USA Yasuyuki Kawahigashi, Department of Mathematical Sciences, The University of Tokyo, Tokyo, Japan Maxim Kontsevich, Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, France Nicolaas P. Landsman, Chair of Mathematical Physics, Radboud Universiteit Nijmegen, Nijmegen, Gelderland, The Netherlands Bruno Nachtergaele, Department of Mathematics, University of California, Davis, CA, USA Hal Tasaki, Department of Physics, Gakushuin University, Tokyo, Japan The series publishes original research monographs on contemporary mathematical physics. The focus is on important recent developments at the interface of Mathe- matics, and Mathematical and Theoretical Physics. These will include, but are not restricted to: application of algebraic geometry, D-modules and symplectic geom- etry, category theory, number theory, low-dimensional topology, mirror symmetry, string theory, quantum field theory, noncommutative geometry, operator algebras, functional analysis, spectral theory, and probability theory. More information about this series at http://www.springer.com/series/6316 Taro Kimura Instanton Counting, Quantum Geometry and Algebra Taro Kimura Institut de Mathématiques de Bourgogne Université Bourgogne Franche-Comté Dijon, France ISSN 0921-3767 ISSN 2352-3905 (electronic) Mathematical Physics Studies ISBN 978-3-030-76189-9 ISBN 978-3-030-76190-5 (eBook) https://doi.org/10.1007/978-3-030-76190-5 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland To Kana, Taïchi, Shota, Sayako, and MJR Preface Gauge Theory in Physics and Mathematics Since Yang–Mills’ proposal to extend gauge symmetry to non-Abelian symmetry [81], gauge theory has been playing a crucial role in theoretical physics as a ubiq- uitous framework to describe fundamental interactions: electroweak interaction [29, 75], quantum chromodynamics (QCD) [23, 30–32, 35, 53, 54], and gravity [74]. In addition to the significant role in theoretical physics, the influence of gauge theory is not restricted to physics, but also extended to wide-ranging fields of mathematics: The study of self-duality equations in four dimensions [6, 7], which leads to the so-called Atiyah–Drinfeld–Hitchin–Manin (ADHM) construction of the instantons [5]; Morse theory [1, 76] in the relation to algebraic geometry; Donaldson invariants of four-manifolds [20]; Topological invariants of knots, known as Jones polynomial [36], from Chern–Simons gauge theory [78]; Seiberg–Witten invariant [79] moti- vated by Seiberg–Witten theory of N = 2 supersymmetric gauge theory [68, 69]. In fact, these developments have been motivating various interplay between physics and mathematics up to now. The aim of this monograph is to present new mathematical concepts emerging from such intersections of physics and mathematics. Universality of QFT In general, Quantum Field Theory (QFT) is a universal methodology to describe many-body interacting systems, which involves quite broad applications to particle physics, nuclear physics, astrophysics and cosmology, condensed-matter physics, and more. In order to discuss the origin of its universality, one cannot say anything without mentioning the role of symmetry on the low energy behavior in the vicinity of the vacuum/ground state of the system, e.g., spacetime/internal symmetry, global/local symmetry, and non-local symmetry. One may obtain several constraints on the spectrum, and also the conservation law from the symmetry argument, which provide useful information to discuss the vii viii Preface effective description of the low energy behavior. However, it is not straightforward to understand the vacuum structure of QFT, since it would be strongly coupled in many cases in the low energy regime, due to the so-called asymptotic freedom [34, 64, 65], and one cannot apply the systematic approach based on the perturbation theory with respect to a small coupling constant as in the weakly coupled regime. In order to overcome this difficulty, it would be plausible to incorporate additional symmetry, i.e., supersymmetry, which provides further analytic framework for the study of QFT. In fact, supersymmetric extension of gauge theory, which we mainly explore in this monograph, shows a lot of geometric and algebraic properties in the low energy regime. N = 2 Supersymmetry In this monograph, we mainly focus on N = 2 supersymmetric gauge theory in four dimensions and explore the associated geometric and algebraic structure emerging from the moduli space of the supersymmetric vacua. N = 2 theory has two sets of supersymmetries, which provide powerful tools to study its dynamics rather than non-supersymmetric and N = 1 theories. At the same time, it still shows various dynamical behaviors, e.g., the asymptotic freedom and the dynamical mass generation. Actually, the instanton plays a crucial role to explore the vacuum structure of N = 2 theory as well. Since the instanton provides a solution to the classical equation of motion in the Yang–Mills theory, one may consider the perturbative expansion around the instanton configuration [73]. Although it is still hard to control this expansion, we can apply the so-called topological twist to localize the path integral on the instanton configuration, if there exists N = 2 supersymmetry [77] (Sect. 1.3). This drastically simplifies the analysis of gauge theory path integral, and one can deal with the gauge theory path integral as a statistical model of the instantons. What remains is to evaluate the configuration space of the instantons, a.k.a., the instanton moduli space. Instanton Counting From this point of view, we will provide the instanton counting argument with detailed study of the instanton moduli space. We are in particular interested in the volume of the instanton moduli space, which gives rise to important contributions to the partition function based on the path integral formalism. Since the naively defined moduli space is non-compact and singular, we should instead define a regularized version of the moduli space, and then apply the equivariant localization scheme to evaluate the volume of the moduli space. The gauge theory partition function obtained by the equivariant integral over the instanton moduli space is called the instanton Preface ix partition function [43–45] and also the Nekrasov partition function [47, 55], which will be one of the main objects in this monograph (Sect. 1.8). The instanton partition function provides a lot of suggestive insights in the rela- tion to various branches of mathematics: Combinatorics of (2d and also higher dimensional) partitions; Geometric representation theory; τ -function and integrable systems; Vertex operator algebra and conformal field theory, and more. The latter part of this monograph is devoted to the study of quantum geometric and algebraic aspects of N = 2 gauge theory based on such interesting connections between the instanton partition function and various illuminating notions in mathematical physics. Seiberg–Witten Theory A striking application of the instanton counting is the Seiberg–Witten theory for N = 2 gauge theory in four dimensions [68, 69], which provides an algebraic geometric description for the low energy effective theory of N = 2 theory (Sect. 4.2). A remarkable property of N = 2 theory is the one-to-one corre- spondence between the Lagrangian and the holomorphic function, known as the prepotential [67]. Seiberg–Witten theory provides a geometric characterization of the low energy effective prepotential based on the auxiliary algebraic curve, called the Seiberg–Witten curve. The instanton partition function depends on the equivariant parameters associated 2 with the spacetime rotation symmetry denoted by (1,2) ∈ C (also called the -background/deformation parameters). The partition function diverges if we naively take the limit 1,2
Recommended publications
  • Quantum Groups and Algebraic Geometry in Conformal Field Theory
    QUANTUM GROUPS AND ALGEBRAIC GEOMETRY IN CONFORMAL FIELD THEORY DlU'KKERU EI.INKWIJK BV - UTRECHT QUANTUM GROUPS AND ALGEBRAIC GEOMETRY IN CONFORMAL FIELD THEORY QUANTUMGROEPEN EN ALGEBRAISCHE MEETKUNDE IN CONFORME VELDENTHEORIE (mrt em samcnrattint] in hit Stdirlands) PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE RIJKSUNIVERSITEIT TE UTRECHT. OP GEZAG VAN DE RECTOR MAGNIFICUS. TROF. DR. J.A. VAN GINKEI., INGEVOLGE HET BESLUIT VAN HET COLLEGE VAN DE- CANEN IN HET OPENBAAR TE VERDEDIGEN OP DINSDAG 19 SEPTEMBER 1989 DES NAMIDDAGS TE 2.30 UUR DOOR Theodericus Johannes Henrichs Smit GEBOREN OP 8 APRIL 1962 TE DEN HAAG PROMOTORES: PROF. DR. B. DE WIT PROF. DR. M. HAZEWINKEL "-*1 Dit proefschrift kwam tot stand met "•••; financiele hulp van de stichting voor Fundamenteel Onderzoek der Materie (F.O.M.) Aan mijn ouders Aan Saskia Contents Introduction and summary 3 1.1 Conformal invariance and the conformal bootstrap 11 1.1.1 Conformal symmetry and correlation functions 11 1.1.2 The conformal bootstrap program 23 1.2 Axiomatic conformal field theory 31 1.3 The emergence of a Hopf algebra 4G The modular geometry of string theory 56 2.1 The partition function on moduli space 06 2.2 Determinant line bundles 63 2.2.1 Complex line bundles and divisors on a Riemann surface . (i3 2.2.2 Cauchy-Riemann operators (iT 2.2.3 Metrical properties of determinants of Cauchy-Ricmann oper- ators 6!) 2.3 The Mumford form on moduli space 77 2.3.1 The Quillen metric on determinant line bundles 77 2.3.2 The Grothendieck-Riemann-Roch theorem and the Mumford
    [Show full text]
  • Remarks on A2 Toda Field Theory 1 Introduction
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Remarks on A2 Toda Field Theory S. A. Apikyan1 Department of Theoretical Physics Yerevan State University Al. Manoogian 1, Yerevan 375049, Armenia C. Efthimiou2 Department of Physics University of Central Florida Orlando, FL 32816, USA Abstract We study the Toda field theory with finite Lie algebras using an extension of the Goulian-Li technique. In this way, we show that, af- ter integrating over the zero mode in the correlation functions of the exponential fields, the resulting correlation function resembles that of a free theory. Furthermore, it is shown that for some ratios of the charges of the exponential fields the four-point correlation functions which contain a degenerate field satisfy the Riemann ordinary differ- ential equation. Using this fact and the crossing symmetry, we derive a set of functional equations for the structure constants of the A2 Toda field theory. 1 Introduction The Toda field theory (TFT) provides an extremely useful description of a large class of two-dimensional integrable quantum field theories. For this reason these models have attracted a considerable interest in recent years and many outstanding results in various directions have been established. TFTs are divided in three broad categories: finite Toda theories (FTFTs) for which the underlying Kac-Moody algebra [1, 2] is a finite Lie algebra, affine Toda theories (ATFTs) for which the underlying Kac-Moody algebra [email protected] [email protected] 1 is an affine algebra and indefinite Toda theories (ITFTs) for which the under- lying Kac-Moody algebra is an indefinite Kac-Moody algebra.
    [Show full text]
  • An Toda Pmatcd.Pdf
    Kent Academic Repository Full text document (pdf) Citation for published version Adamopoulou, Panagiota and Dunning, Clare (2014) Bethe Ansatz equations for the classical A^(1)_n affine Toda field theories. Journal of Physics A: Mathematical and Theoretical, 47 (20). p. 205205. ISSN 1751-8113. DOI https://doi.org/10.1088/1751-8113/47/20/205205 Link to record in KAR https://kar.kent.ac.uk/40992/ Document Version UNSPECIFIED Copyright & reuse Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder. Versions of research The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record. Enquiries For any further enquiries regarding the licence status of this document, please contact: [email protected] If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html (1) Bethe Ansatz equations for the classical An affine Toda field theories Panagiota Adamopoulou and Clare Dunning SMSAS, University of Kent, Canterbury, CT2 7NF, United Kingdom E-mails: [email protected], [email protected] Abstract (1) We establish a correspondence between classical An affine Toda field theories and An Bethe Ansatz systems.
    [Show full text]
  • Hamiltonian Reduction and Supersymmetric Toda Models
    UM-P-95/S' QMW-PH-95/7 hep-th/yymmnnn March 1995 Hamiltonian Reduction and Supersymmetric Toda Models G. Au1 and B. Spence2 School of Physics University of Melbourne Parkville 3052 Australia Abstract New formulations of the solutions of N=I and N=2 super Toda field theory are introduced, using Hamiltonian reduction of the N=I and N=2 super WZNW Models to the super Toda Models. These pa- rameterisations are then used to present the HamiJtonian formulations of the super Toda theories on the spaces of solutions. !gauOtauon.ph. unimelb.edu.au [email protected]. Current address: Dept. Physics, Queen Mary & Westfield College, London El 4NS. VQl 2 7 Hi 0 6 1 Introduction Super Toda theories [1, 2, 3, 4, 5] are two dimensional conformal field theories and are an arena for the investigation of general features of two dimensional integrable systems such as quantum supergroups, super W-algebras, and supersymmetric integrable hierachies. The study of many of these properties requires Hamiltonian formulations of the models. The Toda theories can be understood as the Hamiltonian reductions of Wess-Zumino-Novikov-Witten (WZNW) models (see ref. [6]). As the WZNW models are integrable, one can explicitly write a Hamiltonian formulation in terms of the coordinates of the spaces of solutions of the model. In order to preserve full equivalence with the space of initial data, one needs to formulate the WZNW solutions as discussed in ref. [7] (see also ref. [8]). Using this formulation, one may derive, by Hamiltonian reduction, a Hamiltonian formulation of Toda theory [9], utilising suitable coordinates on the space of solutions.
    [Show full text]
  • The Solutions of Affine and Conformal Affine Toda Field Theories
    UM-P-93/75 ' hep-th/9402079 February 1994 The Solutions of Affine and Conformal Affine Toda Field Theories G. PAPADOPOULOS* //. Institute for Theoretical Physics Lumper Chaussee 149 22161 Hamburg Germany and B. SPENCE School of Physics University of Melbourne Parkville 3052 Australia ABSTRACT We give new formulations of the solutions of the field equations of the affine Toda and con- formal afiine Toda theories on a cylinder and two-dimensional Minkowski space-time. These solutions are parameterised in terms of initial data and the resulting covariant phase spaces are diffeomorphic to the Hamiltonian ones. We derive the fundamental Poisson brackets of the parameters of the solutions and give the general static solutions for the affine theory. • E-mail: [email protected] f E-mail: [email protected] 1. Introduction It has been known for many years that the field equations of certain two-dimensional field theories can be solved exactly. Some of these theories are the Wess-Zumino-Witten model, Liouville field theory and and the various versions of Toda field theory. The field equations of these theories are non-linear, partial, hyperbolic differential equations and various dis­ cussions of their solutions have been presented in the literature. One method for solving such integrable systems is based on the theory of Lax pairs and this has been extensively studied for Toda systems [1-3]. These authors solve the field equations on two-dimensional Minkowski space-time and describe their solutions in terms of functions that depend on the light-cone co-ordinates x* of the Minkowski space-time.
    [Show full text]
  • Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality
    Symmetry, Integrability and Geometry: Methods and Applications SIGMA 13 (2017), 080, 22 pages Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality Vladimir A. FATEEV yz y Laboratoire Charles Coulomb UMR 5221 CNRS-UM2, Universit´ede Montpellier, 34095 Montpellier, France E-mail: [email protected] z Landau Institute for Theoretical Physics, 142432 Chernogolovka, Russia Received April 24, 2017, in final form October 03, 2017; Published online October 13, 2017 https://doi.org/10.3842/SIGMA.2017.080 Abstract. We study integrable deformations of sine-Liouville conformal field theory. Eve- ry integrable perturbation of this model is related to the series of quantum integrals of motion (hierarchy). We construct the factorized scattering matrices for different integrable perturbed conformal field theories. The perturbation theory, Bethe ansatz technique, renor- malization group and methods of perturbed conformal field theory are applied to show that all integrable deformations of sine-Liouville model possess non-trivial duality properties. Key words: integrability; duality; Ricci flow 2010 Mathematics Subject Classification: 16T25; 17B68; 83C47 1 Introduction Duality plays an important role in the analysis of statistical, quantum field and string theory systems. Usually it maps a weak coupling region of one theory to the strong coupling region of the other and makes it possible to use perturbative, semiclassical and renormalization group methods in different regions of the coupling constant. For example, the well known duality between sine-Gordon and massive Thirring models [7, 31] together with integrability plays an important role for the justification of exact scattering matrix [39] in these theories. Another well known example of the duality in two-dimensional integrable systems is the weak-strong cou- pling flow from affine Toda theories to the same theories with dual affine Lie algebra [2,6,9].
    [Show full text]
  • Uwaterloo Latex Thesis Template
    The Vertex Algebra Vertex by Miroslav Rapˇc´ak A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Physics Waterloo, Ontario, Canada, 2019 c Miroslav Rapˇc´ak2019 Examining Committee Membership The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote. Supervisor: Davide Gaiotto Perimeter Institute for Theoretical Physics Co-supervisor: Jaume Gomis Perimeter Institute for Theoretical Physics Committee Member: Niayesh Afshordi University of Waterloo, Department of Physics and Astronomy Committee Member: Kevin Costello Perimeter Institute for Theoretical Physics Internal/External Member: Benoit Charbonneau University of Waterloo, Department of Pure Mathematics External Examiner: Rajesh Gopakumar International Centre for Theoretical Sciences in Bangalore ii Author's Declaration: I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Abstract This thesis reviews some aspects of a large class of vertex operator algebras labelled by (p; q) webs colored by non-negative integers associated to faces of the web diagrams [1,2,3,4]. Such vertex operator algebras conjecturally correspond to two mutually dual setups in gauge theory. First, they appear as a subsector of local operators living on two- dimensional junctions of half-BPS interfaces in four-dimensional = 4 super Yang-Mills theory. Secondly, they are AGT dual to = 2 gauge theories supportedN on four-cycles inside toric Calabi-Yau three-folds.
    [Show full text]
  • Quantum Solitons in Affine Toda Field Theories
    PUPT-1286 September, 1991 QUANTUM SOLITONS IN AFFINE TODA FIELD THEORIES Timothy Hollowood∗ Joseph Henry Laboratories, Department of Physics, Princeton University, Princeton, N.J. 08544 arXiv:hep-th/9110010v1 3 Oct 1991 ABSTRACT The spectra of Ar affine Toda field theories with imaginary coupling constant, are investi- gated. Soliton solutions are found, which, despite the non-unitary form of the Lagrangian, have real classical masses and are stable to small perturbations. The quantum corrections to the soliton masses are determined, to lowest order in ¯h. The solitons have the same spectrum as the fundamental Toda particles; a feature that is preserved in the quantum theory. ∗ Address after Oct. 1, 1991: Dept. of Theoretical Physics, Oxford, U.K. Introduction Amongst the conformal field theories in two dimensions, there exists a much simpler class of theories, the so-called ‘minimal theories’, whose spectra consist of a finite number of representations of the – possibly extended – conformal algebra [1]. For example, there are the theories where the conformal algebra is extended to the Wr+1-algebras [2]. For each r there exists a whole set of such theories whose central charges are conveniently parameterized in terms of a constant α: 1 2 c = r 1+(r + 1)(r + 2) α + . (1) α ( ) For c r – so α is real – the theories are unitary, but not minimal. For c<r – so α ≥ is purely imaginary – the situation is more complicated: when α2 is rational the theory is minimal, since a finite set of representations decouple from the complete Hilbert space. Furthermore, when α2 takes the particular rational values r + 1 + k α2 = , (2) −r + 2 + k where k is a positive integer, the theory is, in addition, unitary.
    [Show full text]
  • Did a 1-Dimensional Magnet Detect a 248-Dimensional Lie Algebra? David Borthwick, Emory University Skip Garibaldi, Emory University
    Did a 1-dimensional magnet detect a 248-dimensional Lie algebra? David Borthwick, Emory University Skip Garibaldi, Emory University Journal Title: Notices of the American Mathematical Society Volume: Volume 58, Number 8 Publisher: American Mathematical Society | 2011-09, Pages 1055-1066 Type of Work: Article | Final Publisher PDF Permanent URL: http://pid.emory.edu/ark:/25593/d4kgc Final published version: http://www.ams.org/notices/201108/rtx110801055p.pdf Copyright information: © American Mathematical Society Accessed September 28, 2021 9:51 AM EDT Did a 1-Dimensional Magnet Detect a 248-Dimensional Lie Algebra? David Borthwick and Skip Garibaldi ou may have heard some of the buzz symmetry”. No one is claiming to have directly spawned by the recent paper [CTW+] in observed E8. Science. That paper described a neu- Our purpose here is to fill in some of the tron scattering experiment involving details omitted in the previous paragraph. We a quasi-1-dimensional cobalt niobate should explain that we are writing as journalists Y rather than mathematicians here, and we are not magnet and led to rumors that E8 had been de- physicists. We will give pointers to the physics tected “in nature”. This is fascinating, because E8 is a mathematical celebrity and because such a literature so that the adventurous reader can go detection seems impossible: it is hard for us to directly to the words of the experts for complete imagine a realistic experiment that could directly details. observe a 248-dimensional object such as E8. The connection between the cobalt niobate The Ising Model The article in Science describes an experiment experiment and E8 is as follows.
    [Show full text]
  • Renormalization Group Flows and Continual Lie Algebras
    hep–th/0307154 July 2003 Renormalization group flows and continual Lie algebras Ioannis Bakas Department of Physics, University of Patras GR-26500 Patras, Greece [email protected] Abstract We study the renormalization group flows of two-dimensional metrics in sigma models us- ing the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by (d/dt; 1), with anti-symmetric G Cartan kernel K(t, t0)=δ0(t t0); as such, it coincides with the Cartan matrix of the − superalgebra sl(N N +1)inthelargeN limit. The resulting Toda field equation is a | non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via B¨acklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten’s two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormal- ization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region.
    [Show full text]
  • Integrable Models and the Toda Lattice Hierarchy
    Integrable Models And The Toda Lattice Hierarchy Bani Mitra Sodermark ∗ Dept of Engineering Sciences, Physics and Mathematics, Karlstad University, 65188 Karlstad, SWEDEN 20 April 1999 Abstract A pedagogical presentation of integrable models with special reference to the Toda lattice hierarchy has been attempted. The example of the KdV equation has been studied in detail, beginning with the infinite conserved quantities and going on to the Lax formalism for the same. We then go on to symplectic manifolds for which we construct the Lax operator. This formalism is applied to Toda Lattice systems. The Zakharov Shabat formalism aimed at encompassing all integrable models is also covered after which the zero curvature condition and its fallout are discussed. We then take up Toda Field Theories and their connection to W algebras via the Hamiltonian reduction of the WZNW model. Finally, we dwell on the connection between four dimensional Yang Mills theories and the KdV equation along with a generalization to supersymmetry. arXiv:hep-th/9906159v1 21 Jun 1999 ∗e.mail: [email protected] 1 1 Introduction: Non-Linear Equations Linear partial differential equations, in particular the Schroedinger, Klein-Gordon and Dirac equations, have been known in field theory over a long time, and have been used in many different problems with great success. Non-linear equations, i.e., equations where the potential term is non-linear in the field (S), have been known for some time as well. These equations and their solutions are the topic of the present Article. The earliest non-linear wave equations known in physics were the Liouville and Sine- Gordon equations.
    [Show full text]
  • Non Relativistic Limit of Integrable QFT and Lieb-Liniger Models
    Non Relativistic Limit of Integrable QFT and Lieb-Liniger Models Alvise Bastianello,1 Andrea De Luca,2 and Giuseppe Mussardo1, 3 1SISSA and INFN, Sezione di Trieste, via Bonomea 265, I-34136, Trieste, Italy 2LPTMS, CNRS, Univ. Paris-Sud, Universit´eParis-Saclay, 91405 Orsay, France 3International Centre for Theoretical Physics (ICTP), I-34151, Trieste, Italy In this paper we study a suitable limit of integrable QFT with the aim to identify continuous non-relativistic integrable models with local interactions. This limit amounts to sending to infinity the speed of light c but simultaneously adjusting the coupling constant g of the quantum field theories in such a way to keep finite the energies of the various excitations. The QFT considered here are Toda Field Theories and the O(N) non-linear sigma model. In both cases the resulting non-relativistic integrable models consist only of Lieb-Liniger models, which are fully decoupled for the Toda theories while symmetrically coupled for the O(N) model. These examples provide explicit evidence of the universality and ubiquity of the Lieb-Liniger models and, at the same time, suggest that these models may exhaust the list of possible non-relativistic integrable theories of bosonic particles with local interactions. Pacs numbers: 11.10.St, 11.15.Kc, 11.30.Pb I. INTRODUCTION Nowadays there are known many integrable quantum field theories (QFT) which have relativistic invariance as their distinguished feature: the list includes purely bosonic models, as the Sinh-Gordon, or more generally Toda models [1{10], fermionic systems, as the Gross-Neveu model [11], as well as supersymmetric versions of all these examples (see, for instance, [12{15]).
    [Show full text]