Tech Series 7 (.Pdf, 511.91KB)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Acanthocereus Tetragonus SCORE: 16.0 RATING: High Risk (L.) Hummelinck
TAXON: Acanthocereus tetragonus SCORE: 16.0 RATING: High Risk (L.) Hummelinck Taxon: Acanthocereus tetragonus (L.) Hummelinck Family: Cactaceae Common Name(s): barbed-wire cactus Synonym(s): Acanthocereus occidentalis Britton & Rose chaco Acanthocereus pentagonus (L.) Britton & Rose sword-pear Acanthocereus pitajaya sensu Croizat triangle cactus Cactus pentagonus L. Cactus tetragonus L. Assessor: Chuck Chimera Status: Assessor Approved End Date: 1 Nov 2018 WRA Score: 16.0 Designation: H(HPWRA) Rating: High Risk Keywords: Spiny, Agricultural Weed, Environmental Weed, Dense Thickets, Bird-Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y -
The Role of Biological Control Agents in an IWM Program for Chrysanthemoides Monilifera Subsp
The role of biological control agents in an IWM program for Chrysanthemoides monilifera subsp. rotundata (bitou bush) Royce H. Holtkamp1 Summary Bitou bush, Chrysanthemoides monilifera subspecies rotundata, is a native of South Africa, which was used extensively in Australia as a sand-stabilising plant and for revegetation of coastal areas mined for mineral sands. It has now become a serious environmental weed in eastern Australia, primarily of conservation areas, where it significantly reduces biodiversity. Since 1989, six species of insects have been released on bitou bush, four of which have established. These are having varied impacts on bitou bush with bitou tip moth, Comostolopsis germana, and bitou seed fly, Mesoclanis polana, being the most successful. An integrated weed management approach appears to be the best option for long-term sustainable control of bitou bush. This paper discusses the use of biological control agents in combina- tion with other control options such as strategic herbicide applications, fire, physical removal and revegetation techniques. Keywords: biological control, bitou bush, Chrysanthemoides monilifera subspecies rotundata, integrated weed management. The plant withdrawn. However, this action came far too late and by 1976 C. monilifera subsp. rotundata was naturalised Chrysanthemoides monilifera subspecies rotundata along much of the NSW coast. (DC.) T. Norl. (bitou bush), is a competitive environ- A survey conducted in 2001 by the NSW National mental weed of South African origin. It is primarily Parks and Wildlife Service (NPWS) has shown C. restricted to areas of summer rainfall (Parsons and monilifera subsp. rotundata to be present on 900 km Cuthbertson 1992) and infests coastal areas of southern (80%) of the NSW coastline and the dominant plant on Queensland, New South Wales (NSW) and Lord Howe over 400 km. -
Modelling Bitou Bush (Chrysanthemoides Monilifera Ssp. Rotundata) and a Seed fly (Mesoclanis Polana)
Exploring interactions between cultural and biological control techniques: modelling bitou bush (Chrysanthemoides monilifera ssp. rotundata) and a seed fly (Mesoclanis polana) Darren J. Kriticos,1,3 Rachel M. Stuart1,2 and Julian E. Ash2 Summary Weed seed-production and seedbank dynamics have been a focus of attention for many biological control campaigns. This interest has perhaps been promoted by the recognition of the important role of weed seed dynamics in annual cropping systems, and frequent observations that seed production is markedly increased in ranges into which a plant is introduced, compared with rates in its native range. Seeds are the means by which most higher-order perennial plants disperse, and reestablish following disturbance. The role and importance of seeds in the population dynamics of weed popula- tions depends upon factors such as successional state of the invaded vegetation association, the distur- bance frequency, plant age at maturity, seed decay rate, and self-thinning patterns. The role of seeds and their predators in maintaining a plant population may be minimal, and decreasing the rate of seed production and the size of the seedbank may have only minor impacts on the population dynamics of perennial weeds. The interactions between cultural management techniques for bitou bush and its seed fly were explored using a process-based population dynamics model. The role of the seed fly in reducing the invasive potential of bitou bush and modifying the population reestablishment rates following distur- bance were studied. The seed fly has substantially reduced seed production, but the effect of the fly on canopy cover of bitou bush and on its invasion potential appears negligible. -
Том 4. Вып. 2 Vol. 4. No. 2
РОССИЙСКАЯ АКАДЕМИЯ НАУК Южный Научный Центр RUSSIAN ACADEMY OF SCIENCES Southern Scientific Centre CAUCASIAN ENTOMOLOGICAL BULLETIN Том 4. Вып. 2 Vol. 4. No. 2 Ростов-на-Дону 2008 Кавказский энтомол. бюллетень 4(2): 209—213 © CAUCASIAN ENTOMOLOGICAL BULL. 2008 Hibernation places and behavior of the some weevil species (Coleoptera: Curculionidae) Места зимовки и поведение некоторых видов жуков- долоносиков(Coleoptera: Curculionidae) L. Gültekin Л. Гюльтекин Atatürk University, Faculty of Agriculture, Plant Protection Department, Erzurum 25240 Turkey. E-mail: [email protected]; lgultekin@ gmail.com Университет им. Ататюрка, сельскохозяйственный факультет, кафедра защиты растений, Эрзерум 25240 Турция Key words: hibernation places, behavior, Curculionidae, Eastern Turkey. Ключевые слова: локализация диапаузы, поведение, Curculionidae, Восточная Турция. Abstract. Hibernation places and behavior of перед зимовкой. Cleonis pigra (Scopoli), Larinus onopordi the 40 species of weevil from subfamilies Lixinae, (Fabricius), L. inaequalicollis Capiomont, L. ochroleucus Ceutorhynchinae, Baridinae, Gymnetrinae and Entiminae Capiomont, L. sibiricus Gyllenhal, L. sp. n. pr. leuzeae Fabre, (Curculionidae) were determined in Eastern Turkey during L. filiformis Petri, Herpes porcellus Lacordaire и Mononychus 1997–2007. Larinus latus (Herbst), L. fucatus Faust, punctumalbum (Herbst) часто образуют скопления под Lixus ochraceus Boheman, L. furcatus Olivier, L. obesus камнями, корой растений или в почве. Conorhynchus Petri, L. siculus Boheman, L. korbi Petri, and Mononychus hololeucus (Pallas), Mecaspis incisuratus Gyllenhal, schoenherri Kolenati prefer to migrate by flight before Leucophyes pedesteris (Poda), Otiorhynchus brunneus hibernation. Cleonis pigra (Scopoli), Larinus onopordi Steven, O. latinasus Reitter зимуют под растительными (Fabricius), L. inaequalicollis Capiomont, L. ochroleucus остатками и под камнями. Gymnetron netum (Germar) Capiomont, L. sibiricus Gyllenhal, L. sp. n. pr. leuzeae и Larinus puncticollis Capiomont заселяют на зимовку Fabre, L. -
Sensu Stricto
Journal of Insect Science (2016) 16(1): 58; 1–7 doi: 10.1093/jisesa/iew043 Research article Studies on the Biology of Hypogeococcus pungens (sensu stricto) (Hemiptera: Pseudococcidae) in Argentina to Aid the Identification of the Mealybug Pest of Cactaceae in Puerto Rico Downloaded from https://academic.oup.com/jinsectscience/article-abstract/16/1/58/2726676 by guest on 21 April 2020 M. B. Aguirre,1,2 H. Diaz-Soltero,3 L. E. Claps,4 A. Saracho Bottero,4 S. Triapitsyn,5 E. Hasson,6 and G. A. Logarzo1 1FuEDEI, Simon Bolıvar 1559, Hurlingham, Buenos Aires, Argentina ([email protected]; [email protected]), 2Corresponding autor, e-mail: [email protected], 3U.S. Department of Agriculture, 1400 Independence Ave, SW 1154 South Building, Washington, DC 20250 (e-mail: [email protected]), 4Instituto Superior de Entomologıa “Dr. Abraham Willink” (INSUE) Miguel Lillo 205, 4000 S. M. de Tucuman, Argentina (e-mail: [email protected]; andrea_saracho1308@ hotmail.com), 5Entomology Research Museum, Department of Entomology, University of California, Riverside, CA 92521, USA, and 6Department of Ecologıa Gene´tica Y Evolucion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. 2, C1428 EHA Buenos Aires, Argentina ([email protected]) Subject Editor: Takumasa Kondo Received 28 October 2015; Accepted 16 May 2016 Abstract Hypogeococcus pungens Granara de Willink, sensu stricto, is a serious pest of cacti in Puerto Rico threating many Caribbean islands. A classical biological control program for H. pungens was initiated for Puerto Rico in 2010 with a survey for natural enemies of H. pungens in its native range of Argentina. -
Host-Plant Genotype and Other Herbivores Influence Goldenrod Stem Galler Preference and Performance
Oecologia (1999) 121:392–404 © Springer-Verlag 1999 James T. Cronin · Warren G. Abrahamson Host-plant genotype and other herbivores influence goldenrod stem galler preference and performance Received: 26 January 1999 / Accepted: 2 June 1999 Abstract Ecologists have labored to find an explanation suitability as a host to the stem gallers. One possible ex- for the lack of a positive correlation between host prefer- planation for why spittlebugs caused a significant reduc- ence and offspring performance in herbivorous insects. tion in preference, but not in performance, was that spit- This study focuses on how one herbivore species can in- tlebugs had very few long-term effects on the host plant. fluence another herbivore species’ ability to accurately Flower number, flowering phenology, and the allocation assess the suitability of different host-plant genotypes for of the ramet’s biomass to different structures (below- larval development. In particular, we examined the role ground organs, stems, leaves, and flowers) were un- that an early season xylem-feeding homopteran (meadow changed with respect to spittlebug density. The only ef- spittlebug, Philaenus spumarius) has on the preference- fect of spittlebugs was a 3–4% decrease in ramet height performance correlation of a late-season dipteran stem at the end of the growing season. We argue that the lack galler (Eurosta solidaginis) among different goldenrod of a positive correlation between host-plant preference genotypes. In a greenhouse, we released adult stem gall- and larval performance may reflect a constraint on the ers into replicate cages that contained ramets from four discriminatory ability of female stem gallers. -
Preliminary Results on the Phytophagous Insect Fauna on Onopordum Acanthium (Asteraceae) in Bulgaria
Pestic. Phytomed. (Belgrade), 25(4), 2010, 301-309 UDC: 591.617:632.51 Pestic. fitomed. (Beograd), 25(4), 2010, 301-309 Scientific paper * Naučni rad DOI: 10.2298/PIF1004301H Preliminary Results on the Phytophagous Insect Fauna on Onopordum acanthium (Asteraceae) in Bulgaria Vili Harizanova1, Atanaska Stoeva1, Massimo Cristofaro2, Allesandra Paolini2, Francesca Lecce2 and Franca Di Cristina2 1UAgricultural University-Plovdiv, Plovdiv 4000, Mendeleev 12, Bulgaria ([email protected]) 2ANEA C.R. Cassacia UTAGRI-ECO Via Anguillarese 301, 00123 S. Maria di Galeria (Rome), Italy Received: August 5, 2010 Accepted: November 3, 2010 SUMMARY The Scotch thistle, Onopordum acanthium (Asteraceae) has the Eurasian origin and represents an invasive weed in the USA and Australia. It is a serious problem in pastures, along roadsides, rangeland, etc. The weed is very common in Bulgaria and in 2009-2010 several sites with large populations of O. acanthium have been located. The weekly sur- veys of some of the sites, mainly in the region of Plovdiv, revealed a significant diver- sity of phytophagous insect species, some of which had very high population density. More than 30 species have already been identified and observations on the phenolo- gy and biology of some of them have been conducted. For some of the species, such as endophagous Larinus latus, Lixus cardui, Eublemma amoena, Trichosirocalus briesei, or ectophagous Cassida rubiginosa etc. found during our surveys, there are reports in the lit- erature describing them as having been already introduced as successful biocontrol agents in Australia. Endophagous species like lepidopteran Myelois circumvoluta and Pyroderces argyrogrammos which feed on the stems and the head, and the tephritid flies Tephritis pos- tica and Chaetostomella cylindrica which feed on the capitula, seem quite destructive for the weed, but need to be further studied regarding host specificity. -
OBCL Newsletter, December, 2020 (Pdf)
December 2020 OBCL Newsletter Overseas Biological Control Laboratories Edited by Michael Grodowitz U.S. Department of Agriculture, Agricultural Research Service Previous newsletter editions are available at: In This Issue www.ars-ebcl.org Introduction ...............................................................................................1 ABCL - Australia ......................................................................................1 Australian Biological Control Aquatic Weed Biological Control and COVID................................. 1 Trichilogaster Bud Gall Wasp: A Priority Biocontrol Agent for Laboratory - ABCL Earleaf Acacia.................................................................................... 2 Aquatic Weed Biological Control and COVID Sino-ABCL - China.................................................................................... 4 Matthew Purcell, Nathan Harms and Bradley Salivary Gland Secretome Analysis Reveals A Novel Mechanism of Horizontal Gene Transfer in the Brown Marmorated Stink Bug ...... 4 Brown FuEDEI - Argentina................................................................................... 5 Little Fire Ant ...................................................................................5 Much of the exploration for biological control of Improving the Success and Perception of Biological Control Through aquatic weeds conducted by ABCL has been performed Community Engagement and Awareness.......................................... 6 in the Asian native range of several invasive -
TAXON:Harrisia Eriophora (Pfeiff.)
TAXON: Harrisia eriophora (Pfeiff.) SCORE: 7.0 RATING: High Risk Britton Taxon: Harrisia eriophora (Pfeiff.) Britton Family: Cactaceae Common Name(s): fragrant apple cactus Synonym(s): Cereus eriophorus Pfeiff. fragrant prickly apple jijira pitahaya woolly prickly apple Assessor: Chuck Chimera Status: Assessor Approved End Date: 9 Oct 2017 WRA Score: 7.0 Designation: H(HPWRA) Rating: High Risk Keywords: Tropical Cactus, Spiny, Edible Fruit, Spreads Vegetatively, Bird-Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 n outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 n 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) y 401 -
Coleoptera: Curculionidae, Lixinae
© Entomologica Fennica. 6 June 2007 Oviposition niches and behavior of the genus Lixus Fabricius (Coleoptera: Curculionidae, Lixinae) Levent Giiltekin Gultekin, L. 2007: Oviposition niches and behavior ofthe genus Lixus Fabricius (Coleoptera: Curculionidae, Lixinae). — Entomol. Fennica 18: 74—8 1. Oviposition places in the host plants of23 Lixus Fabricius species in eastern Tur- key were identified. Lixus nordmanni Hochhuth, L. subtilis Boheman, L. in— canescens Boheman, L. brevipes Brisout, L. sp. n. pr. brevipes Brisout, L. ochra— ceuS Boheman, L. furcatus Olivier, L. rubicundus Zoubkoff, L. angustatus (Fabricius), L. punctiventris Boheman, L. fasciculatus Boheman, L. bardanae (Fabricius), L. sp. n. pr. korbi Petri, and L. scolopax Boheman deposited eggs in the main stem. Lixusfiliformis (Fabricius), L. cardui Olivier, and L. korbi Petri oviposited in the main stem and lateral branch of their host plants. L. circum— cinctus Boheman laid eggs on both stem and petiole, whereas L. siculus Boheman, L. farinifer Reitter, L. cylindrus (Fabricius), and L. sp. n. pr. furcatus Olivier used the petioles, a new ecological niche for the genus Lixus. The unique species L. obesus Petri selected the seed capsule for laying eggs and completing its generation. Levent Giiltekin, Ataturk University, Faculty ofAgriculture, Plant Protection Department, 25240, Erzurum—Turkey; E—mail: lgul@atauni. edu. tr Received 24 March 2005, accepted 29 August 2006 1. Introduction cies, size constraint could play an important role in oviposition and larval development (Eber et al. The superfamily Curculionoidea, which contains 1999). A study of the different species of endo- more than 50,000 described species, is the richest phagous stem borers on thistles showed niche organisms known (O’Brien & Wibmer 1978). -
Impact of the Biological Control Agent Mesoclanis Polana (Tephritidae) on Bitou Bush (Chrysanthemoides Monilifera Subsp
Bulletin of Entomological Research (2009) 99, 51–63 doi:10.1017/S000748530800610X Ó 2008 Cambridge University Press Printed in the United Kingdom First published online 24 October 2008 Impact of the biological control agent Mesoclanis polana (Tephritidae) on bitou bush (Chrysanthemoides monilifera subsp. rotundata) in eastern Australia P.B. Edwards1,2 *, R.J. Adair3, R.H. Holtkamp4, W.J. Wanjura1, A.S. Bruzzese3 and R.I. Forrester5 1CRC for Australian Weed Management, CSIRO Entomology, GPO Box 1700, Canberra ACT 2601, Australia; 2Current address: PO Box 865, Maleny, Queensland 4552, Australia: 3Department of Primary Industries, PO Box 48, Frankston, Victoria 3199, Australia: 4NSW Department of Primary Industries, CRC for Australian Weed Management, 4 Marsden Park Road, Tamworth 2340, Australia: 5CSIRO Entomology, GPO Box 1700, Canberra ACT 2601 Abstract The seed fly Mesoclanis polana (Diptera: Tephritidae) was released in Australia in 1996. Its impact on seed production of bitou bush (Chrysanthemoides monilifera subsp. rotundata) was monitored at eight sites along the New South Wales coast from 1996 to 2004. Peak flowerhead production occurred in autumn (March to May); therefore, samples collected in May of each year were used to compare abundance and impact of M. polana across sites and between years. Latitude had a significant effect on abundance and impact of M. polana. By May 2004, 99.6% of flowerheads at the five most northern sites contained at least one egg, while 64% of flowerheads from the two most southern sites contained at least one egg. In May 2004, mean numbers of M. polana eggs per flowerhead were between 13 and 17 at four of the six northern sites and below two at the two southern sites. -
Appendix E Terrestrial Biology
Alcan Gove Alumina Refinery Expansion Project Appendix E Draft Environmental Impact Statement Terrestrial Biology Alcan Gove Alumina Refinery Expansion Project Appendix E.1 Draft Environmental Impact Statement Flora Species Database Records Alcan Gove Alumina Refinery Expansion Project Appendix E.1 Draft Environmental Impact Statement Flora Species Database Records Appendix E1 Flora Species Records of the Northern Territory Herbarium Database and Environment Australia Listings of Potential Flora Presence Based on Potential Habitat Presence for the Area 12°09’ to 12°15’S; and 136°40’ to 136°50’E Key to Conservation Status Territory Parks and Wildlife Commission Act 2000 LC – Least Concern DD – Data Deficient NE – Not Evaluated Environment Protection and Biodiversity Conservation Act 1999 V - Vulnerable Nomenclature for native flora follows Wheeler (1992), Wightman & Andrews (1989), Brooker & Kleinig (1994), Brock (2001), except where more recent taxonomic revisions are known to have been published (eg. Checklist of Northern Territory Vascular Plant Species1 Northern Territory Herbarium, 2003), and/or where the Northern Territory recognises a different binomial name. Other texts used to assist in identification include, Yunupinu et al. (1995), Milson (2000), Hacker (1990), Sainty & Jacobs (1994), Stephens & Dowling (2002), Smith (2002), Auld & Medd (1999). Conservation Status Taxon NT Comm. ACANTHACEAE Hypoestes floribunda R.Br. Ruellia tuberosa L. AIZOACEAE Trianthema portulacastrum L. AMARANTHACEAE Achyranthes aspera L. Alternanthera dentata (Moench) Stuchlik Amaranthus sp Gomphrena celosioides Mart. Ptilotus spicatus F.Muell. ex Benth. ANACARDIACEAE Buchanania obovata Engl. ANNONACEAE Cyathostemma glabrum (Span.) Jessup Miliusa traceyi Jessup APOCYNACEAE Alyxia spicata R.Br. Catharanthus roseus (L.) G.Don Wrightia saligna (R.Br.) F.Muell. ex Benth.