Aerospace Test Operations and Maintenance Services

Total Page:16

File Type:pdf, Size:1020Kb

Aerospace Test Operations and Maintenance Services AEROSPACE TEST OPERATIONS AND MAINTENANCE SERVICES CONTRACT AT NASA PLUM BROOK STATION SANDUSKY, OHIO CRYOGENIC PROPELLANT TANK FACILITY HYPERSONIC TUNNEL FACILITY SPACECRAFT PROPULSION TEST FACILITY SPACE POWER FACILITY A NARRATIVE/PICTORIAL DESCRIPTION CHI and its joint-venture team provide Plum Brook-wide infrastructure and institutional support services, as well as Station Test Facilities operations and maintenance services (321) 267-9808 Fax: (321) 267-9805 E-Mail Address: [email protected] AEROSPACE TEST OPERATIONS AND MAINTENANCE SERVICES CHI, a key member of a joint-venture team under contract to CHI’s joint-venture team expertise: NASA at their Plum Brook Station, Sandusky, OH, provides Test Program Management the full range of operations and maintenance technical Test Engineering & Planning support services for the Station’s four “world-class” Test Operations Engineering aerospace research test facilities that support the testing of Test Instrumentation Engineering advanced space hardware for NASA, as well as other U.S. Test Control Engineering and international space hardware system developers. Facility Engineering & Maintenance Safety Engineering One of the four test facilities is the Space Power Facility (SPF) show below. The SPF is the world’s largest space Quality Engineering environment simulation chamber (100’ diameter and 120’ Technicians & Mechanics length) in which large space-bound hardware can be — Cryogenics ground-tested in a severe environment similar to that — Test Structures encountered in space. The chamber air is removed to — Pneumatics — Hydraulics simulate the vacuum conditions of space at an altitude of — Control Devices 145 statute miles; charged argon gas is added to the — Data Acquisition chamber to simulate a space plasma environment of low — Electronic Systems earth orbit. Additionally, very World’s Largest Space Environment Simulation Chamber cold and hot temperatures of space can be simulated using a cryogenic cold wall and quartz Ariane 5 long payload fairing lamp heaters. On the following page, the gigantic size of the SPF is demonstrated in International Space Station Radiator Panels photo-views of the open experiment assembly area and a test article in-place prior to testing. (321) 267-9808 Fax: (321) 267-9805 E-Mail Address: [email protected] AEROSPACE TEST OPERATIONS AND MAINTENANCE SERVICES TEST CHAMBER 50’ X 50’ CHAMBER ACCESS DOORS DISASSEMBLY AREA SPACE POWER FACILITY VIEW FROM THE EXPERIMENT ASSEMBLY AREA (321) 267-9808 Fax: (321) 267-9805 E-Mail Address: [email protected] AEROSPACE TEST OPERATIONS AND MAINTENANCE SERVICES CHI, a key member of a joint-venture team under contract CHI’s joint-venture team expertise: to NASA at their Plum Brook Station, Sandusky, OH, Test Program Management provides the full range of operations and maintenance Test Engineering & Planning technical support services for the Station’s four “world- Test Operations Engineering class” aerospace research test facilities that support the Test Instrumentation Engineering testing of advanced space hardware for NASA, as well as Test Control Engineering other U.S. and international space hardware system Facility Engineering & Maintenance developers. Safety Engineering Quality Engineering One of the four test facilities is the Cryogenic Propellant Technicians & Mechanics Tank Facility (K-Site) shown below. This 25’ diameter — Cryogenics chamber is used to develop the technology for generating — Test Structures and utilizing densified liquid hydrogen and oxygen in — Pneumatics space. These fuels have the potential to significantly — Hydraulics reduce the cost of access to space by reducing the size — Control Devices and weight of the launch vehicle fuel tanks without — Data Acquisition lowering — Electronic Systems performance, a CRYOGENIC PROPELLANT TANK FACILITY (K-SITE) high-priority objective of our Space program. On the next page, the open 20’ diameter door to the K- Site test facility provide a view into this impressive chamber; and one of the pre- VentureStar tanks is being readied for K-Site testing. (321) 267-9808 Fax: (321) 267-9805 E-Mail Address: [email protected] AEROSPACE TEST OPERATIONS AND MAINTENANCE SERVICES CRYOGENIC PROPELLANT TANK FACILITY (K-SITE) 20’ DIAMETER DOOR 13 FT. DIAMETER LH2 TEST TANK 25’ DIAMETER TEST CHAMBER (321) 267-9808 Fax: (321) 267-9805 E-Mail Address: [email protected] AEROSPACE TEST OPERATIONS AND MAINTENANCE SERVICES CHI, a key member of a joint-venture team under contract to CHI’s joint-venture team expertise: NASA at their Plum Brook Station, Sandusky, OH, provides the Test Program Management full range of operations and maintenance technical support Test Engineering & Planning services for the Station’s four “world-class” aerospace research Test Operations Engineering test facilities that support the testing of advanced space Test Instrumentation Engineering hardware for NASA, as well as other U.S. and international Test Control Engineering space hardware system developers. Facility Engineering & Maintenance Safety Engineering One of the four test facilities is the Spacecraft Propulsion Quality Engineering Research Facility (B-2) shown below. Large upper-stage Technicians & Mechanics space launch vehicles can undergo complete integrated — Cryogenics systems testing, including engine firing, in the simulated space — Test Structures environment that the B-2 provides. A full-sized launch vehicle, — Pneumatics up to 400,000 pound thrust capability can be loaded into the 38’ — Hydraulics diameter by 55’ high stainless steel vacuum chamber which can — Control Devices simulate pressure that would be experienced at 115 statute — Data Acquisition miles of — Electronic Systems altitude. Very SPACECRAFT PROPULSION RESEARCH FACILITY high and low (B-2) temperatures can be duplicated with a cryogenic cold wall and quartz lamp heaters. The following page shows a cutaway view of the B-2 and a photo of the Centaur rocket vehicle inside the B-2 test chamber. (321) 267-9808 Fax: (321) 267-9805 E-Mail Address: [email protected] AEROSPACE TEST OPERATIONS AND MAINTENANCE SERVICES 20 TON CRANE LN2 COLD WALL QUARTZ CENTAUR LAMP ARRAY ROCKET VEHICLE B-2 TEST FACILITY INSIDE VIEW OF TEST CHAMBER (321) 267-9808 Fax: (321) 267-9805 E-Mail Address: [email protected] AEROSPACE TEST OPERATIONS AND MAINTENANCE SERVICES CHI, a key member of a joint-venture team under contract CHI’s joint-venture team expertise: to NASA at their Plum Brook Station, Sandusky, OH, Test Program Management provides the full range of operations and maintenance Test Engineering & Planning technical support services for the Station’s four “world- Test Operations Engineering class” aerospace research test facilities that support the Test Instrumentation Engineering testing of advanced space hardware for NASA, as well as Test Control Engineering other U.S. and international space hardware system Facility Engineering & Maintenance developers. Safety Engineering One of the four test facilities is the Hypersonic Tunnel Quality Engineering Facility (HTF) shown below. This wind tunnel is capable of Technicians & Mechanics performing flow tests at Mach 5, 6, or 7. High-pressure — Cryogenics Nitrogen gas flows through a 3-megawatt electrical heater — Test Structures that raises its temperature to nearly 2500 degrees Kelvan. — Pneumatics — Hydraulics Oxygen is added to the hot nitrogen to produce an air — Control Devices composition that is flowed through a 42-inch diameter — Data Acquisition hypersonic flow nozzle and past the test model. A large steam ejector pulls a vacuum on the HYPERSONIC TUNNEL FACILITY (HTF) test chamber to help establish the flow pattern and to Aerospace Plane simulate high altitude conditioning. The following pages show a cutaway of the HTF that provides insight to the facility and its operational altitude corridor; and a Trailblazer photo of an engine setup for Mach 7 HTF testing. (321) 267-9808 Fax: (321) 267-9805 E-Mail Address: [email protected] AEROSPACE TEST OPERATIONS AND MAINTENANCE SERVICES HYPERSONIC TUNNEL FACILITY (HTF) CUT-AWAY VIEW TEST CHAMBER HYPERSONIC OPERATIONAL ALTITUDE CORRIDOR FLOW NOZZLE ENGINE DESIGN MACH NUMBER PLUM BROOK FACILITY 120 ALTITUDE ENVELOPE CAPABILITY -3 15,000 FT. ABOVE 100 BASE DESIGN q ~ 900 PSF GN /GO 80 2 2 BASE DESIGN TEST MIXER POINTS q ~ 1,800 PSF 120 DIFFUSER MAX. q ~ 2,000 PSF SECTION TEST ARTICLE X 10 FT. ALTITUDE, 120 012345678 FREE-STREAM MACH NUMBER 5,000 psi GASEOUS NITROGEN RAILCAR 750,000 SCF LH2 DEWAR SHOP AREA ENLARGED VIEW OF TEST CHAMBER 2,400 psi GO2 BOTTLES STEAM EJECTOR TRAIN ELECTRIC EQUIPMENT ROOM 3 MW GRAPHITE HEATER (321) 267-9808 Fax: (321) 267-9805 E-Mail Address: [email protected] AEROSPACE TEST OPERATIONS AND MAINTENANCE SERVICES DIFFUSER INLET HYPERSONIC NOZZLE HRE ENGINE NERD HYPERSONIC TUNNEL FACILITY VIEW OF HRE ENGINE SETUP FOR MACH 7 TESTING, 1974 (321) 267-9808 Fax: (321) 267-9805 E-Mail Address: [email protected] GOVERNMENT - INDUSTRY PARTNERSHIPS In order to remain competitive, American aerospace companies are developing improved rocket vehicles which will lower the cost of launching satellites into Space. These new vehicles must be thoroughly tested on the ground, before they are launched, to reduce the risk of failure during actual flights. Under a government-industry partnership, the Boeing Company’s Delta 3 upper stage rocket was tested in the Spacecraft Propulsion Research Facility (B-2) at Plum Brook in March of 1998. Delta 3 upper stage being loaded
Recommended publications
  • Out There Somewhere Could Be a PLANET LIKE OURS the Breakthroughs We’Ll Need to find Earth 2.0 Page 30
    September 2014 Out there somewhere could be A PLANET LIKE OURS The breakthroughs we’ll need to find Earth 2.0 Page 30 Faster comms with lasers/16 Real fallout from Ukraine crisis/36 NASA Glenn chief talks tech/18 A PUBLICATION OF THE AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS Engineering the future Advanced Composites Research The Wizarding World of Harry Potter TM Bloodhound Supersonic Car Whether it’s the world’s fastest car With over 17,500 staff worldwide, and 2,800 in or the next generation of composite North America, we have the breadth and depth of capability to respond to the world’s most materials, Atkins is at the forefront of challenging engineering projects. engineering innovation. www.na.atkinsglobal.com September 2014 Page 30 DEPARTMENTS EDITOR’S NOTEBOOK 2 New strategy, new era LETTER TO THE EDITOR 3 Skeptical about the SABRE engine INTERNATIONAL BEAT 4 Now trending: passive radars IN BRIEF 8 A question mark in doomsday comms Page 12 THE VIEW FROM HERE 12 Surviving a bad day ENGINEERING NOTEBOOK 16 Demonstrating laser comms CONVERSATION 18 Optimist-in-chief TECH HISTORY 22 Reflecting on radars PROPULSION & ENERGY 2014 FORUM 26 Electric planes; additive manufacturing; best quotes Page 38 SPACE 2014 FORUM 28 Comet encounter; MILSATCOM; best quotes OUT OF THE PAST 44 CAREER OPPORTUNITIES 46 Page 16 FEATURES FINDING EARTH 2.0 30 Beaming home a photo of a planet like ours will require money, some luck and a giant telescope rich with technical advances. by Erik Schechter COLLATERAL DAMAGE 36 Page 22 The impact of the Russia-Ukrainian conflict extends beyond the here and now.
    [Show full text]
  • Espinsights the Global Space Activity Monitor
    ESPInsights The Global Space Activity Monitor Issue 2 May–June 2019 CONTENTS FOCUS ..................................................................................................................... 1 European industrial leadership at stake ............................................................................ 1 SPACE POLICY AND PROGRAMMES .................................................................................... 2 EUROPE ................................................................................................................. 2 9th EU-ESA Space Council .......................................................................................... 2 Europe’s Martian ambitions take shape ......................................................................... 2 ESA’s advancements on Planetary Defence Systems ........................................................... 2 ESA prepares for rescuing Humans on Moon .................................................................... 3 ESA’s private partnerships ......................................................................................... 3 ESA’s international cooperation with Japan .................................................................... 3 New EU Parliament, new EU European Space Policy? ......................................................... 3 France reflects on its competitiveness and defence posture in space ...................................... 3 Germany joins consortium to support a European reusable rocket.........................................
    [Show full text]
  • Interview: Bill Workman & Ian Jordan
    VOL 20 ISSUE 01 Space Telescope Science Institute NASA and G. Bacon, STScI. (See page 24.) NASA and G. NASA and G. Bacon, STScI. (See page 24.) NASA and G. Illustration Credit: Interview: Illustration Credit: Bill Workman & Ian Jordan An artist’s concept of a gas giant planet orbiting the cool, red dwarf star Gliese 876. Bill Workman, [email protected], and Ian Jordan, [email protected] An artist’s concept of a gas giant planet orbiting the cool, red dwarf star Gliese 876. Bill and Ian, you are working on the Hubble long-range (constraint) window with available telescope orbit resources. Since we don’t observing plan (LRP). Please explain the role of the LRP actually schedule the telescope, the task is—by definition—statistical in Hubble operations and the work that creating it entails. in nature. Like any good science project, the ‘fun’ part is dealing with the ILL: Well, it’s not clear we can describe what we do in less than ‘Hubble uncertainties in the system. In this case, this means predicting HST behavior BTime’, but we’ll try! and what the whole General Observer (GO) observing program will look like BILL & IAN: Primarily the Long Range Planning Group (LRPG) and the LRP for the cycle. exist to help the Institute and user community maximize the science output of the Hubble Space Telescope (HST). Observers see the LRP as a set of plan How do you know when you are done with the LRP? windows that represent times when a particular set of exposures are likely IAN: Well, the long range plan is never done! Perhaps the LRP logo should to be observed by the telescope, similar to scheduling observing runs at a be a yin-yang symbol? ground-based observatory.
    [Show full text]
  • The Plum Brook Reactor Facility NASA’S Nuclear Frontier the Plum Brook Reactor Facility, 1941—2002
    iv NASA’s Nuclear Frontier: The Plum Brook Reactor Facility NASA’s Nuclear Frontier The Plum Brook Reactor Facility, 1941—2002 by Mark D. Bowles and Robert S. Arrighi NASA History Division Office of External Relations NASA Headquarters Washington, DC 20546 Monographs in Aerospace History Series Number 33 August 2004 Introduction Library of Congress Cataloging-in-Publication Data Bowles, Mark D. NASA’s Nuclear Frontier: the Plum Brook Reactor Facility / Mark D. Bowles and Robert S. Arrighi. p. cm. — (Monographs in aerospace history; no. 33) (NASA SP ; 2004-4533) Includes bibliographical references and index. 1. NASA Glenn Research Center. Plum Brook Station—History. 2. Nuclear energy—Research—United States— History. 3. Nuclear reactors—Ohio—Sandusky—Experiments. I. Arrighi, Robert S., 1969- II. Title. III. Series. IV. NASA SP ; 4533. QC786.43.U5B68 2003 621.48’3’0977122—dc22 2003044298 Image 1 (cover): Plum Brook reactor control room as engineers prepare to “take it critical” for the first time in 1961. (NASA C1961–55813) NASA’s Nuclear Frontier: The Plum Brook Reactor Facility Contents List of Images ................................................................................................................................. v Introduction ................................................................................................................................... 1 Obtaining the Land ....................................................................................................................... 9 The Dream of a Flying Reactor
    [Show full text]
  • An Update on Nasa Exploration Systems Development Hearing Committee on Science, Space, and Technology House of Representatives
    AN UPDATE ON NASA EXPLORATION SYSTEMS DEVELOPMENT HEARING BEFORE THE SUBCOMMITTEE ON SPACE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED FIFTEENTH CONGRESS FIRST SESSION NOVEMBER 9, 2017 Serial No. 115–37 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PUBLISHING OFFICE 27–676PDF WASHINGTON : 2018 For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. LAMAR S. SMITH, Texas, Chair FRANK D. LUCAS, Oklahoma EDDIE BERNICE JOHNSON, Texas DANA ROHRABACHER, California ZOE LOFGREN, California MO BROOKS, Alabama DANIEL LIPINSKI, Illinois RANDY HULTGREN, Illinois SUZANNE BONAMICI, Oregon BILL POSEY, Florida ALAN GRAYSON, Florida THOMAS MASSIE, Kentucky AMI BERA, California JIM BRIDENSTINE, Oklahoma ELIZABETH H. ESTY, Connecticut RANDY K. WEBER, Texas MARC A. VEASEY, Texas STEPHEN KNIGHT, California DONALD S. BEYER, JR., Virginia BRIAN BABIN, Texas JACKY ROSEN, Nevada BARBARA COMSTOCK, Virginia JERRY MCNERNEY, California BARRY LOUDERMILK, Georgia ED PERLMUTTER, Colorado RALPH LEE ABRAHAM, Louisiana PAUL TONKO, New York DRAIN LAHOOD, Illinois BILL FOSTER, Illinois DANIEL WEBSTER, Florida MARK TAKANO, California JIM BANKS, Indiana COLLEEN HANABUSA, Hawaii ANDY BIGGS, Arizona CHARLIE CRIST, Florida ROGER W. MARSHALL, Kansas NEAL P. DUNN, Florida CLAY HIGGINS, Louisiana RALPH NORMAN, South Carolina SUBCOMMITTEE ON SPACE HON. BRIAN BABIN, Texas, Chair DANA ROHRABACHER, California AMI BERA, California, Ranking Member FRANK D.
    [Show full text]
  • YEAR in REVIEW 2011 a PUBLICATION of the AMERICAN INSTITUTE of AERONAUTICS and ASTRONAUTICS Change Your Perception of MESHING
    cover-fin12-2011_AA Template 11/18/11 11:37 AM Page 1 11 AMERICA AEROSPACE December 2011 DECEMBER 2011 YEAR IN REVIEW 2011 A PUBLICATION OF THE AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS change your perception of MESHING VISIT US AT THE AIAA AEROSPACE SCIENCES MEETING 9-12 JANUARY 2012 > THIS IS NOT THE FUNNEST PART OF THE PROJECT. You’re not generating a computational grid for pleasure. It’s simply a necessary step in the process of completing your analysis, so you can improve the performance of your design. With its intuitive interface, high-level automation, and sophisticated grid generation algorithms, Pointwise helps ease you through the process. Try it for free, and see how Pointwise can reduce your meshing pain. POINTWISE. Reliable People, Reliable Tools, Reliable CFD Meshing. Toll Free (800) 4PTWISE www.pointwise.com toc.DEC2011a_AA Template 11/17/11 10:46 AM Page 1 December 2011 EDITORIAL 3 OUT OF THE PAST 76 2011 SUBJECT AND AUTHOR INDEX 78 CAREER OPPORTUNITIES 84 THE YEAR IN REVIEW Adaptive structures 4 Intelligent systems 39 Aeroacoustics 12 Legal aspects 32 Aerodynamic decelerators 25 Life sciences 56 Aerodynamic measurement Lighter-than-air systems 30 technology 13 Liquid propulsion 51 Aerospace power systems 44 Materials 6 Aerospace traffic management 68 Meshing, visualization and Air-breathing propulsion systems computational environments 21 integration 45 Nondeterministic approaches 7 Aircraft design 26 Nuclear and future flight Air transportation 24 propulsion 52 Applied aerodynamics 14 Plasmadynamics and lasers
    [Show full text]
  • Testing Program for Kysat‐1
    University of Kentucky UKnowledge University of Kentucky Master's Theses Graduate School 2010 TESTING PROGRAM FOR KYSAT‐1 Jason Robert Bratcher University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Bratcher, Jason Robert, "TESTING PROGRAM FOR KYSAT‐1" (2010). University of Kentucky Master's Theses. 3. https://uknowledge.uky.edu/gradschool_theses/3 This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF THESIS TESTING PROGRAM FOR KYSAT‐1 Years of success in the aerospace industry has taught Kentucky Space several lessons. This thesis will summarize the accomplishments in an attempt to formulate a well-defined program for designing and testing small spacecraft in an environment with strict financial restraints. The motivation for producing this well-defined platform for testing small spacecraft arose when Kentucky Space became the liaison between NASA and its customers for the NanoRacks and CubeLab module program. Having a solid program for testing small spacecraft will allow future student programs to easily set standards for experiment payloads. Also by discussing obstacles for smaller programs such as restraints on funding, scheduling restrictions, and testing facility procurement, this thesis will provide a basis that other programs can use to start or expand a space research program that may be struggling due to mistakes that programs face in the early years due to the lack of experience and maturity of a veteran program.
    [Show full text]
  • Wolftracks Sierra Lobo's
    SIERRA LOBO’S DECEMBER 2015 WOLFTRACKS Inside: Page Headline News (JPL MEDALS) 1-4 New Contract Updates 5-6 Corporate Safety 7 Corporate News 7-14 Technology Development and Engineering Center (TDEC) 15-19 NASA Ames Research Center (ATOM) 20-23 NASA Langley Research Center (CMOE) 24-25 NASA Goddard Space Flight Center (ETIS II) 26-32 U.S. Army Redstone Test Center (HQDS) 33-34 NASA Kennedy Space Center (KESC) 35-39 NASA Glenn Research Center (TFOME II) 40-42 Sierra Lobo’s Wolf Tracks is published twice Welcome to the Pack 43 a year; June/July and December/January. NASA JPL MEDALS CONTRACT PROGRESS In June 2015, Sierra Lobo (SLI) was one of three companies Other initial activity on MEDALS includes success in winning awarded the Multi-divisional Engineering, Design, Analysis task orders in open competition with the other two prime Lab-wide Support (MEDALS) subcontract at NASA’s Jet contractors, Orbital ATK and Stellar Solutions. In general, the Propulsion Laboratory (JPL) in Pasadena, CA. MEDALS team has three days to respond to NASA JPL’s request for a technical and cost proposal, with the final Beginning in August 2015, the Pasadena office was submission being evaluated by JPL for tasks ranging from a established with nine employees and has currently grown to few weeks to several months. eleven employees. Engineers in this office are focusing on the areas of mechanical design, structural analysis, optical Examples of the nature of these tasks include multi- engineering, electronics packaging, cabling, and Printed disciplinary engineering support on the two Mars 2020 Wiring Board (PWB) design.
    [Show full text]
  • July 2016 Newsletter
    Sierra Lobo’s July 2016 WolfTracks Inside: Page Headline News (ARES III) 1-2 Corporate News 3-10 Jet Propulsion Laboratory (MEDALS) 10 Edwards Air Force Base (ARES III) 11-12 NASA Johnson Space Center (MPIC) 12 Technology Development and Engineering Center (TDEC) 13-17 NASA Langley Research Center (CMOE) 18-20 NASA Goddard Space Flight Center (ETIS II) 21-28 Wright Patterson Air Force Base (RDSTS) 29 NASA Kennedy Space Center (KESC) 30-33 NASA Glenn Research Center (TFOME II) 34-35 NASA Plum Brook Station 36-37 Sierra Lobo’s Wolf Tracks is published twice Contract Vehicles 38 a year; June/July and December/January. Welcome to the Pack 39 Advanced Research and Engineering Services (ARES) ARES III Contract: Edwards III – Edwards Air Force Base (EAFB) - Air Force Air Force Base (EAFB) Update Research Laboratory (AFRL) Rocket Lab Sierra Lobo, Inc. provides research and engineering services to support the Air Force Research Laboratory, Aerospace Systems Directorate, Rocket Propulsion Division (AFRL/RQR) at the “Rocket Lab” located on 65-square miles in the remote northeast corner of Edwards Air Force Base (EAFB), in California’s Mojave Desert. July 1, 2016, will mark the beginning of the fifth and final year of the current contract, with SLI continuing to meet or exceed all of the defined performance incentive measures to earn every one of the six-month period, all-or-nothing incentive fee awards to date. One of the programs that Sierra Lobo ARES III engineers support is AFRL’s Liquid Engines Branch (RQRE) efforts on the Hydrocarbon Boost (HCB) program.
    [Show full text]
  • L a U N C H I
    The Higbee Building, 100 Public Square, Suite 210, Cleveland, Ohio 44113-2291 216-621-3300 gcpartnership.com LAUNchING BUSINESS INVestMENT » ADVANCED ENERGY » REGIONAL GROWth » WE CAN ATTRACT NEW BUSINESS High-tech companies, university research partnerships, public and private contractors, federal and state agencies, educational OPPORTand space-related tourism … UNITIES WE CAN DEVELOP NEW TECHNOLOGIES Alternative energy and bioscience start-ups, aerospace engineering, green building, wind energy, knowledge-based industries, advanced manufacturing … WE CAN GROW OUR REGION Job creation, economic development, improved infrastructure, cleaner environment, business parks, OPPORT UNITIESrecreation, hiking trails, entertainment … HOW?» BY LEVERAGING OUR EXIstING STRENGths NOW BUILDING A 9,000-FOOT RUNWAY AT NASA GLENN RESEARCH CENTER’S PLUM BROOK STATION It starts in Ohio, it ends in space. Ohio is uniquely fortunate to have opportunities to bring new work into Ohio. Among the many benefits, the world’s largest and best proving grounds for testing new rockets a runway at Plum Brook would: and satellites before they are launched into space. These little-known » Enable sensitive testing equipment to be delivered directly to facilities, which simulate the space environment, are located in a Plum Brook by air from anywhere in the country or the world. natural setting on 6,400 acres of federal land just outside of Sandusky » Allow researchers, engineers, astronauts and contractors in the midst of the diverse ecosystems and wildlife of the Sandusky from around the globe to visit Plum Brook efficiently and on Bay region, just minutes from Lake Erie. short notice. The facilities at Plum Brook Station can position Ohio to be a leader in Space is a $200 billion industry.
    [Show full text]
  • 2006 IEEE Aerospace Conference Digest Gold Final
    2006 IEEE Aerospace Conference Digest Big Sky, Montana, March 4-11, 2006 a e S S Dear 2006 IEEE Aerospace Conference Attendee, The Technical Program Committee and the Track and Session Organizers are pleased to bring you the technical program for 2006. Covering a wide range of topics in aerospace engineering, science and technology, the program consists of papers delivered in 113 sessions organized into 14 tracks, presented either orally or in our Electronic Presentation Hall over six days. With seven panels, seven plenaries, and invited speakers the total of papers and speakers will be over 520. We expect nearly 700 attendees over the week. The seven panels this year will address contemporary topics including space engineering workforce, planet finding, robotic history at JPL, developments in space robotics, beyond Einstein, spacecraft autonomy, and NASA-industry partnerships. Our seven plenary talks promise to be as interesting and exciting as ever, addressing nanotechnology, fusion, responsive space systems, hurricanes, dinosaurs, the Spitzer space telescope, and space tourism. As hoped, this year we have increased representation from around the world and across industry, government, and academia. Nineteen countries have submitted seventy-two papers and speakers. More than sixty-five universities are represented, as are a dozen national and six international laboratories, nine NASA centers, three military organizations, and nearly 100 commercial companies. We are confident that you will enjoy the conference and expect that you will take the opportunity to get to know some of your colleagues from this rich, diverse set of attendees. Ed Bryan Karen Profet Richard Mattingly Technical Program Co-Chairs ii Table of Contents TRACK 1: SCIENCE & AEROSPACE FRONTIERS (PLENARY SESSIONS).........................................................................
    [Show full text]
  • Solar Sailing: Applications and Technology Advancement
    2 Solar Sailing: Applications and Technology Advancement Malcolm Macdonald Advanced Space Concepts Laboratory University of Strathclyde, Glasgow Scotland, E.U. 1. Introduction Harnessing the power of the Sun to propel a spacecraft may appear somewhat ambitious and the observation that light exerts a force contradicts everyday experiences. However, it is an accepted phenomenon that the quantum packets of energy which compose Sunlight, that is to say photons, perturb the orbit attitude of spacecraft through conservation of momentum; this perturbation is known as solar radiation pressure (SRP). To be exact, the momentum of the electromagnetic energy from the Sun pushes the spacecraft and from Newton’s second law momentum is transferred when the energy strikes and when it is reflected. The concept of solar sailing is thus the use of these quantum packets of energy, i.e. SRP, to propel a spacecraft, potentially providing a continuous acceleration limited only by the lifetime of the sail materials in the space environment. The momentum carried by individual photons is extremely small; at best a solar sail will experience 9 N of force per square kilometre of sail located in Earth orbit (McInnes, 1999), thus to provide a suitably large momentum transfer the sail is required to have a large surface area while maintaining as low a mass as possible. Adding the impulse due to incident and reflected photons it is found that the idealised thrust vector is directed normal to the surface of the sail, hence by controlling the orientation of the sail relative to the Sun orbital angular momentum can be gained or reduced.
    [Show full text]