Rollin' Justin

Total Page:16

File Type:pdf, Size:1020Kb

Rollin' Justin View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institute of Transport Research:Publications Rollin’ Justin – Design considerations and realization of a mobile platform for a humanoid upper body M. Fuchs, Ch. Borst, P. Robuffo Giordano, A. Baumann, E. Kraemer, J. Langwald, R. Gruber, N. Seitz, G. Plank, K. Kunze, R. Burger, F. Schmidt, T. Wimboeck and G. Hirzinger German Aerospace Center – Institute of Robotics and Mechatronics Oberpfaffenhofen, Germany, 2008 Email: [email protected] Abstract – Research on humanoid robots for use in servicing tasks, e.g. fetching and delivery, attracts steadily more interest. With Rollin’ Justin a mobile robotic system and research platform is presented that allows the implementation and demonstration of sophisticated control algorithms and dexterous manipulation. Important problems of service robotics such as mobile manipulation and strategies for using the increased workspace and redundancy in manipulation task can be studied in detail. This paper gives an overview of the design considerations for a mobile platform and their realizations to transform the formerly table-mounted humanoid upper body system Justin into Rollin’ Justin, a fully self-sustaining mobile research platform. I. INTRODUCTION In 2006 the humanoid upper body Justin was presented as a research platform for dual arm manipulation. Using its two arms and hands, controlled as hardware in the loop system, some basic control schemes for robust dual handed dual armed manipulation tasks have been evaluated and published. To further enhance the system’s field of work it was soon considered to equip it with a mobile base. This would allow using Justin also as a platform for mobile manipulation to study strategies utilizing the increased Fig. 1: The Rollin’ Justin workspace and redundancy for manipulation tasks. Also a The mobile base is intended as an enhancement of the mobile Justin serves perfect as a service robotic prototype to system and should not restrain the capabilities of the upper demonstrate enhanced autonomy features. This paper shows body. The large workspace and workload as well as the high the design considerations we took into account to build dynamic properties of Justin for example should not be Justin´s mobile platform as well as some of the technical limited by the platform. This imposes high demands on the details of the realized robotic system. static or dynamic stability of the base. On the other hand the II. BASIC DESIGN CONSIDERATIONS platform should be designed as compact as possible to pass through standard doorways and to make the appearance of Obviously the most adequate enhancement for “Justin” the whole system pleasant and nonhazardous. To decrease would be legs to make him walk and therefore a full system complexity, cost and project duration standard humanoid platform. However human inspired legs will components are to be used. The most preferred way would drastically increase the systems complexity adding at least be to integrate the system on an available mobile platform 10 to 12 degrees of freedom (DOF) to the already existing that can fulfill the functional needs. 43 DOF of the upper body. Also it would probably turn the A. Functional needs and available platforms research attention too much to walking and dynamical The upper body system itself has the mass, payload and stability issues than to the enhancement of the dual handed power consumption properties as listed in table 1. The manipulation capabilities. Therefore only wheeled solutions platform must be able to preserve active or passive (static) for the mobile base where considered. stability to the system if Justin lifts objects up to 20 kg from The basic design considerations ordered by their the floor. The power supply must provide up to 1 kW for the importance can be summarized as follows: actuation system and at least two computers for control and (1) Fulfill functional needs of the upper body perception of the upper body. For the convenient usage of (2) Prefer compact construction the base as workspace extension during manipulation tasks, (3) Usage of off-the-shelf components e.g. in front of a desk, the mobile drive system should be at least omnidirectional. To reach the best performance in the structure and its main components. The electronics power control of the total system the mobile base should allow supply devices are shown in Sec. IV followed by the closed loop control together with torso and arms within a communication concept (V) and some considerations on the bandwidth of 100 Hz minimum in hard realtime. platform control (VI). A conclusion is given in Sec. 0. TABLE 1 III. MECHANICAL DESIGN Component Mass Payload Power Cons. Hand 1.8 kg 3 kg (Tip) 15 - 50 W The two-arm system Justin is a powerful upper body Arm 13 kg 15 kg (static) 50 - 150 W humanoid robot that is able to lift weights up to 20 kg. Its Torso+Head 15 kg 50 kg (static) 100 - 250 W arm span is 3000 mm and the torso can move about 600 mm Total ~ 50 kg ~ 20 kg (static) 0.5 - 1 kW to the front and 300 mm to the back [9]. The whole upper body can rotate 170 degree to both sides relative to its base. An intensive review of existing and commercial According to its weight (about 50 kg), workspace and force available platforms [1] showed that most mobile robots are this robot has to be mounted on a very stable base with an based on a statically stable platform principle. This means adequate footprint to prevent the robot from falling over. that no control or force/torque input is needed for The necessary footprint (maximum supporting polygon) maintaining stability. Within this group of platforms was evaluated by analyzing different torso positions (arms different wheels or tracks for propulsion are used. The vertical or horizontal oriented) carrying a payload of 3kg and number of legs equipped with wheels varies from two with at different accelerations [1]. The torques applied on the last one passive wheel (eg. Pioneer P3-DX, MetraLabs SCITOS axis of the torso ranged from 248 Nm in the static case up to G5), to be statically stable, over four (Pioneer P3-AT) and 1800 Nm. In any of these cases the mass and support six [2], usually used for off terrain vehicles, up to eight [3] polygon of the base should prevent tumbling down the wheels. It should be noted that vehicles with more than three system. wheels are hyper static and require some form of suspension The minimal footprint can be evaluated in a similar way if all wheels are to maintain good ground contact. Not many assuming a compact configuration of Justin in the static case. of the previously designed smaller platforms can carry Practically the minimal size of the platform is determined by higher loads as required for Justin except of some platforms the volume needed for the power supply, electronics and dedicated directly to carry upper bodies or industrial robot computer components to make it a fully autonomous system. arms like the Hermes [4], the ARMAR platform [5], the The wheel extension mechanism is designed to be a Twendy-One [6] or the Nomadic XR4000 [7]. Actually none very compact construction with highly integrated of them are commercial available. components. Due to the actuation by the wheels of the Recently the dynamically stabilized two wheeled platform themselves, no extra motors are necessary for the platform principle well known from the Segway RMP has extension and retraction function. been used for the integration of some manipulators like the NASA Robonaut [8] or the Toyota Work Partner Robot. An advantage of such a system is the small weight and footprint of the platform but the power consumption and complexity is higher, safety issues in case of control failures are to be tracked and for manipulation actions the most critical factor is that the platform reacts negatively on stiff contacts with fixed objects in the environment. It can be stated that no off-the-shelf concept for a Fig. 2: Platform with extended and retracted wheels suitable mobile platform for Justin existed. In consequence a Fig. 2 shows the DLR mobile platform with extended new platform has been developed. and retracted wheels. It has a maximum length of 1220 mm B. The Platform Concept for Justin and a maximum width of 1052 mm. The minimum To keep the design of the platform as simple as possible dimensions are 812 mm x 644 mm. As the platform is a static base with four wheels was considered. To meet the equipped with spring damped wheel suspensions its height stability requirements during the manipulation tasks with varies between 658 mm and 728 mm. The weight is about high load and high dynamics as well as the need for compact 150 kg. design to move through narrow passages a variable footprint With extended wheels the platform has a footprint of mechanism was envisaged [1]. To allow easy integration of 985 mm x 815 mm. The decisive factor for the maximum the platform kinematics the base should support footprint is the stability. Together with a very low center of omnidirectional movements. Further the power supply of the gravity (about 260 mm above the ground quite centered to mobile base must also serve the upper body. The necessary the footprint) this footprint is enough to avoid a tilt over computation platforms and communication equipment have even in case of an emergency stop at full speed with the to be integrated as well. The result of the development of a upper body bent forward [1]. By retraction of the wheels mobile base for Justin is shown in Fig.
Recommended publications
  • Artificial Intelligence: Soon to Be the World’S Greatest Intelligence, Or Just a Wild Dream? Edward R
    Johnson & Wales University ScholarsArchive@JWU Academic Symposium of Undergraduate College of Arts & Sciences Scholarship 3-22-2010 Artificial Intelligence: Soon to be the world’s greatest intelligence, or just a wild dream? Edward R. Kollett Johnson & Wales University - Providence, [email protected] Follow this and additional works at: https://scholarsarchive.jwu.edu/ac_symposium Part of the Artificial Intelligence and Robotics Commons, Arts and Humanities Commons, Nanoscience and Nanotechnology Commons, and the Social and Behavioral Sciences Commons Repository Citation Kollett, Edward R., "Artificial Intelligence: Soon to be the world’s greatest intelligence, or just a wild dream?" (2010). Academic Symposium of Undergraduate Scholarship. 3. https://scholarsarchive.jwu.edu/ac_symposium/3 This Research Paper is brought to you for free and open access by the College of Arts & Sciences at ScholarsArchive@JWU. It has been accepted for inclusion in Academic Symposium of Undergraduate Scholarship by an authorized administrator of ScholarsArchive@JWU. For more information, please contact [email protected]. Artificial Intelligence: Soon to be the world’s greatest intelligence, or just a wild dream? Edward Kollett Johnson & Wales University Honors Program 2009 Edward Kollett, Page 2 Artificial Intelligence is a term, coined by John McCarthy in 1956, that “in its broadest sense would indicate the ability of an artifact to perform the same kinds of functions that characterize human thought processes” (“Artificial Intelligence”). Typically, it is used today to refer to a computer program that is trying to simulate the human brain, or at least parts of it. Attempts to recreate the human brain have been a goal of mankind for centuries, but only recently, as computers have become as powerful as they are now, does the goal of a fully automated robot with human intelligence and emotional capabilities seems to be within reach.
    [Show full text]
  • Robonaut 2 Fact Sheet
    National Aeronautics and Space Administration Robonaut 2 facts NASA Almost 200 people from 15 countries have visited the International Space Station, but the orbiting complex has only had human crew members – until now. Robonaut 2, the latest generation of the Robonaut astronaut helpers, launched to the space station aboard space shuttle Discovery on the STS-133 mission in February 2011. It is the fi rst humanoid robot in space, and although its primary job for now is demonstrating to engineers how dexterous robots behave in space, the hope is that, through upgrades and advancements, it could one day venture outside the station to help spacewalkers make repairs or additions to the station or perform scientifi c work. R2, as the robot is called, was unpacked in April and powered up for the first time in August. Though it is currently being tested inside the Destiny laboratory, over time both its territory and its applications could expand. Initial tasks identified for R2 include velocity air measurements and handrail cleaning, both of which are simple but necessary tasks that require a great deal of crew time. R2 also has a taskboard on which to practice flipping switches and pushing buttons. Over time, the robot should graduate to more complex tasks. There are no plans to return R2 to Earth. History Work on the first Robonaut began in 1997. The idea was to build a humanoid robot that could assist astronauts on tasks in which another pair of hands would be helpful or to venture forth to perform jobs either too dangerous for crew members to risk or too mundane for them to spend time on.
    [Show full text]
  • Talk with a Robot
    Talk With A Robot With its small, portable, travel size, kids and adults will love to bring it around to play with. Type a custom snippet or try one of the examples. Though, it was an improvement over the depressing white/black, its charm wore out pretty quickly. © 2014 Steve Worswick. “When the robot was active, people tended to respond and give feedback to whatever the robot was doing, saying ‘Wow!’, ‘Good job. Python 100. Typically, a chat bot communicates with a real person, but applications are being developed in which two chat bots can communicate with each other. We started with some of the key features. Human Robot Intelligent That Can Talk Dance Sing Watch Home Smart Humanoid Robot For Kids Education , Find Complete Details about Human Robot Intelligent That Can Talk Dance Sing Watch Home Smart Humanoid Robot For Kids Education,Human Robot Intelligent,Human Robots,Robots That Can Talk from Toy Robots Supplier or Manufacturer-Shenzhen Yuanhexuan Industrial Co. Another communication method I want to talk about is XMLRPC, which stands for XML-formatted Remote Procedure Call. The bots have hammers attached to micro servos that they use to hit targets on the other robot. Two human look-a-like robots invented by Japanese engineers. Unemployment. The site Cleverbot. Choose a material for your robot. Typically, a chat bot communicates with a real person, but applications are being developed in which two chat bots can communicate with each other. Slideshow ( 2 images ). Type a custom snippet or try one of the examples. In this week’s Tech Talk podcast: Brian Stelter discusses recent hacks on major Web sites and the author of a new book on robots discusses what is to come.
    [Show full text]
  • Design and Realization of a Humanoid Robot for Fast and Autonomous Bipedal Locomotion
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Angewandte Mechanik Design and Realization of a Humanoid Robot for Fast and Autonomous Bipedal Locomotion Entwurf und Realisierung eines Humanoiden Roboters für Schnelles und Autonomes Laufen Dipl.-Ing. Univ. Sebastian Lohmeier Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr.-Ing. Udo Lindemann Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. habil. Heinz Ulbrich 2. Univ.-Prof. Dr.-Ing. Horst Baier Die Dissertation wurde am 2. Juni 2010 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 21. Oktober 2010 angenommen. Colophon The original source for this thesis was edited in GNU Emacs and aucTEX, typeset using pdfLATEX in an automated process using GNU make, and output as PDF. The document was compiled with the LATEX 2" class AMdiss (based on the KOMA-Script class scrreprt). AMdiss is part of the AMclasses bundle that was developed by the author for writing term papers, Diploma theses and dissertations at the Institute of Applied Mechanics, Technische Universität München. Photographs and CAD screenshots were processed and enhanced with THE GIMP. Most vector graphics were drawn with CorelDraw X3, exported as Encapsulated PostScript, and edited with psfrag to obtain high-quality labeling. Some smaller and text-heavy graphics (flowcharts, etc.), as well as diagrams were created using PSTricks. The plot raw data were preprocessed with Matlab. In order to use the PostScript- based LATEX packages with pdfLATEX, a toolchain based on pst-pdf and Ghostscript was used.
    [Show full text]
  • Robonaut 2 – Operations on the International Space Station
    Robonaut 2 – Operations on the International Space Station Ron Diftler Robonaut Project Lead Software, Robotics and Simulation Division NASA/Johnson Space Center [email protected] 2/14/2013 Overview Robonaut Motivation GM Relationship Robonaut Evolution Robonaut 2 (R2) Capabilities Preparing for ISS Journey to Space On Board ISS Future Activities Spinoffs Robonaut Motivation Capable Tool for Crew • Before, during and after activities Share EVA Tools and Workspaces. • Human Like Design Increase IVA and EVA Efficiency • Worksite Setup/Tear Down • Robotic Assistant • Contingency Roles Surface Operations • Near Earth Objects • Moon/Mars Interplanetary Vehicles Astronaut Nancy Currie works with 2 Robonauts to build a truss structure during an Telescopes experiment. Robonaut Development History 1998 • Subsystem Development • Testing of hand mechanism ROBONAUT 1999 Fall 1998 • Single Arm Integration • Testing with teleoperator ROBONAUT 2000 Fall 1999 • Dual Arm Integration • Testing with dual arm control ROBONAUT 2001 Fall 2000 • Waist and Vision Integration • Testing under autonomous control 2002 ROBONAUT • R1A Testing of Autonomous Learning Fall 2001 • R1B Integration 2003 ROBONAUT • R1A Testing Multi Agent EVA Team Fall 2002 • R1B Segwanaut Integration 2004 ROBONAUT Fall 2003 • R1A Autonomous Manipulation • R1B 0g Airbearing Development 2005 ROBONAUT Fall 2004 • DTO Flight Audit • Begin Development of R1C ROBONAUT 2006 Fall 2006 • Centaur base • Coordinated field demonstration GM’s Motivation Why did GM originally come to us? • World
    [Show full text]
  • Ph. D. Thesis Stable Locomotion of Humanoid Robots Based
    Ph. D. Thesis Stable locomotion of humanoid robots based on mass concentrated model Author: Mario Ricardo Arbul´uSaavedra Director: Carlos Balaguer Bernaldo de Quiros, Ph. D. Department of System and Automation Engineering Legan´es, October 2008 i Ph. D. Thesis Stable locomotion of humanoid robots based on mass concentrated model Author: Mario Ricardo Arbul´uSaavedra Director: Carlos Balaguer Bernaldo de Quiros, Ph. D. Signature of the board: Signature President Vocal Vocal Vocal Secretary Rating: Legan´es, de de Contents 1 Introduction 1 1.1 HistoryofRobots........................... 2 1.1.1 Industrialrobotsstory. 2 1.1.2 Servicerobots......................... 4 1.1.3 Science fiction and robots currently . 10 1.2 Walkingrobots ............................ 10 1.2.1 Outline ............................ 10 1.2.2 Themes of legged robots . 13 1.2.3 Alternative mechanisms of locomotion: Wheeled robots, tracked robots, active cords . 15 1.3 Why study legged machines? . 20 1.4 What control mechanisms do humans and animals use? . 25 1.5 What are problems of biped control? . 27 1.6 Features and applications of humanoid robots with biped loco- motion................................. 29 1.7 Objectives............................... 30 1.8 Thesiscontents ............................ 33 2 Humanoid robots 35 2.1 Human evolution to biped locomotion, intelligence and bipedalism 36 2.2 Types of researches on humanoid robots . 37 2.3 Main humanoid robot research projects . 38 2.3.1 The Humanoid Robot at Waseda University . 38 2.3.2 Hondarobots......................... 47 2.3.3 TheHRPproject....................... 51 2.4 Other humanoids . 54 2.4.1 The Johnnie project . 54 2.4.2 The Robonaut project . 55 2.4.3 The COG project .
    [Show full text]
  • Iterative Design of Advanced Mobile Robots
    Journal of Computing and Information Technology 1 Iterative Design of Advanced Mobile Robots Fran¸coisMichaud1∗, Dominic L´etourneau1 Eric´ Beaudry2, Maxime Fr´echette1, Froduald Kabanza2, and Michel Lauria1 1Department of Electrical Engineering and Computer Engineering, Universit´ede Sherbrooke, Qu´ebec Canada 2Department of Computer Science, Universit´ede Sherbrooke, Qu´ebec Canada Integration of hardware, software and decisional com- 1. Introduction ponents is fundamental in the design of advanced mo- bile robotic systems capable of performing challenging The dream of having autonomous machines perform- tasks in unstructured and unpredictable environments. ing useful tasks in everyday environments, as un- We address such integration challenges following an it- structured and unpredictable as they can be, has erative design strategy, centered on a decisional archi- motivated for many decades now research in robotics tecture based on the notion of motivated selection of and artificial intelligence. However, intelligent and behavior-producing modules. This architecture evolved autonomous mobile robots is still in what can be over the years from the integration of obstacle avoid- ance, message reading and touch screen graphical inter- identified as being research phases, i.e., mostly basic faces, to localization and mapping, planning and schedul- research and concept formulation, and some prelimi- ing, sound source localization, tracking and separation, nary uses of the technology with attempts in clarify- speech recognition and generation on a custom-made in- ing underlying ideas and generalizing the approach teractive robot. Designed to be a scientific robot re- [Shaw 2002]. The challenge in making such a dream porter, the robot provides understandable and config- become a reality lies in the intrinsic complexities urable interaction, intention and information in a con- and interdependencies of the necessary components ference setting, reporting its experiences for on-line and to be integrated in a robot.
    [Show full text]
  • The Meteron Supvis-Justin Telerobotic Experiment and the Solex Proving Ground
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/277268674 SIMULATING AN EXTRATERRESTRIAL ENVIRONMENT FOR ROBOTIC SPACE EXPLORATION: THE METERON SUPVIS-JUSTIN TELEROBOTIC EXPERIMENT AND THE SOLEX PROVING GROUND CONFERENCE PAPER · MAY 2015 READS 16 8 AUTHORS, INCLUDING: Neal Y. Lii Daniel Leidner German Aerospace Center (DLR) German Aerospace Center (DLR) 20 PUBLICATIONS 43 CITATIONS 10 PUBLICATIONS 28 CITATIONS SEE PROFILE SEE PROFILE Benedikt Pleintinger German Aerospace Center (DLR) 9 PUBLICATIONS 11 CITATIONS SEE PROFILE Available from: Neal Y. Lii Retrieved on: 24 September 2015 SIMULATING AN EXTRATERRESTRIAL ENVIRONMENT FOR ROBOTIC SPACE EXPLORATION: THE METERON SUPVIS-JUSTIN TELEROBOTIC EXPERIMENT AND THE SOLEX PROVING GROUND Neal Y. Lii1, Daniel Leidner1, Andre´ Schiele2, Peter Birkenkampf1, Ralph Bayer1, Benedikt Pleintinger1, Andreas Meissner1, and Andreas Balzer1 1Institute of Robotics and Mechatronics, German Aerospace Center (DLR), 82234 Wessling, Germany, Email: [email protected], [email protected] 2Telerobotics and Haptics Laboratory, ESA, 2201 AZ Noordwijk, The Netherlands, Email: [email protected] ABSTRACT This paper presents the on-going development for the Supvis-Justin experiment lead by DLR, together with ESA, planned for 2016. It is part of the ESA initiated Me- teron telerobotics experiment suite aimed to study differ- ent forms of telerobotics solutions for space applications. Supvis-Justin studies the user interface design, and super- vised autonomy aspects of telerobotics, as well as tele- operated tasks for a humanoid robot by teleoperating a dexterous robot on earth (located at DLR) from the Inter- national Space Station (ISS) with the use of a tablet PC. Figure 1.
    [Show full text]
  • Dezfouli Siavash
    Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der Hauptbibliothek der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at). The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/). MSc Program Engineering Management GLOBAL TRENDS IN COST ORIENTED AUTONOMOUS ROBOT MARKET A Master Thesis submitted for the degree of “Master of Science in Engineering Management” at the Vienna University of Technology supervised by em. o.Univ.Prof. Dr.techn.Dr.hc.mult. Peter Kopacek Siavash Dezfouli 1028312 November 2011, Vienna, Austria Affidavit I, SIAVASH DEZFOULI, hereby declare 1. that I am the sole author of the present Master’s Thesis, "GLOBAL TRENDS IN COST ORIENTED AUTONOMOUS ROBOT MARKET ", 72 pages, bound, and that I have not used any source or tool other than those referenced or any other illicit aid or tool, and 2. that I have not prior to this date submitted this Master’s Thesis as an examination paper in any form in Austria or abroad. Vienna, Nov. 2011 Signature ACKNOWLEDGMENT In the first place I would like to record my gratitude to Prof. Peter Kopacek for his supervision, advice, valuable insight, and guidance from the very early stage of this research as my supervisor and his crucial contribution as the Engineering Management Program director in Vienna University of Technology. Above all and the most needed, he provided me unflinching encouragement and support in various ways. His truly scientist intuition has made him as a constant oasis of ideas and passions in science, which exceptionally inspire and enrich my growth as a student, a researcher and a scientist want to be.
    [Show full text]
  • Presentations Lowqualitypdf
    Welcome 04 Maps 06 Schedule Overview – Sun, 3/3 15 – Mon, 3/4 16 – Tue, 3/5 18 – Wed, 3/6 20 Visits 22 Tutorials and Workshops 23 Plenary Talk 27 Panel Session 30 Session 32 Map - Demo & Poster 46 Late-Breaking Reports & Poster Session 48 Video Session 56 Demo Session 60 Exhibition 66 Sponsorship 68 Organizers 72 Reviewers 74 Welcome to Tokyo! The Eighth Annual Accompanying the full papers are the Late ACM/IEEE International Conference on Breaking Reports, Videos, and Demos. Hideaki Kuzuoka Welcome Human-Robot Interaction (HRI 2013) is a For the LBR, 95 out of 100 (95%) two- HRI’13 General Co-Chair highly selective conference that aims to page papers were accepted and will be University of Tsukuba, Japan showcase the very best interdisciplinary presented as posters at the conference. and multidisciplinary research in human- For the Videos, 16 of 22 (72%) short videos robot interaction with roots in robotics, were accepted and will be presented during social psychology, cognitive science, HCI, the video session. The Demos is new to our Vanessa Evers human factors, artificial intelligence, conference. We have 22 robot systems for HRI’13 General Co-Chair design, engineering, and many more. We all participants to be able to interact with University of Twente, Netherlands invite broad participation and encourage the innovative systems. discussion and sharing of ideas across a diverse audience. Rounding out the program are two keynote Michita Imai speakers who will discuss topics relevant to HRI’13 Program Co-Chair Robotics is growing increasingly HRI: Dr. Yuichiro Anzai and Dr.
    [Show full text]
  • Assistive Humanoid Robot MARKO: Development of the Neck Mechanism
    MATEC Web of Conferences 121, 08005 (2017) DOI: 10.1051/ matecconf/201712108005 MSE 2017 Assistive humanoid robot MARKO: development of the neck mechanism Marko Penčić1,*, Maja Čavić1, Srđan Savić1, Milan Rackov1, Branislav Borovac1, and Zhenli Lu2 1Faculty of Technical Sciences, University of Novi Sad, TrgDositejaObradovića 6, 21000 Novi Sad, Serbia 2School of Electrical Engineering and Automation, Changshu Institute of Technology, Hushan Road 99, 215500 Changshu, People's Republic of China Abstract.The paper presents the development of neck mechanism for humanoid robots. The research was conducted within the project which is developing a humanoid robot Marko that represents assistive apparatus in the physical therapy for children with cerebral palsy.There are two basic ways for the neck realization of the robots. The first is based on low backlash mechanisms that have high stiffness and the second one based on the viscoelastic elements having variable flexibility. We suggest low backlash differential gear mechanism that requires small actuators. Based on the kinematic-dynamic requirements a dynamic model of the robots upper body is formed. Dynamic simulation for several positions of the robot was performed and the driving torques of neck mechanism are determined.Realized neck has 2 DOFs and enables movements in the direction of flexion-extension 100°, rotation ±90° and the combination of these two movements. It consists of a differential mechanism with three spiral bevel gears of which the two are driving and are identical, and the third one which is driven gear to which the robot head is attached. Power transmission and motion from the actuators to the input links of the differential mechanism is realized with two parallel placed gear mechanisms that are identical.Neck mechanism has high carrying capacity and reliability, high efficiency, low backlash that provide high positioning accuracy and repeatability of movements, compact design and small mass and dimensions.
    [Show full text]
  • Generation of the Whole-Body Motion for Humanoid Robots with the Complete Dynamics Oscar Efrain Ramos Ponce
    Generation of the whole-body motion for humanoid robots with the complete dynamics Oscar Efrain Ramos Ponce To cite this version: Oscar Efrain Ramos Ponce. Generation of the whole-body motion for humanoid robots with the complete dynamics. Robotics [cs.RO]. Universite Toulouse III Paul Sabatier, 2014. English. tel- 01134313 HAL Id: tel-01134313 https://tel.archives-ouvertes.fr/tel-01134313 Submitted on 23 Mar 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Christine CHEVALLEREAU: Directeur de Recherche, École Centrale de Nantes, France Francesco NORI: Researcher, Italian Institute of Technology, Italy Patrick DANÈS: Professeur des Universités, Université de Toulouse III, France Ludovic RIGHETTI: Researcher, Max-Plank-Institute for Intelligent Systems, Germany Nicolas MANSARD: Chargé de Recherche, LAAS-CNRS, France Philippe SOUÈRES: Directeur de recherche, LAAS-CNRS, France Yuval TASSA: Researcher, University of Washington, USA Abstract This thesis aims at providing a solution to the problem of motion generation for humanoid robots. The proposed framework generates whole-body motion using the complete robot dy- namics in the task space satisfying contact constraints. This approach is known as operational- space inverse-dynamics control. The specification of the movements is done through objectives in the task space, and the high redundancy of the system is handled with a prioritized stack of tasks where lower priority tasks are only achieved if they do not interfere with higher priority ones.
    [Show full text]