NATURAL HAZARD DATA a Practical Guide

Total Page:16

File Type:pdf, Size:1020Kb

NATURAL HAZARD DATA a Practical Guide NATURAL HAZARD DATA A Practical Guide ASIAN DEVELOPMENT BANK NATURAL HAZARD DATA A Practical Guide NOVEMBER 2017 ASIAN DEVELOPMENT BANK Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) © 2017 Asian Development Bank 6 ADB Avenue, Mandaluyong City, 1550 Metro Manila, Philippines Tel +63 2 632 4444; Fax +63 2 636 2444 www.adb.org Some rights reserved. Published in 2017. ISBN 978-92-9261-012-8 (Print), 978-92-9261-013-5 (PDF) Publication Stock No. TIM178692-2 DOI: http://dx.doi.org/10.22617/TIM178692-2 The views expressed in this publication are those of the authors and do not necessarily reflect the views and policies of the Asian Development Bank (ADB) or its Board of Governors or the governments they represent. ADB does not guarantee the accuracy of the data included in this publication and accepts no responsibility for any consequence of their use. The mention of specific companies or products of manufacturers does not imply that they are endorsed or recommended by ADB in preference to others of a similar nature that are not mentioned. By making any designation of or reference to a particular territory or geographic area, or by using the term “country” in this document, ADB does not intend to make any judgments as to the legal or other status of any territory or area. This work is available under the Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) https://creativecommons.org/licenses/by/3.0/igo/. By using the content of this publication, you agree to be bound by the terms of this license. For attribution, translations, adaptations, and permissions, please read the provisions and terms of use at https://www.adb.org/terms-use#openaccess This CC license does not apply to non-ADB copyright materials in this publication. If the material is attributed to another source, please contact the copyright owner or publisher of that source for permission to reproduce it. ADB cannot be held liable for any claims that arise as a result of your use of the material. Please contact [email protected] if you have questions or comments with respect to content, or if you wish to obtain copyright permission for your intended use that does not fall within these terms, or for permission to use the ADB logo. Notes: In this publication, “$” refers to US dollars. ADB recognizes “Vietnam” as Viet Nam. Corrigenda to ADB publications may be found at http://www.adb.org/publications/corrigenda Natural Hazard Data: A Practical Guide ii Contents Acknowledgments iv Abbreviations v Executive Summary vi 1 Introduction 1 2 Key Concepts 2 A. Natural Hazards: One Component of Disaster Risk B. Measuring Natural Hazards: Frequency, Intensity, Location C. Understanding Return Periods D. The Role of Historical Catalogs E. Probabilistic and Deterministic Approaches to Natural Hazards F. Climate Change and Natural Hazards 3 Factors to Consider When Assessing Natural Hazard Datasets for Operational Purposes 10 A. Introduction B. Scale and Resolution C. Temporality D. Data Gaps E. Authoritativeness F. Licensing and Open Data G. Data Formats 4 Discussion of Natural Hazard Data by Type 15 A. Geophysical 1. Earthquake 2. Tsunami 3. Volcano B. Weather 1. Tropical Cyclone 2. Flood (Riverine) 3. Landslide 4. Drought 5 Other Data Sources 25 6 Recommendations for Managing Natural Hazard Data Created by ADB 27 Appendix 29 Country Case Study: Natural Hazard Data in Nepal iii Natural Hazard Data Acknowledgments This practical guide was prepared under the regional technical assistance project Development of Guidance Materials and Screening Tools for Incorporating Disaster Risk Concerns in Country Partnership Strategy and Project Preparation (TA 8752-REG) of the Asian Development Bank (ADB). The project was implemented under the overall guidance of Charlotte Benson, principal disaster risk management specialist, Sustainable Development and Climate Change Department (SDCC). This document was prepared by Robert Soden (consultant). The document benefited significantly from comments received from the following ADB staff: Rexel Abrigo, climate change officer (Climate Change Adaptation), SDCC; Mary Jane David, senior public management officer (Disaster Risk Management), SDCC; Erik Kjaergaard, disaster risk management specialist, South Asia Department; Cinzia Losenno, former senior climate change specialist (Climate Change Adaptation), SDCC; Anil Pokhrel, former disaster risk management specialist, SDCC; Nathan Rive, climate change specialist, Central and West Asia Department; Bhuneshwar Prasad Sah, infrastructure specialist (GIS), SDCC; Yasmin Siddiqi, principal water resources specialist, SDCC; Arghya Sinha Roy, senior disaster risk management specialist, SDCC; Binsar Tambunan, former lead portfolio management specialist/project administration unit head, Central and West Asia Department; Hanna Uusimaa, climate change specialist, Pacific Department; and Tadayoshi Yahata, infrastructure specialist, SDCC. External comments from Abigail Baca (World Bank), David Lallemant (Co-Risk Labs), Xianfu Lu (consultant), and Jeremy Wetterwald (REACH Initiative) were also gratefully received. The Nepal country case study annex was much enhanced by insights and comments from Lok Adhikari (Nepal National Seismological Centre), Nama Budhathoki (Kathmandu Living Labs), Deo Raj Gurung (International Centre for Integrated Mountain Development), Sumeer Koirala (Nepal Ministry of Land Reform and Management), Shashish Maharajan (Kathmandu University), Niru Pradhan (Nepal Red Cross), Sushil Rajbhandari (Nepal National Geographic Information Infrastructure Programme), and Tom Zearley (United States Agency for International Development). Grendel Saldevar-Perez, senior operations assistant, SDCC, skillfully managed budgetary and contractual matters, and provided invaluable administrative support. The document was proofread by Ricardo Chan and Kae Sugawara and the layout designed by Rocilyn Locsin Laccay. iv Natural Hazard Data: A Practical Guide iv Abbreviations ADB Asian Development Bank cm centimeter DEM digital elevation model DMC developing member country DRM disaster risk management GAR Global Assessment Report on Disaster Risk Reduction GCM global climate model GEM Global Earthquake Model GIS geographic information system IBTrACS International Best Track Archive for Climate Stewardship ICIMOD International Centre for Integrated Mountain Development IPCC Intergovernmental Panel on Climate Change km kilometer km2 square kilometer m meter NOAA United States National Oceanic and Atmospheric Administration NSC National Seismological Center (Nepal) OpenDRI Open Data for Resilience Initiative PDC Pacific Disaster Center PGA peak ground acceleration SVI standard vegetation index TA technical assistance UNISDR United Nations Office for Disaster Risk Reduction VHI volcano hazard index v Natural Hazard Data v Executive Summary Disasters pose a significant threat to the sustainability of development projects and investments. At the same time, many development actions provide opportunities to strengthen disaster resilience. Reflecting this, the integration of disaster risk reduction into development forms one of the three key principles of the Operational Plan for Integrated Disaster Risk Management, 2014–2020 of the Asian Development Bank (ADB).1 This document is intended to support the application of this principle by providing guidance to ADB staff on the identification and application of robust natural hazard data for use in integrating disaster risk considerations in country partnership strategies and individual projects. Natural hazards form one of the three components that determine disaster risk. They fall into two categories reflecting their underlying natural causes: geophysical hazards, such as earthquakes, tsunamis, and volcanic eruptions; and hydrometeorological hazards or extreme weather events, such as floods, drought, and tropical cyclones. Assessments of disaster risk take into account the frequency, intensity, and location of potential hazard events and combine this information with data on the exposure of people, infrastructure, and other assets to those hazards, as well as the level and nature of vulnerability of those people and assets. This document supports nonhazard specialists in developing terms of reference for and overseeing hazard and disaster risk assessment technical experts. It begins by outlining the rationale for this practical guide in further detail. Section 2 provides a general introduction to key concepts and ideas related to natural hazard and disaster risk information. Section 3 provides recommendations on factors to consider in deciding between potential natural hazard datasets, including licensing, scale and/or resolution, and authoritativeness. Section 4 covers six major categories of weather and geophysical hazard, discussing common approaches to the measurement and categorization of each hazard, and highlighting key international datasets along with their uses and limitations. Section 5 provides guidance on other data sources. Finally, Section 6 closes with a brief discussion of best practices and recommendations on the management and sharing of natural hazard information created with ADB’s support. The appendix presents a sample country natural hazard data report for Nepal to provide further guidance to ADB teams that are seeking to collate and access natural hazard and disaster risk information at a country level. The practical guide was prepared as part of a wider capacity development technical assistance (TA) project, Development of Guidance
Recommended publications
  • Community Risk Assessment
    COMMUNITY RISK ASSESSMENT Squamish-Lillooet Regional District Abstract This Community Risk Assessment is a component of the SLRD Comprehensive Emergency Management Plan. A Community Risk Assessment is the foundation for any local authority emergency management program. It informs risk reduction strategies, emergency response and recovery plans, and other elements of the SLRD emergency program. Evaluating risks is a requirement mandated by the Local Authority Emergency Management Regulation. Section 2(1) of this regulation requires local authorities to prepare emergency plans that reflects their assessment of the relative risk of occurrence, and the potential impact, of emergencies or disasters on people and property. SLRD Emergency Program [email protected] Version: 1.0 Published: January, 2021 SLRD Community Risk Assessment SLRD Emergency Management Program Executive Summary This Community Risk Assessment (CRA) is a component of the Squamish-Lillooet Regional District (SLRD) Comprehensive Emergency Management Plan and presents a survey and analysis of known hazards, risks and related community vulnerabilities in the SLRD. The purpose of a CRA is to: • Consider all known hazards that may trigger a risk event and impact communities of the SLRD; • Identify what would trigger a risk event to occur; and • Determine what the potential impact would be if the risk event did occur. The results of the CRA inform risk reduction strategies, emergency response and recovery plans, and other elements of the SLRD emergency program. Evaluating risks is a requirement mandated by the Local Authority Emergency Management Regulation. Section 2(1) of this regulation requires local authorities to prepare emergency plans that reflect their assessment of the relative risk of occurrence, and the potential impact, of emergencies or disasters on people and property.
    [Show full text]
  • Natural Hazards Predictions Name: ______Teacher: ______PD:___ 2
    1 Unit 7: Earth’s Natural Hazards Lesson 1: Natural Hazards Lesson 2: Natural Hazards Predictions Name: ___________________ Teacher: ____________PD:___ 2 Unit 7: Lesson 1 Vocabulary 3 1 Natural Hazard: 2 Natural Disaster: 3 Volcano: 4 Volcanic Eruption: 5 Active Volcano: 6 Dormant Volcano: 7 Tsunami: 8 Tornado: 4 WHY IT MATTERS! Here are some questions to consider as you work through the unit. Can you answer any of the questions now? Revisit these questions at the end of the unit to apply what you discover. Questions: Notes: What types of natural hazards are likely where you live? How could the natural hazards you listed above cause damage or injury? What is a natural disaster? What types of monitoring and communication networks alert you to possible natural hazards? How could your home and school be affected by a natural hazard? How can the effects of a natural disaster be reduced? Unit Starter: Analyzing the Frequency of Wildfires 5 Analyzing the Frequency of Wildfires Choose the correct phrases to complete the statements below: Between 1970 and 1990, on average fewer than / more than 5 million acres burned in wildfires each year. Between 2000 and 2015, more than 5 million / 10 million acres burned in more than half of the years. Overall, the number of acres burned each year has been increasing / decreasing since 1970. 6 Lesson 1: Natural Hazards In 2015, this wildfire near Clear Lake, California, destroyed property and devastated the environment. Can You Explain it? In the 1700s, scientists in Italy discovered a city that had been buried for over 1,900 years.
    [Show full text]
  • HAZARD MITIGATION for NATURAL DISASTERS a Starter Guide for Water and Wastewater Utilities
    HAZARD MITIGATION FOR NATURAL DISASTERS A Starter Guide for Water and Wastewater Utilities Select a menu option below. New users should start with Overview Hazard Mitigation. Overview Join Local Mitigation Develop Mitigation Implement and Mitigation Case Study Hazard Mitigation Efforts Projects Fund Project Overview Overview - Hazard Mitigation Hazard Mitigation Join Local Hazards Posed by Natural Disasters Mitigation Efforts Water and wastewater utilities are vulnerable to a variety of hazards including natural disasters such as earthquakes, flooding, tornados, and Develop wildfires. For utilities, the impacts from these hazard events include Mitigation Projects damaged equipment, loss of power, disruptions to service, and revenue losses. Why Mitigate the Hazards? Implement and Fund Project It is more cost-effective to mitigate the risks from natural disasters than it is to repair damage after the disaster. Hazard mitigation refers to any action or project that reduces the effects of future disasters. Utilities can Mitigation implement mitigation projects to better withstand and rapidly recover Case Study from hazard events (e.g., flooding, earthquake), thereby increasing their overall resilience. Mitigation projects could include: • Elevation of electrical panels at a lift station to prevent flooding damage. • Replacement of piping with flexible joints to prevent earthquake damage. • Reinforcement of water towers to prevent tornado damage. Mitigation measures require financial investment by the utility; however, mitigation could prevent more costly future damage and improve the reliability of service during a disaster. Disclaimer: This Guide provides practical solutions to help water and wastewater utilities mitigate the effects of natural disasters. This Guide is not intended to serve as regulatory guidance. Mention of trade names, products or services does not convey official U.S.
    [Show full text]
  • Natural Hazards Mitigation Planning: a Community Guide
    Natural A step-by-step guide Hazards to help Massachusetts communities deal with Mitigation multiple natural Planning: hazards and A Community to minimize Guide future losses Prepared by With assistance from Massachusetts Department of Environmental Management Federal Emergency Management Agency Massachusetts Emergency Management Agency Natural Resources Conservation Service Massachusetts Hazard Mitigation Team January 2003 Mitt Romney, Governor · Peter C. Webber, DEM Commissioner · Stephen J. McGrail, MEMA Director P r e f a c e The original version of this workbook was disaster mitigation program, the Flood Mitigation published in 1997 and entitled, Flood Hazard Assistance (FMA) program, as well as other federal, Mitigation Planning: A Community Guide. Its state and private funding sources. purpose was to serve as a guide for the preparation Although the Commonwealth of of a streamlined, cost-efficient flood mitigation plan Massachusetts has had a statewide Hazard by local governments and citizen groups. Although Mitigation Plan in place since 1986, there has been the main purpose of this revised workbook has not little opportunity for community participation and changed from its original mission, this version has input in the planning process to minimize future been updated to encompass all natural hazards and disaster damages. A secondary goal of the to assist Massachusetts’ communities in complying workbook is to encourage the development of with the all hazards mitigation planning community-based plans and obtain local input into requirements under the federal Disaster Mitigation Massachusetts’ state mitigation planning efforts in Act of 2000 (DMA 2000). The parts of this order to improve the state’s capability to plan for workbook that correspond with the requirements of disasters and recover from damages.
    [Show full text]
  • Issue Brief: Disaster Risk Governance Crisis Prevention and Recovery
    ISSUE BRIEF: DISASTER RISK GOVERNANCE CRISIS PREVENTION AND RECOVERY United Nations Development Programme “The earthquake in Haiti in January 2010 was about the same magnitude as the February 2011 earthquake in Christchurch, but the human toll was significantly higher. The loss of 185 lives in Christchurch was 185 too many. However, compared with the estimated 220,000 plus killed in Haiti in 2010, it becomes evident that it is not the magnitude of the natural hazard alone that determines its impact.” – Helen Clark, UNDP Administrator Poorly managed economic growth, combined with climate variability and change, is driving an overall rise in global disaster Around the world, it is the poor who face the greatest risk from risk for all countries. disasters. Those affected by poverty are more likely to live in drought and flood prone regions, and natural hazards are far Human development and disaster risk are interlinked. Rapid more likely to hurt poor communities than rich ones. economic and urban development can lead to growing Ninety-five percent of the 1.3 million people killed and the 4.4 concentrations of people in areas that are prone to natural billion affected by disasters in the last two decades lived in developing countries, and fewer than two per cent of global hazards. The risk increases if the exposure of people and assets deaths from cyclones occur in countries with high levels of to natural hazards grows faster than the ability of countries to development. improve their risk reduction capacity. DISASTER RISK REDUCTION AND GOVERNANCE In the context of risk management, this requires that the general public are sufficiently informed of the natural hazard risks they are exposed to and able to take necessary The catastrophic impact of disasters is not ‘natural.’ Disasters are precautions.
    [Show full text]
  • Area Earthquake Hazards Mapping Project: Seismic and Liquefaction Hazard Maps by Chris H
    St. Louis Area Earthquake Hazards Mapping Project: Seismic and Liquefaction Hazard Maps by Chris H. Cramer, Robert A. Bauer, Jae-won Chung, J. David Rogers, Larry Pierce, Vicki Voigt, Brad Mitchell, David Gaunt, Robert A. Wil- liams, David Hoffman, Gregory L. Hempen, Phyllis J. Steckel, Oliver S. Boyd, Connor M. Watkins, Kathleen Tucker, and Natasha S. McCallister ABSTRACT We present probabilistic and deterministic seismic and liquefac- (NMSZ) earthquake sequence. This sequence produced modi- tion hazard maps for the densely populated St. Louis metropolitan fied Mercalli intensity (MMI) for locations in the St. Louis area area that account for the expected effects of surficial geology on that ranged from VI to VIII (Nuttli, 1973; Bakun et al.,2002; earthquake ground shaking. Hazard calculations were based on a Hough and Page, 2011). The region has experienced strong map grid of 0.005°, or about every 500 m, and are thus higher in ground shaking (∼0:1g peak ground acceleration [PGA]) as a resolution than any earlier studies. To estimate ground motions at result of prehistoric and contemporary seismicity associated with the surface of the model (e.g., site amplification), we used a new the major neighboring seismic source areas, including the Wa- detailed near-surface shear-wave velocity model in a 1D equiva- bashValley seismic zone (WVSZ) and NMSZ (Fig. 1), as well as lent-linear response analysis. When compared with the 2014 U.S. a possible paleoseismic earthquake near Shoal Creek, Illinois, Geological Survey (USGS) National Seismic Hazard Model, about 30 km east of St. Louis (McNulty and Obermeier, 1997). which uses a uniform firm-rock-site condition, the new probabi- Another contributing factor to seismic hazard in the St.
    [Show full text]
  • Relative Earthquake Hazard Map for the Vancouver, Washington, Urban Region
    Relative Earthquake Hazard Map for the Vancouver, Washington, Urban Region by Matthew A. Mabey, Ian P. Madin, and Stephen P. Palmer WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Geologic Map GM-42 December 1994 The information provided in this map cannot be substituted for a site-specific geotechnica/ investi­ gation, which must be performed by qualified prac­ titioners and is required to assess the potential for and consequent damage from soil liquefaction, am­ plified ground shaking, landsliding, or any other earthquake hazard. Location of quadrangles WASHINGTON STATE DEPARTMENTOF ~~ Natural Resources Jennifer M. Belcher- Commissioner of Public Lands ... Kaleen Cott ingham- Supervisor Relative Earthquake Hazard Map for the Vancouver, Washington, Urban Region by Matthew A. Mabey, Ian P. Madin, and Stephen P. Palmer WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Geologic Map GM-42 December 1994 The information provided in this map cannot be substituted for a site-specific geotechnical investi­ gation, which must be performed by qualified prac­ titioners and is required to assess the potential for and consequent damage from soil liquefaction, am­ plified ground shaking, landsliding, or any other earthquake hazard. WASHINGTON STATE DEPARTMENTOF Natural Resources Jennifer M. Belcher- Commissioner of Public Lands Kaleen Cottingham - Supervisor Division of Geology and Earth Resources DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • Volcanic Hazards As Components of Complex Systems: the Case of Japan
    Volume 13 | Issue 33 | Number 6 | Article ID 4359 | Aug 17, 2015 The Asia-Pacific Journal | Japan Focus Volcanic Hazards as Components of Complex Systems: The Case of Japan Gregory Smits The past year or so has been a time of the earth’s crust suggested Mt. Fuji is more particularly vigorous volcanic activity in Japan, likely to erupt owing to effects from the 2011 or at least activity that has intruded into public Tōhoku earthquake.3 Well publicized by a press awareness. Perhaps most dramatic was the release on the eve of its publication, mass deadly eruption of Mt. Ontake on September media around the world have reported this 27, 2014, whose 57 fatalities were the first finding, along with speculation regarding volcano-related deaths in Japan since 1991. On possible connections between earthquakes and May 29, 2015, Mt. Shindake, off the southern volcanic eruptions. tip of Kyushu, erupted violently, forcing the evacuation of the island of Kuchinoerabu. That As of June 30, 2015, the Japan Meteorological same day, Sakurajima, located just north in Agency (JMA) designated ten volcanoes in or Kagoshima Bay, erupted more forcefully than near the main Japanese islands as warranting usual. Sakurajima has been erupting in some levels of warning ranging from Mt. Shindake’s fashion almost continuously since 1955, but Level 5 (“Evacuate”), to Level 2 (“Do not since 2006, its activity has become relatively approach the crater”) in seven cases. more vigorous. Indeed, a May 30 Asahi shinbun Sakurajima is at Level 3 (“Do not approach the article characterized these eruptions as “the volcano”), as is Hakoneyama, located near Mt.
    [Show full text]
  • Earthquakes That Trigger Other Natural Hazards
    Chain Reaction: Earthquakes that Trigger Other Natural Hazards Compiled by Diane Noserale and Tania Larson volcanic eruptions. concave structure called a “caldera.” These structures are Scientists have known that movement of magma often found around the world. Yellowstone and Crater Lake fi re destroys much of a major city. The side triggers earthquakes, but they are discovering that this are two examples in the United States. Research shows of a mountain collapses and then explodes. relationship may also work in reverse. Scientists are look- that activity at calderas often occurred within months or A train of waves sweeps away coastal vil- ing at earthquakes that meet very specifi c criteria: a mag- even hours of large regional earthquakes, sometimes as lages over thousands of miles. All of these nitude of 6 or higher; a location on major fault zones a precursor to the earthquakes and sometimes as a result events are disasters that have started with near a volcano; and a later eruption of a nearby volcano. of them. Aor been triggered by an earthquake. Some of the triggers They are fi nding evidence that these earthquakes might were among the largest earthquakes ever recorded. But have triggered the eruptions. Landslides the disasters that followed were often so large that the In the early morning of Nov. 29, 1975, a magnitude- Heavy rain, wildfi res, volcanic eruptions and human earthquakes were overshadowed, and so, we hear about 7.2 earthquake struck the Big Island of Hawaii. Less than activity often work together to cause landslides. In hilly the eruption of Mount St.
    [Show full text]
  • Natural Hazards - Internal and External Processes - Chen Yong
    NATURAL AND HUMAN INDUCED HAZARDS – Vol. I - Natural Hazards - Internal and External Processes - Chen Yong NATURAL HAZARDS-INTERNAL AND EXTERNAL PROCESSES Chen Yong China Seismological Bureau, Fuxing Avenue, Beijing, China Keywords: Natural hazards, Natural catastrophes, Earth’s processes, Surface process, Internal process, Earthquakes, Floods, Windstorms, Volcanic eruption; Tsunamis, Landslides, Warning systems Contents 1. Earth’s processes 2. How big problem are natural hazards 3. Earthquakes 4. Floods 5. Windstorms 6. Volcanic Eruption 7. Conclusion Glossary Bibliography Biographical Sketch Summary Natural hazards are among one of the major causes for concern on Earth. The economic losses caused by natural hazards are about 40 billion US dollars per year, or 100 million dollars a day. Worldwide, 100,000 souls perish each year from such cause. Natural processes (surface’s or internal) that become a hazard have highly variable causes and effects. In order to help mitigate the effects, it is necessary to understand the dynamics of the processesUNESCO involved and to suggest –wa ysEOLSS that preventative measures can be executed within the socio-economic framework of the area threatened. There were 755 natural hazard loss events in 1999. The most losses of life (98% of total) and damages of properties (93% of the total) came mainly from earthquakes, floods and windstorms. Generalized characteristicsSAMPLE of various natura lCHAPTERS hazards, i.e. the geographic distribution, magnitude- frequency relation etc., is given firstly in present topic, then, the detailed descriptions of several main natural hazards are followed. 1. Earth’s process The Earth is a dynamic, evolving system with complex interaction of internal and external processes.
    [Show full text]
  • Effect of Sea Level Rise on Energy Infrastructure in Four Major Metropolitan Areas
    Effect of Sea Level Rise on Energy Infrastructure in Four Major Metropolitan Areas September 2014 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Pilot Study on the Effect of Sea Level Rise on Energy Infrastructure in Four Major Metropolitan Areas August 2014 Effect of Sea Level Rise on Energy Infrastructure in Four Major Metropolitan Areas Office of Electricity Delivery and Energy Reliability U.S. Department of Energy September 2014 Table of Contents 1. Introduction ................................................................................................................................................................. 1 2. Sea Level Rise Trends .............................................................................................................................................. 3 3. Approach Overview and Data ............................................................................................................................... 7 3.1. Step 1: Locate Energy Assets .................................................................................................................... 7 3.2. Step 2: Assess Against SLR Increments ................................................................................................ 8 3.3. Step 3: Assign SLR Time Component .................................................................................................... 9 3.4. Step 4: Visually Assess for Impacts ....................................................................................................
    [Show full text]
  • How Good Do Natural Hazard Assessments Need to Be?
    AL SOCIET IC Y G O O F L A O M E E G R I E C H A T GROUNDWORK Furthering the Influence of Earth Science How good do natural hazard assessments need to be? Seth Stein, Earth and Planetary Sciences, Northwestern probabilities. The hazard is described by p(h), the occurrence of University, Evanston, Illinois 60208, USA, seth@earth events of a certain size, and Q(n) reflects the risk, which depends .northwestern.edu; and Jerome Stein*, Applied Mathematics, on the mitigation level n. Because the dates of future events are Brown University, Providence, Rhode Island 02912, USA unknown, L(h,n) is the expected average direct and indirect annual loss. In trying to mitigate natural hazards, society plays a high-stakes A sum of money S invested today at interest rate i will be worth game against nature. Often nature surprises us when an earth- S(1 + i)t at a future time t, so the present value of a sum S at a fu- quake, hurricane, or flood is bigger or has greater effects than ture time t is the inverse, S/(1 + i)t. Thus, we scale the future losses expected from detailed natural hazard assessments. In other to their present value using the sum over T years cases, nature outsmarts us, doing great damage despite expensive mitigation measures. (2) These difficulties are illustrated by the March 2011 earthquake for large T. For interest rate i = 0.05, DT = 15.4 for 30 years and off Japan’s Tohoku coast. The earthquake was much larger than 19.8 for 100 years.
    [Show full text]