NATURAL HAZARD DATA a Practical Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Community Risk Assessment
COMMUNITY RISK ASSESSMENT Squamish-Lillooet Regional District Abstract This Community Risk Assessment is a component of the SLRD Comprehensive Emergency Management Plan. A Community Risk Assessment is the foundation for any local authority emergency management program. It informs risk reduction strategies, emergency response and recovery plans, and other elements of the SLRD emergency program. Evaluating risks is a requirement mandated by the Local Authority Emergency Management Regulation. Section 2(1) of this regulation requires local authorities to prepare emergency plans that reflects their assessment of the relative risk of occurrence, and the potential impact, of emergencies or disasters on people and property. SLRD Emergency Program [email protected] Version: 1.0 Published: January, 2021 SLRD Community Risk Assessment SLRD Emergency Management Program Executive Summary This Community Risk Assessment (CRA) is a component of the Squamish-Lillooet Regional District (SLRD) Comprehensive Emergency Management Plan and presents a survey and analysis of known hazards, risks and related community vulnerabilities in the SLRD. The purpose of a CRA is to: • Consider all known hazards that may trigger a risk event and impact communities of the SLRD; • Identify what would trigger a risk event to occur; and • Determine what the potential impact would be if the risk event did occur. The results of the CRA inform risk reduction strategies, emergency response and recovery plans, and other elements of the SLRD emergency program. Evaluating risks is a requirement mandated by the Local Authority Emergency Management Regulation. Section 2(1) of this regulation requires local authorities to prepare emergency plans that reflect their assessment of the relative risk of occurrence, and the potential impact, of emergencies or disasters on people and property. -
Natural Hazards Predictions Name: ______Teacher: ______PD:___ 2
1 Unit 7: Earth’s Natural Hazards Lesson 1: Natural Hazards Lesson 2: Natural Hazards Predictions Name: ___________________ Teacher: ____________PD:___ 2 Unit 7: Lesson 1 Vocabulary 3 1 Natural Hazard: 2 Natural Disaster: 3 Volcano: 4 Volcanic Eruption: 5 Active Volcano: 6 Dormant Volcano: 7 Tsunami: 8 Tornado: 4 WHY IT MATTERS! Here are some questions to consider as you work through the unit. Can you answer any of the questions now? Revisit these questions at the end of the unit to apply what you discover. Questions: Notes: What types of natural hazards are likely where you live? How could the natural hazards you listed above cause damage or injury? What is a natural disaster? What types of monitoring and communication networks alert you to possible natural hazards? How could your home and school be affected by a natural hazard? How can the effects of a natural disaster be reduced? Unit Starter: Analyzing the Frequency of Wildfires 5 Analyzing the Frequency of Wildfires Choose the correct phrases to complete the statements below: Between 1970 and 1990, on average fewer than / more than 5 million acres burned in wildfires each year. Between 2000 and 2015, more than 5 million / 10 million acres burned in more than half of the years. Overall, the number of acres burned each year has been increasing / decreasing since 1970. 6 Lesson 1: Natural Hazards In 2015, this wildfire near Clear Lake, California, destroyed property and devastated the environment. Can You Explain it? In the 1700s, scientists in Italy discovered a city that had been buried for over 1,900 years. -
HAZARD MITIGATION for NATURAL DISASTERS a Starter Guide for Water and Wastewater Utilities
HAZARD MITIGATION FOR NATURAL DISASTERS A Starter Guide for Water and Wastewater Utilities Select a menu option below. New users should start with Overview Hazard Mitigation. Overview Join Local Mitigation Develop Mitigation Implement and Mitigation Case Study Hazard Mitigation Efforts Projects Fund Project Overview Overview - Hazard Mitigation Hazard Mitigation Join Local Hazards Posed by Natural Disasters Mitigation Efforts Water and wastewater utilities are vulnerable to a variety of hazards including natural disasters such as earthquakes, flooding, tornados, and Develop wildfires. For utilities, the impacts from these hazard events include Mitigation Projects damaged equipment, loss of power, disruptions to service, and revenue losses. Why Mitigate the Hazards? Implement and Fund Project It is more cost-effective to mitigate the risks from natural disasters than it is to repair damage after the disaster. Hazard mitigation refers to any action or project that reduces the effects of future disasters. Utilities can Mitigation implement mitigation projects to better withstand and rapidly recover Case Study from hazard events (e.g., flooding, earthquake), thereby increasing their overall resilience. Mitigation projects could include: • Elevation of electrical panels at a lift station to prevent flooding damage. • Replacement of piping with flexible joints to prevent earthquake damage. • Reinforcement of water towers to prevent tornado damage. Mitigation measures require financial investment by the utility; however, mitigation could prevent more costly future damage and improve the reliability of service during a disaster. Disclaimer: This Guide provides practical solutions to help water and wastewater utilities mitigate the effects of natural disasters. This Guide is not intended to serve as regulatory guidance. Mention of trade names, products or services does not convey official U.S. -
Natural Hazards Mitigation Planning: a Community Guide
Natural A step-by-step guide Hazards to help Massachusetts communities deal with Mitigation multiple natural Planning: hazards and A Community to minimize Guide future losses Prepared by With assistance from Massachusetts Department of Environmental Management Federal Emergency Management Agency Massachusetts Emergency Management Agency Natural Resources Conservation Service Massachusetts Hazard Mitigation Team January 2003 Mitt Romney, Governor · Peter C. Webber, DEM Commissioner · Stephen J. McGrail, MEMA Director P r e f a c e The original version of this workbook was disaster mitigation program, the Flood Mitigation published in 1997 and entitled, Flood Hazard Assistance (FMA) program, as well as other federal, Mitigation Planning: A Community Guide. Its state and private funding sources. purpose was to serve as a guide for the preparation Although the Commonwealth of of a streamlined, cost-efficient flood mitigation plan Massachusetts has had a statewide Hazard by local governments and citizen groups. Although Mitigation Plan in place since 1986, there has been the main purpose of this revised workbook has not little opportunity for community participation and changed from its original mission, this version has input in the planning process to minimize future been updated to encompass all natural hazards and disaster damages. A secondary goal of the to assist Massachusetts’ communities in complying workbook is to encourage the development of with the all hazards mitigation planning community-based plans and obtain local input into requirements under the federal Disaster Mitigation Massachusetts’ state mitigation planning efforts in Act of 2000 (DMA 2000). The parts of this order to improve the state’s capability to plan for workbook that correspond with the requirements of disasters and recover from damages. -
Issue Brief: Disaster Risk Governance Crisis Prevention and Recovery
ISSUE BRIEF: DISASTER RISK GOVERNANCE CRISIS PREVENTION AND RECOVERY United Nations Development Programme “The earthquake in Haiti in January 2010 was about the same magnitude as the February 2011 earthquake in Christchurch, but the human toll was significantly higher. The loss of 185 lives in Christchurch was 185 too many. However, compared with the estimated 220,000 plus killed in Haiti in 2010, it becomes evident that it is not the magnitude of the natural hazard alone that determines its impact.” – Helen Clark, UNDP Administrator Poorly managed economic growth, combined with climate variability and change, is driving an overall rise in global disaster Around the world, it is the poor who face the greatest risk from risk for all countries. disasters. Those affected by poverty are more likely to live in drought and flood prone regions, and natural hazards are far Human development and disaster risk are interlinked. Rapid more likely to hurt poor communities than rich ones. economic and urban development can lead to growing Ninety-five percent of the 1.3 million people killed and the 4.4 concentrations of people in areas that are prone to natural billion affected by disasters in the last two decades lived in developing countries, and fewer than two per cent of global hazards. The risk increases if the exposure of people and assets deaths from cyclones occur in countries with high levels of to natural hazards grows faster than the ability of countries to development. improve their risk reduction capacity. DISASTER RISK REDUCTION AND GOVERNANCE In the context of risk management, this requires that the general public are sufficiently informed of the natural hazard risks they are exposed to and able to take necessary The catastrophic impact of disasters is not ‘natural.’ Disasters are precautions. -
Area Earthquake Hazards Mapping Project: Seismic and Liquefaction Hazard Maps by Chris H
St. Louis Area Earthquake Hazards Mapping Project: Seismic and Liquefaction Hazard Maps by Chris H. Cramer, Robert A. Bauer, Jae-won Chung, J. David Rogers, Larry Pierce, Vicki Voigt, Brad Mitchell, David Gaunt, Robert A. Wil- liams, David Hoffman, Gregory L. Hempen, Phyllis J. Steckel, Oliver S. Boyd, Connor M. Watkins, Kathleen Tucker, and Natasha S. McCallister ABSTRACT We present probabilistic and deterministic seismic and liquefac- (NMSZ) earthquake sequence. This sequence produced modi- tion hazard maps for the densely populated St. Louis metropolitan fied Mercalli intensity (MMI) for locations in the St. Louis area area that account for the expected effects of surficial geology on that ranged from VI to VIII (Nuttli, 1973; Bakun et al.,2002; earthquake ground shaking. Hazard calculations were based on a Hough and Page, 2011). The region has experienced strong map grid of 0.005°, or about every 500 m, and are thus higher in ground shaking (∼0:1g peak ground acceleration [PGA]) as a resolution than any earlier studies. To estimate ground motions at result of prehistoric and contemporary seismicity associated with the surface of the model (e.g., site amplification), we used a new the major neighboring seismic source areas, including the Wa- detailed near-surface shear-wave velocity model in a 1D equiva- bashValley seismic zone (WVSZ) and NMSZ (Fig. 1), as well as lent-linear response analysis. When compared with the 2014 U.S. a possible paleoseismic earthquake near Shoal Creek, Illinois, Geological Survey (USGS) National Seismic Hazard Model, about 30 km east of St. Louis (McNulty and Obermeier, 1997). which uses a uniform firm-rock-site condition, the new probabi- Another contributing factor to seismic hazard in the St. -
Relative Earthquake Hazard Map for the Vancouver, Washington, Urban Region
Relative Earthquake Hazard Map for the Vancouver, Washington, Urban Region by Matthew A. Mabey, Ian P. Madin, and Stephen P. Palmer WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Geologic Map GM-42 December 1994 The information provided in this map cannot be substituted for a site-specific geotechnica/ investi gation, which must be performed by qualified prac titioners and is required to assess the potential for and consequent damage from soil liquefaction, am plified ground shaking, landsliding, or any other earthquake hazard. Location of quadrangles WASHINGTON STATE DEPARTMENTOF ~~ Natural Resources Jennifer M. Belcher- Commissioner of Public Lands ... Kaleen Cott ingham- Supervisor Relative Earthquake Hazard Map for the Vancouver, Washington, Urban Region by Matthew A. Mabey, Ian P. Madin, and Stephen P. Palmer WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Geologic Map GM-42 December 1994 The information provided in this map cannot be substituted for a site-specific geotechnical investi gation, which must be performed by qualified prac titioners and is required to assess the potential for and consequent damage from soil liquefaction, am plified ground shaking, landsliding, or any other earthquake hazard. WASHINGTON STATE DEPARTMENTOF Natural Resources Jennifer M. Belcher- Commissioner of Public Lands Kaleen Cottingham - Supervisor Division of Geology and Earth Resources DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. -
Volcanic Hazards As Components of Complex Systems: the Case of Japan
Volume 13 | Issue 33 | Number 6 | Article ID 4359 | Aug 17, 2015 The Asia-Pacific Journal | Japan Focus Volcanic Hazards as Components of Complex Systems: The Case of Japan Gregory Smits The past year or so has been a time of the earth’s crust suggested Mt. Fuji is more particularly vigorous volcanic activity in Japan, likely to erupt owing to effects from the 2011 or at least activity that has intruded into public Tōhoku earthquake.3 Well publicized by a press awareness. Perhaps most dramatic was the release on the eve of its publication, mass deadly eruption of Mt. Ontake on September media around the world have reported this 27, 2014, whose 57 fatalities were the first finding, along with speculation regarding volcano-related deaths in Japan since 1991. On possible connections between earthquakes and May 29, 2015, Mt. Shindake, off the southern volcanic eruptions. tip of Kyushu, erupted violently, forcing the evacuation of the island of Kuchinoerabu. That As of June 30, 2015, the Japan Meteorological same day, Sakurajima, located just north in Agency (JMA) designated ten volcanoes in or Kagoshima Bay, erupted more forcefully than near the main Japanese islands as warranting usual. Sakurajima has been erupting in some levels of warning ranging from Mt. Shindake’s fashion almost continuously since 1955, but Level 5 (“Evacuate”), to Level 2 (“Do not since 2006, its activity has become relatively approach the crater”) in seven cases. more vigorous. Indeed, a May 30 Asahi shinbun Sakurajima is at Level 3 (“Do not approach the article characterized these eruptions as “the volcano”), as is Hakoneyama, located near Mt. -
Earthquakes That Trigger Other Natural Hazards
Chain Reaction: Earthquakes that Trigger Other Natural Hazards Compiled by Diane Noserale and Tania Larson volcanic eruptions. concave structure called a “caldera.” These structures are Scientists have known that movement of magma often found around the world. Yellowstone and Crater Lake fi re destroys much of a major city. The side triggers earthquakes, but they are discovering that this are two examples in the United States. Research shows of a mountain collapses and then explodes. relationship may also work in reverse. Scientists are look- that activity at calderas often occurred within months or A train of waves sweeps away coastal vil- ing at earthquakes that meet very specifi c criteria: a mag- even hours of large regional earthquakes, sometimes as lages over thousands of miles. All of these nitude of 6 or higher; a location on major fault zones a precursor to the earthquakes and sometimes as a result events are disasters that have started with near a volcano; and a later eruption of a nearby volcano. of them. Aor been triggered by an earthquake. Some of the triggers They are fi nding evidence that these earthquakes might were among the largest earthquakes ever recorded. But have triggered the eruptions. Landslides the disasters that followed were often so large that the In the early morning of Nov. 29, 1975, a magnitude- Heavy rain, wildfi res, volcanic eruptions and human earthquakes were overshadowed, and so, we hear about 7.2 earthquake struck the Big Island of Hawaii. Less than activity often work together to cause landslides. In hilly the eruption of Mount St. -
Natural Hazards - Internal and External Processes - Chen Yong
NATURAL AND HUMAN INDUCED HAZARDS – Vol. I - Natural Hazards - Internal and External Processes - Chen Yong NATURAL HAZARDS-INTERNAL AND EXTERNAL PROCESSES Chen Yong China Seismological Bureau, Fuxing Avenue, Beijing, China Keywords: Natural hazards, Natural catastrophes, Earth’s processes, Surface process, Internal process, Earthquakes, Floods, Windstorms, Volcanic eruption; Tsunamis, Landslides, Warning systems Contents 1. Earth’s processes 2. How big problem are natural hazards 3. Earthquakes 4. Floods 5. Windstorms 6. Volcanic Eruption 7. Conclusion Glossary Bibliography Biographical Sketch Summary Natural hazards are among one of the major causes for concern on Earth. The economic losses caused by natural hazards are about 40 billion US dollars per year, or 100 million dollars a day. Worldwide, 100,000 souls perish each year from such cause. Natural processes (surface’s or internal) that become a hazard have highly variable causes and effects. In order to help mitigate the effects, it is necessary to understand the dynamics of the processesUNESCO involved and to suggest –wa ysEOLSS that preventative measures can be executed within the socio-economic framework of the area threatened. There were 755 natural hazard loss events in 1999. The most losses of life (98% of total) and damages of properties (93% of the total) came mainly from earthquakes, floods and windstorms. Generalized characteristicsSAMPLE of various natura lCHAPTERS hazards, i.e. the geographic distribution, magnitude- frequency relation etc., is given firstly in present topic, then, the detailed descriptions of several main natural hazards are followed. 1. Earth’s process The Earth is a dynamic, evolving system with complex interaction of internal and external processes. -
Effect of Sea Level Rise on Energy Infrastructure in Four Major Metropolitan Areas
Effect of Sea Level Rise on Energy Infrastructure in Four Major Metropolitan Areas September 2014 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Pilot Study on the Effect of Sea Level Rise on Energy Infrastructure in Four Major Metropolitan Areas August 2014 Effect of Sea Level Rise on Energy Infrastructure in Four Major Metropolitan Areas Office of Electricity Delivery and Energy Reliability U.S. Department of Energy September 2014 Table of Contents 1. Introduction ................................................................................................................................................................. 1 2. Sea Level Rise Trends .............................................................................................................................................. 3 3. Approach Overview and Data ............................................................................................................................... 7 3.1. Step 1: Locate Energy Assets .................................................................................................................... 7 3.2. Step 2: Assess Against SLR Increments ................................................................................................ 8 3.3. Step 3: Assign SLR Time Component .................................................................................................... 9 3.4. Step 4: Visually Assess for Impacts .................................................................................................... -
How Good Do Natural Hazard Assessments Need to Be?
AL SOCIET IC Y G O O F L A O M E E G R I E C H A T GROUNDWORK Furthering the Influence of Earth Science How good do natural hazard assessments need to be? Seth Stein, Earth and Planetary Sciences, Northwestern probabilities. The hazard is described by p(h), the occurrence of University, Evanston, Illinois 60208, USA, seth@earth events of a certain size, and Q(n) reflects the risk, which depends .northwestern.edu; and Jerome Stein*, Applied Mathematics, on the mitigation level n. Because the dates of future events are Brown University, Providence, Rhode Island 02912, USA unknown, L(h,n) is the expected average direct and indirect annual loss. In trying to mitigate natural hazards, society plays a high-stakes A sum of money S invested today at interest rate i will be worth game against nature. Often nature surprises us when an earth- S(1 + i)t at a future time t, so the present value of a sum S at a fu- quake, hurricane, or flood is bigger or has greater effects than ture time t is the inverse, S/(1 + i)t. Thus, we scale the future losses expected from detailed natural hazard assessments. In other to their present value using the sum over T years cases, nature outsmarts us, doing great damage despite expensive mitigation measures. (2) These difficulties are illustrated by the March 2011 earthquake for large T. For interest rate i = 0.05, DT = 15.4 for 30 years and off Japan’s Tohoku coast. The earthquake was much larger than 19.8 for 100 years.