PG329: Salicylamide

Total Page:16

File Type:pdf, Size:1020Kb

PG329: Salicylamide the art and science of smart patch testingTM PG329: Salicylamide CAS#: 65-45-2 Patient Information Your patch test result indicates that you have a contact allergy to salicylamide. This contact allergy may cause your skin to react when it is exposed to this substance although it may take several days for the symptoms to appear. Typical symptoms include redness, swelling, itching, and fluid-filled blisters. Where is salicylamide found? This substance is a non-prescription drug with medicinal uses similar to Aspirin. How can you avoid contact with salicylamide? Avoid products that list any of the following names in the ingredients: 2-Carbamoylphenol Cymidon (VAN) 2-Carboxamidophenol Dolomide 2-Hydroxybenzamide Dropsprin 4-10-00-00169 (Beilstein Handbook EINECS 200-609-3 Reference) Eggosalil AI3-03454 Flarpirina Acket H.P. 34 Afko-Sal HSDB 227 Algamon Liquiprin Algiamida Morsarinas Allevin NSC 3115 Amid kyseliny salicylove Novecyl Amid kyseliny salicylove [Czech] OHB Amid-Sal Oramid Amidosal Panithal Anamid Raspberin Andasol SR 4326 BRN 0742439 Salamid Benesal Salamide Benesal (VAN) Saliamid Benzamide, 2-hydroxy- Saliamin Benzamide, o-hydroxy- Salicilamida Benzoic acid, 2-hydroxy-, amide Salicilamida [INN-Spanish] CCRIS 6045 Salicilamide Cetamide Salicilamide [DCIT] Cymidon Salicilamide [Italian] Salicim Salizell (VAN) Salicylamide Salrin Salicylamidum Salymid Salicylamidum [INN-Latin] Serramida Salicylic acid amide UNII-EM8BM710ZC Salipur Urtosal Salizell o-Hydroxybenzamide What are some products that may contain salicylamide? BC Powder Medicaments *For additional information about products that might contain salicylamide, go to the Household Product Database online (http:/householdproducts.nlm.nih.gov) at the United States National Library of Medicine. These lists are brief and provide just a few examples. They are not comprehensive. Product formulations also change frequently. Read product labels carefully and talk to your doctor if you have any questions. These are general guidelines. Talk to your doctor for more specific instructions. .
Recommended publications
  • Synthesis of Aspirin
    SYNTHESIS OF ASPIRIN I. OBJECTIVES AND BACKGROUND You will: synthesize acetylsalicylic acid (aspirin) by carrying out a simple organic reaction, separate your product from the reaction mixture by vacuum filtration, purify your product by recrystallization, perform a chemical test to identify the change in functional group from reactant to product, and determine the success of your synthesis by calculating the percentage yield of your product. INTRODUCTION Aspirin is one of the most widely used medications in the world. It is employed as an analgesic (pain relief), an anti-pyretic (fever control) and an anti-inflammatory. More recently, studies have indicated that daily intake of small doses of aspirin can lower the risk of heart attack and stroke in high-risk patients. The history of aspirin and its precursor dates back to ancient times. Documents attributed to Hippocrates, the father of modern medicine, from the 4th century B.C. refer to the alleviation of pain by chewing on the bark of a willow tree or ingesting a powder made from the bark and leaves of the willow. This remedy was passed on from generation to generation. Fast forward now to the 19th century, where the field of organic chemistry began to experience tremendous growth. By 1838, chemists had managed to isolate, purify and identify the component of willow bark that provided the analgesic benefit. The compound was named salicylic acid, which was based on the genus name of the willow. Efforts to market salicylic acid met with failure, due to an unfortunate side effect-- prolonged ingestion of salicylic acid led to stomach pain, and in some cases, ulcers.
    [Show full text]
  • Pharmacokinetics of Salicylic Acid Following Intravenous and Oral Administration of Sodium Salicylate in Sheep
    animals Article Pharmacokinetics of Salicylic Acid Following Intravenous and Oral Administration of Sodium Salicylate in Sheep Shashwati Mathurkar 1,*, Preet Singh 2 ID , Kavitha Kongara 2 and Paul Chambers 2 1 1B, He Awa Crescent, Waikanae 5036, New Zealand 2 School of Veterinary Sciences, College of Sciences, Massey University, Palmerston North 4474, New Zealand; [email protected] (P.S.); [email protected] (K.K.); [email protected] (P.C.) * Correspondence: [email protected]; Tel.: +64-221-678-035 Received: 13 June 2018; Accepted: 16 July 2018; Published: 18 July 2018 Simple Summary: Scarcity of non-steroidal anti-inflammatory drugs (NSAID) to minimise the pain in sheep instigated the current study. The aim of this study was to know the pharmacokinetic parameters of salicylic acid in New Zealand sheep after administration of multiple intravenous and oral doses of sodium salicylate (sodium salt of salicylic acid). Results of the study suggest that the half-life of the drug was shorter and clearance was faster after intravenous administration as compared to that of the oral administration. The minimum effective concentration required to produce analgesia in humans (16.8 µL) was achieved in sheep for about 0.17 h in the current study after intravenous administration of 100 and 200 mg/kg body weight of sodium salicylate. However, oral administration of these doses failed to achieve the minimum effective concentration as mentioned above. This study is of significance as it adds valuable information on pharmacokinetics and its variation due to breed, species, age, gender and environmental conditions.
    [Show full text]
  • Salsalate Tablets, USP 500 Mg and 750 Mg Rx Only
    SALSALATE RX- salsalate tablet, film coated ANDAPharm LLC Disclaimer: This drug has not been found by FDA to be safe and effective, and this labeling has not been approved by FDA. For further information about unapproved drugs, click here. ---------- Salsalate Tablets, USP 500 mg and 750 mg Rx Only Cardiovascular Risk NSAIDs may cause an increase risk of serious cardiovascular thrombotic events, myocardial infarction, and stroke, which can be fatal. This risk may increase with duration of use. Patients with cardiovascular disease or risk factors for cardiovascular disease may be at greater risk. (See WARNINGS and CLINICAL TRIALS). Salsalate tablets, USP is contraindicated for the treatment of perioperative pain in the setting of coronary artery bypass graft (CABG) surgery (See WARNINGS). Gastrointestinal Risk NSAIDs cause an increased risk of serious gastrointestinal adverse events including bleeding, ulceration, and perforation of the stomach or intestines, which can be fatal. These events can occur at any time during use and without warning symptoms. Elderly patients are at greater risk for serious gastrointestinal events. (See WARNINGS). DESCRIPTION Salsalate, is a nonsteroidal anti-inflammatory agent for oral administration. Chemically, salsalate (salicylsalicylic acid or 2-hydroxybenzoic acid, 2-carboxyphenyl ester) is a dimer of salicylic acid; its structural formula is shown below. Chemical Structure: Inactive Ingredients: Colloidal Silicon Dioxide, D&C Yellow #10 Aluminum Lake, Hypromellose, Microcrystalline Cellulose, Sodium Starch Glycolate, Stearic Acid, Talc, Titanium Dioxide, Triacetin. CLINICAL PHARMACOLOGY Salsalate is insoluble in acid gastric fluids (<0.1 mg/mL at pH 1.0), but readily soluble in the small intestine where it is partially hydrolyzed to two molecules of salicylic acid.
    [Show full text]
  • Dentistry and Basic Non- Opioid Prescribing in Pain Dmitry M
    Dentistry and Basic Non- Opioid Prescribing in Pain Dmitry M. Arbuck, MD President, Indiana Polyclinic Clinical Associate Professor of Psychiatry and Pain Management, Marian University College of Osteopathic Medicine Clinical Assistant Professor of Psychiatry and Medicine, IU School of Medicine www.IndianaPolyclinic.com Version May 2020 1 Disclosures No disclosures currently (May 7, 2020) 2 Disclaimer ISDH Oral Health Program Disclaimer for courses or presentations: The information provided in this course or presentation does not, and is not intended to, constitute dental, medical, or legal advice; instead, all information, content, and materials available in this course or presentation are for general informational purposes only. You should contact an outside dentist, physician, or attorney to obtain dental, medical, or legal advice and prior to acting, or refraining from acting, on the basis of information contained in this course or presentation. All liability with respect to actions taken or not taken based on the contents of this course or presentation are hereby expressly disclaimed. 3 Goals of Pain Management • Decrease pain • Increase function • Utilize medications that limit unacceptable side effects, including addiction 4 Goals of This Presentation • Gain knowledge of appropriate use of NSAIDs and acetaminophen for pain management in dentistry • Improve insight into benefits and adverse effects of various NSAIDs • Learn appropriate alternatives to opioid use for pain management 5 Opioids: Use with Caution • Use of opioids for
    [Show full text]
  • SOME NEW DRUGS in the TREATMENT of RHEUMATIC FEVER by M
    Postgrad Med J: first published as 10.1136/pgmj.28.317.179 on 1 March 1952. Downloaded from I79 SOME NEW DRUGS IN THE TREATMENT OF RHEUMATIC FEVER By M. J. H. SMITH, M.PHARM., PH.D., F.R.I.C. Department of Chemical Pathology, King's College Hospital Medical School, London Introduction every 4 to 8 hours. Symptoms such as dizziness, The usefulness of salicylates in rheumatic fever drowsiness and nausea developed in a small pro- is unquestioned, though their undesirable side- portion of the subjects, but in no instance were effects on the gastro-intestinal tract and on the these side-effects serious. The substance differed special senses are a drawback in prolonged therapy. from salicylic acid in producing a depression of Attempts to find allied substances with a greater the central nervous system in laboratory animals safety margin have been made and three com- and a decrease in the prothrombin time in man. pounds, salicylamide, sodium gentisate and The favourable clinical reports have led to the y-resorcylic acid, have recently been introduced. proposal that a large well-controlled trial should The treatment of rheumatic fever with ACTH be made.6 and cortisone has been the subject of a number of general reviews1' 2 and will not be discussed in the Gentisic Acid (2: 5-dihydroxybenzoic acid) present article. The cost and scarcity of these COOH by copyright. materials have stimulated a search for simpler compounds with a similar physiological action and a cinchoninic acid derivative (HPC) for which an ACTH-like activity is claimed, has been tried \AOH clinically in acute rheumatic fever.
    [Show full text]
  • Salicylate, Diflunisal and Their Metabolites Inhibit CBP/P300 and Exhibit Anticancer Activity
    RESEARCH ARTICLE Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity Kotaro Shirakawa1,2,3,4, Lan Wang5,6, Na Man5,6, Jasna Maksimoska7,8, Alexander W Sorum9, Hyung W Lim1,2, Intelly S Lee1,2, Tadahiro Shimazu1,2, John C Newman1,2, Sebastian Schro¨ der1,2, Melanie Ott1,2, Ronen Marmorstein7,8, Jordan Meier9, Stephen Nimer5,6, Eric Verdin1,2* 1Gladstone Institutes, University of California, San Francisco, United States; 2Department of Medicine, University of California, San Francisco, United States; 3Department of Hematology and Oncology, Kyoto University, Kyoto, Japan; 4Graduate School of Medicine, Kyoto University, Kyoto, Japan; 5University of Miami, Gables, United States; 6Sylvester Comprehensive Cancer Center, Miami, United States; 7Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States; 8Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Philadelphia, United States; 9Chemical Biology Laboratory, National Cancer Institute, Frederick, United States Abstract Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-kB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhibits CBP and p300 lysine acetyltransferase activity in vitro by direct *For correspondence: everdin@ competition with acetyl-Coenzyme A at the catalytic site. We used a chemical structure-similarity gladstone.ucsf.edu search to identify another anti-inflammatory drug, diflunisal, that inhibits p300 more potently than salicylate. At concentrations attainable in human plasma after oral administration, both salicylate Competing interests: The and diflunisal blocked the acetylation of lysine residues on histone and non-histone proteins in cells.
    [Show full text]
  • Betamethasone and Salicylic Acid
    PATIENT & CAREGIVER EDUCATION Betamethasone and Salicylic Acid This information from Lexicomp® explains what you need to know about this medication, including what it’s used for, how to take it, its side effects, and when to call your healthcare provider. Brand Names: Canada Diprosalic; RATIO-Topisalic What is this drug used for? It is used to treat skin irritation. What do I need to tell my doctor BEFORE I take this drug? If you are allergic to this drug; any part of this drug; or any other drugs, foods, or substances. Tell your doctor about the allergy and what signs you had. If you have any of these health problems: Fungal, TB (tuberculosis), or viral infection of the skin. This is not a list of all drugs or health problems that interact with this drug. Tell your doctor and pharmacist about all of your drugs (prescription or OTC, natural products, vitamins) and health problems. You must check to make sure that it is safe for you to take this drug with all of your drugs and health problems. Do not start, stop, or change the dose of any drug without checking with your doctor. Betamethasone and Salicylic Acid 1/6 What are some things I need to know or do while I take this drug? Tell all of your health care providers that you take this drug. This includes your doctors, nurses, pharmacists, and dentists. Avoid driving and doing other tasks or actions that call for you to be alert until you see how this drug affects you. Do not use longer than you have been told by the doctor.
    [Show full text]
  • 2 Pharmacology 3 Toxicity and Drug Safety 4 Clinical Applications Of
    1 General Aspects 1.1 History 1.2 Chemistry 2 Pharmacology 2.1 Pharmacokinetics 2.2 Cellular Modes of Action 2.3 Actions on Organs and Tissues 3 Toxicity and Drug Safety 3.1 Systemic Side Effects 3.2 Organ Toxicity 3.3 Non-Dose-Related (Pseudo)allergic Actions of Aspirin 4 Clinical Applications of Aspirin 4.1 Thromboembolic Diseases 4.2 Pain, Fever, and Inflammatory Diseases 4.3 Further Clinical Indications 1 General Aspects 1.1 History 1.1.1 Willow Bark and Leaves as Antipyretic, Anti-Inflammatory Analgesics 1.1.2 Salicylates as the Active Ingredient of Willow Bark and Other Natural Sources 1.1.3 Synthesis of Acetylsalicylic Acid and First Clinical Studies 1.1.4 Mode of Aspirin Action 1.1.5 Anti-Inflammatory/Analgesic Actions of Aspirin 1.1.6 Aspirin in the Cardiovascular System 1.1.7 Current Research Topics 1.2 Chemistry 1.2.1 Structures and Chemical Properties of Salicylates 1.2.2 Determination of Salicylates Acetylsalicylic Acid. Karsten Schrör Copyright Ó 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32109-4 j5 1 General Aspects 1.1 The first known communication on the medi- History cal use of willow bark extracts in modern times came from Reverend Edward Stone from Chip- 1.1.1 ping Norton (Oxfordshire, England). In 1763, he Willow Bark and Leaves as Antipyretic, Anti- treated some 50 cases of aigues, fever, and inter- Inflammatory Analgesics mitting disorders with a powdered dry bark preparation of willow tree [3]. The doses were Medical Effects of Willow Bark Treatment of dis- about 20 gr(ains) [1.3 g] to a dram of water every eases by plants or extracts thereof is as old as the 4 h.
    [Show full text]
  • Opinion on Salicylic Acid (CAS 69-72-7) - Submission I - Corrigendum of 20-21 June 2019
    SCCS/1601/18 Final Opinion Corrigendum of 20-21 June 2019 Scientific Committee on Consumer Safety SCCS OPINION ON salicylic acid (CAS 69-72-7) Submission I The SCCS adopted the final Opinion by written procedure on 21 December 2018 Corrigendum of 20-21 June 2019 SCCS/1601/18 Final Opinion Opinion on salicylic acid (CAS 69-72-7) - Submission I - Corrigendum of 20-21 June 2019 ___________________________________________________________________________________________ ACKNOWLEDGMENTS Members of the Working Group are acknowledged for their valuable contribution to this Opinion. The members of the Working Group are: For the preliminary and the final Opinion The SCCS members: Dr U. Bernauer Dr L. Bodin Prof. Q. Chaudhry (SCCS Chair) Prof. P.J. Coenraads (SCCS Vice-Chair and Chairperson of the WG) Prof. M. Dusinska Dr J. Ezendam Dr E. Gaffet Prof. C. L. Galli Dr B. Granum Prof. E. Panteri (Rapporteur) Prof. V. Rogiers (SCCS Vice-Chair) Dr Ch. Rousselle Dr M. Stepnik Prof. T. Vanhaecke Dr S. Wijnhoven External experts: Dr A. Simonnard Dr A. Koutsodimou Prof. W. Uter The additional contribution of the following external expert is gratefully acknowledged: Dr. N. von Goetz All Declarations of Working Group members are available on the following webpage: http://ec.europa.eu/health/scientific_committees/experts/declarations/sccs_en.htm This Opinion has been subject to a commenting period of a minimum eight weeks after its initial publication (from 10 September until 14 November 2018). Comments received during this time were considered by the SCCS. For this Opinion, comments received resulted in the following main changes: sections 3.3.1.1.
    [Show full text]
  • University of Groningen Reflections on Flurbiprofen Eyedrops Van Sorge
    University of Groningen Reflections on flurbiprofen eyedrops van Sorge, Adriaan Alastair IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2002 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): van Sorge, A. A. (2002). Reflections on flurbiprofen eyedrops. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 25-09-2021 REFLECTIONS ON FLURBIPROFEN EYEDROPS REFLECTIONS ON FLURBIPROFEN EYEDROPS RIJKSUNIVERSITEIT GRONINGEN REFLECTIONS ON FLURBIPROFEN EYEDROPS REFLECTIONS ON FLURBIPROFEN EYEDROPS PROEFSCHRIFT ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen, op gezag van de Rector Magnificus, dr. F. Zwarts, in het openbaar te verdedigen op maandag 2 december 2002 om 14.15 uur door Adriaan Alastair van Sorge geboren op 28 oktober 1944 te New Rochelle, New York, USA PROMOTORES Prof.
    [Show full text]
  • HCHS/SOL Question by Question Instructions Medication Use Form (MUE/MUS), Version A
    HCHS/SOL Question by Question Instructions Medication Use Form (MUE/MUS), Version A General Instructions The purpose of the Medication Survey is to assess medication usage in the four weeks preceding the examination date. Information on both prescription and over-the-counter medications is ascertained via scanning of bar code symbols, transcription of labels, and interview. To obtain this information, the participant is asked prior to the clinic visit to bring to the field center all medications, over-the counter preparations, vitamins, minerals, and dietary supplements taken in the four-week period preceding the visit, or their containers. Notification of this request is mailed to the participant with the written instructions for the exam visit, and is re-stated during the appointment reminder call. Interviewers require certification in interviewing techniques and familiarity with the data entry procedures for electronic and paper versions of the form (references: Data Entry System [DES] manual and the “General Instructions for Completing Paper Forms”). Paper data entry and subsequent keying will only be used in the event of equipment malfunction or DES inaccessibility. Scanners / transcribers of medication information also require certification. Header information (ID Number, Contact Occasion, and Seq #) are completed in the format described in the cited document. Question by Question Instructions Part A. Reception Item 1 Read as written. If the response is “Yes, all”, go to Section B (MEDICATION RECORD) and begin the scanning/transcription. This can take place at the reception station or while the participant proceeds with the clinic visit. As the participant delivers the medications, indicate where (and by whom) they will be returned before he / she leaves.
    [Show full text]
  • Non Steroidal Anti-Inflammatory Drugs
    Non Steroidal Anti‐inflammatory Drugs (NSAIDs) 4 signs of inflammation • Redness ‐ due to local vessel dilatation • Heat ‐ due to local vessel dilatation • Swelling – due to influx of plasma proteins and phagocytic cells into the tissue spaces • Pain – due to local release of enzymes and increased tissue pressure NSAIDs • Cause relief of pain ‐. analgesic • Suppress the signs and symptoms of inflammation. • Exert antipyretic action. • Useful in pain related to inflammation. Esp for superficial/integumental pain . Classification of NSAIDs • Salicylates: aspirin, Sodium salicylate & diflunisal. • Propionic acid derivatives: ibuprofen, ketoprofen, naproxen. • Aryl acetic acid derivatives: diclofenac, ketorolac • Indole derivatives: indomethacin, sulindac • Alkanones: Nabumetone. • Oxicams: piroxicam, tenoxicam Classification of NSAIDs ….. • Anthranilic acid derivatives (fenamates): mefenamic acid and flufenamic acid. • Pyrazolone derivatives: phenylbutazone, oxyphenbutazone, azapropazone (apazone) & dipyrone (novalgine). • Aniline derivatives (analgesic only): paracetamol. Clinical Classif. • Non selective Irreversible COX inhibitors • Non slective Reversible COX inhibitors • Preferential COX 2 inhibitors • 10‐20 fold cox 2 selective • meloxicam, etodolac, nabumetone • Selective COX 2 inhibitors • > 50 fold COX ‐2 selective • Celecoxib, Etoricoxib, Rofecoxib, Valdecoxib • COX 3 Inhibitor? PCM Cyclooxygenase‐1 (COX‐1): -constitutively expressed in wide variety of cells all over the body. -"housekeeping enzyme" -ex. gastric cytoprotection, hemostasis Cyclooxygenase‐2 (COX‐2): -inducible enzyme -dramatically up-regulated during inflammation (10-18X) -constitutive : maintains renal blood flow and renal electrolyte homeostasis Salicylates Acetyl salicylic acid (aspirin). Kinetics: • Well absorbed from the stomach, more from upper small intestine. • Distributed all over the body, 50‐80% bound to plasma protein (albumin). • Metabolized to acetic acid and salicylates (active metabolite). • Salicylate is conjugated with glucuronic acid and glycine. • Excreted by the kidney.
    [Show full text]