GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS, VOL. ???, XXXX, DOI:10.1029/, Lithospheric Controls on Melt Production During Continental Breakup at Slow Rates of Extension: Application to the North Atlantic 12 1 1 3 J. J. Armitage, T. J. Henstock, T A. Minshull, and J. R. Hopper, J. J. Armitage, Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. (
[email protected]) T. J. Henstock, National Oceanography Centre, Southampton, University of Southampton, European Way, Southampton SO14 3ZH, UK. (
[email protected]) T. A. Minshull, National Oceanography Centre, Southampton, University of Southampton, European Way, Southampton SO14 3ZH, UK. (
[email protected]) J. R. Hopper, Department of Geology and Geosciences, Texas A&M University, College Station, Texas 77843, USA. (
[email protected]) 1National Oceanography Centre, Southampton, University of Southampton, UK 2Department of Earth Science and Engineering, Imperial College London, UK 3Department of Geology and Geosciences, Texas A&M University, College Station, Texas, USA D R A F T April 22, 2009, 2:41pm D R A F T X-2 ARMITAGE ET AL.: LITHOSPHERIC CONTROLS ON MELT PRODUCTION Abstract. Rifted margins form from extension and breakup of the con- tinental lithosphere. If this extension is coeval with a region of hotter litho- sphere, then it is generally assumed that a volcanic margin would follow. Here we present the results of numerical simulations of rift margin evolution by extending continental lithosphere above a thermal anomaly. We find that un- less the lithosphere is thinned prior to the arrival of the thermal anomaly or half spreading rates are more than ∼ 50 mm yr−1, the lithosphere acts as a lid to the hot material.