Ferro-Octupolar Order and Low-Energy Excitations in D $^ 2$ Double

Total Page:16

File Type:pdf, Size:1020Kb

Ferro-Octupolar Order and Low-Energy Excitations in D $^ 2$ Double Ferro-octupolar order and low-energy excitations in d2 double perovskites of Osmium Leonid V. Pourovskii,1, 2 Dario Fiore Mosca,3 and Cesare Franchini3, 4 1Centre de Physique Th´eorique,Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France 2Coll`egede France, 11 place Marcelin Berthelot, 75005 Paris, France 3University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria 4Department of Physics and Astronomy ”Augusto Righi”, Alma Mater Studiorum - Universit`adi Bologna, Bologna, 40127 Italy Conflicting interpretations of experimental data preclude the understanding of the quantum mag- netic state of spin-orbit coupled d2 double perovskites. Whether the ground state is a Janh-Teller- distorted order of quadrupoles or the hitherto elusive octupolar order remains debated. We resolve this uncertainty through direct calculations of all-rank inter-site exchange interactions and inelastic 2 neutron scattering (INS) cross-section for the d double perovskite series Ba2MOsO6 (M= Ca, Mg, Zn). Using advanced many-body first principles methods we show that the ground state is formed by ferro-ordered octupoles coupled within the ground-stated Eg doublet. Computed ordering temper- ature of the single second-order phase-transition and gapped excitation spectra are fully consistent with observations. Minuscule distortions of the parent cubic structure are shown to qualitatively modify the structure of magnetic excitations. Identification of complex magnetic orders in spin- 23], its origin remains unclear, in particular regarding orbital entangled and electronically correlated transition the rank of the multipolar interactions and the degree metal oxides has emerged as a fascinating field of study, of JT distortions. Considering that the non-Kramers Eg enabling the discovery of new quantum magnetic states doublet does not carry dipole moments it would be le- originating from exchange interaction between effective gitimate to expect that conventional quadrupolar cou- pseudospins carrying high-rank multipoles [1, 2]. Of par- plings in a JT-broken symmetry would promote an anti- ticular interest is the spin-orbit magnetic physics realized ferro (AF) quadrupolar order [5]. This transparent pic- in rock-salt ordered double perovskites (DP) A2BB0O6, ture does not seem to be consistent with recent experi- with B0 being a heavy ion like Os, Mo and Re [3–5]. The ments: X-ray diffraction (XRD) does not find structural strong spin-orbit coupling (SOC) strength splits the ef- distortions (larger than 0.1%) and, whereas no conven- fective L = 1 t2g levels on the magnetic B0 ions into a tional magnetic order is detected by neutron diffraction 3 lower j = 2 quadruplet ground state (GS) and a dou- (upper limit 0.1 µB), muon spin relaxation still in- 1 ≈ blet j = 2 excited state. Depending on filling of the t2g dicates time-reversal (TR) symmetry breaking thereby levels, the entanglement between the spin S and orbital ruling out quadrupolar order [17]. To account for the L degrees of freedom gives rise to different total angu- experimental measurements a ferro-octupolar (FO) or- lar momentum J = S + L states with distinct magnetic dered GS is proposed, involving a coupling between the properties. lower Eg and excited T2g state mediated by quadrupo- The Jahn-Teller (JT) active 5d1 DP are described by lar operators [17–19]. This model reproduces a spin-gap 3 observed in the excitation spectra [17, 18] and is overall an effective Jeff = 2 model [3]. The unusual canted antiferromagnetic GS with small ordered moment in d1 reasonably compatible with the experimental scenario, but it makes use of some problematic assumptions. Only Ba2NaOsO6 (and related DP) attracted a lot of atten- tion [3, 6–14] and has been shown to arise through a com- a subset of inter-site exchange interactions (IEI) allowed plex interplay of dipolar and quadrupolar interactions within Jeff =2 are assumed to be non-zero. Moreover, between Kramers ions coupled with JT distortions [14– the included quadrupole IEI, which cannot be directly 16]. Conversely, the nature of ordered phases in the com- inferred from experiment, are tuned to obtain the desired 2 properties of the FO phase. paratively less studied 5d version Ba2MOsO6 (M=Ca, arXiv:2107.04493v1 [cond-mat.str-el] 9 Jul 2021 Mg, Zn) is still debated [1, 5, 17–20]. These cubic DPs Inspired by the apparent adequacy of the proposed FO have two electrons with S=1 resulting in a total angu- 2 state for the d Ba2MOsO6 DP series (in short: BCOO, lar momentum Jeff =2, where the levels are split due to BMOO and BZOO), we propose in this letter an alter- the crystal field (CF) into a lower Eg doublet and T2g native mechanism based on a direct numerical calcula- triplet [4]. In contrast to the assumptions of the pioneer- tions of all possible interaction channels by means of ing theoretical study of Ref. 4, the intersite exchange in- 2 many-body first principles schemes. Without forcing any teractions in these d DP are inferred to be much smaller pre-assumption on the form of the effective Hamiltonian than the CF [17, 21]. we find a ferro order of xyz octupoles determined by a Though there is clear experimental evidence for a sin- competition between time-even and octupolar IEI within gle phase transition involving the Eg manifold [17, 22, solely the GS Eg doublet. Our data correctly predict the 2 observed second-order phase transition, with computed ordering temperature compatible with the experimental one, and a gapped excitation spectra. Effective Hamiltonian and methods. The effective Hamiltonian for the low-energy degrees of freedom on the Os sublattice is a sum of the IEI (HIEI ) and rem- nant crystal-field (rcf) terms: H = V QQ0 (∆R )OQ (R )OQ0 (R )+ Hi , eff KK0 ij K i K0 j rcf ij KQK Q i Xh i X0 0 X (1) Q where the first sum is over all ij Os-Os bonds, OK (Ri) is the Hermitian spherical tensorh i [24] for J=2 of the rank K = 1...4 and projection Q acting on Os site at the position R , the IEI V QQ0 (∆R ) acts between i KK0 ij the multipoles KQ and K0Q0 on two Os sites con- FIG. 1: Color map of the inter-site exchange interac- nected by the lattice vector ∆Rij = Rj Ri. Finally, tions (IEI) V QQ0 , eq. 1, in BZOO for the [1/2,1/2,0] i 0 4 − KK0 Hrcf = Vrcf 4(Ri) + 5 4(Ri) is the remnant oc- Os-Os pair. The IEI involving hexadecapoles (K=4) are − O OQ QQ0 tahedral CF [17], where K are the standard Stevens negligible and not included. The complete list of V O KK0 operators. for the three compounds is given in the SM [34]. To derive the above Hamiltonian we use density func- tional theory (DFT) [25] + dynamical mean-field theory (DMFT) [26–29] and treat local correlations acting in Eg space can be encoded by spin-1/2 operators, with the 2 the Os 5d ions within the quasi-atomic Hubbard-I (HI) Eg states corresponding to the projectons of pseudo-spin- approximation [30]. All IEI V QQ0 (∆R) are computed 1/2: KK0 within the HI-based force-theorem approach of Ref. 31 = 2, 0 ; = ( 2, 2 + 2, 2 ) /√2, (2) (FT-HI), previously shown to capture high-rank multi- | ↑i | i | ↓i | − i | i polar IEI in spin-orbit oxides [32, 33]. Our DFT+HI written in the Jeff = 2,M basis. The resulting Eg calculations correctly predict the expected Jeff =2 GS Hamiltonian is then| related toi (1) by the projection multiplet, which is split by Hrcf into the ground state Eg doublet and excited T2g triplet. More details can be ˆ ˆT HEg = PHIEI P = Jαβ(∆Rij)τα(Ri)τβ(Rj), found in the Supplementary Materials (SM) [34]. ij NN αβ h Xi∈ X CF splitting and superexchange interactions. The cal- (3) culated CF splitting ∆rcf = 120Vrcf listed in Table I is where the rows of projection matrix P are the Eg states about 20 meV for all members, in agreement with specific in Jeff = 2 basis (2), τα is the spin-1/2 operator for heat measurements and excitation gap inelastic neutron α = x,y, or z. Up to a normalization factor, τy is the scattering (INS) [17, 18, 21]). 2 2¯2¯ octupole O3− Oxyz; the corresponding IEI V33 di- QQ0 ≡ The computed IEI VKK are displayed in Fig. 1 (for rectly maps into Jyy. τx and τz are mixtures of the eg 0 00 BZOO, similar data are obtained for the other members, quarupoles and hexadecapoles. Therefore, the IEI V22 22 see SM). The largest values, 3 meV are significantly and V contribute to Jzz and Jxx, respectively, together ≈ 22 smaller than ∆rcf , in agreement with experiment [17, 18], with the hexadecapole IEI of the same symmetry. Since implying that the ordered phase will be determined by those hexadecapole IEI are negligible (Supp. Table I the IEI acting within the ground-state Eg doublet. The [34]), their admixture into τx and τz reduces the mag- nitude of time-even Jxx and Jzz (Sec. III in SM [34]). Overall, the order in Eg space is determined by a com- Compound ∆rcf Jyy Jzz Jxx petition of the time-even (τx and τz) combinations of quadrupoles and hexadecapoles with the time-odd xyz Ba2CaOsO6 17.1 -2.98 1.48 -0.61 octupole. There are, correspondingly, no IEI coupling τy Ba2MgOsO6 19.2 -2.93 1.67 -0.69 with τx or τz due to their different symmetry under the Ba2ZnOsO6 20.5 -1.71 1.35 -0.50 time reversal. Our calculated Eg IEI for the [1/2,1/2,0] lattice vector TABLE I: Remnant CF splitting ∆rcf and superex- are listed in Table I.
Recommended publications
  • THE DIRECTOR with REFERENCE to The
    SETTORE SELEZIONE E CONTRATTI UFFICIO RICERCATORI A TEMPO DETERMINATO THE DIRECTOR WITH REFERENCE TO the rules referred to in Article 14 of the present call for application ORDERS Art. 1 – Purpose A procedure of comparative evaluation by qualifications and public discussion is called for the recruitment of 1 researcher with a fixed-term employment contract full-time for the three-year - pursuant to art. 24 paragraph 3 letter b) (senior) of Law no. 240/2010 -. Sector competition reference 02/C1 - Astronomy, Astrophysics, Earth and Planetary Physics, Scientific sector FIS/06 - Physics of The Earth and of The Circumterrestrial Medium. The job is activated for the needs of research and study of the Department of Physics and Astronomy "Augusto Righi" - DIFA. Serving primarily at the Department of Physics and Astronomy "Augusto Righi" - DIFA, in Bologna. The contract shall last three years. An annual gross total amount equal to € 42.880,00. The annual increase in this amount will be calculated according to the existing procedure for non-contracted personnel. Art. 2 – Activities to be performed The contract includes 350 hours of supplementary teaching and assistance to students, for each academic year covered by the contract. The contract shall schedule 60 hours of teaching on annual basis. Concerning the provisions of art. 10 regarding fixed term researchers, issued by Rectoral Decree no. 344 of 29/03/2011 and amendments, the researcher’s activities must be linked to the development of the project entitled: “Evaluation of the effectiveness of innovative nature-based solutions to mitigate the risks associated with climate change". The candidate will be responsible for coordinating and supporting the implementation of NBS catalogs in OPERANDUM's GeoIKP platform.
    [Show full text]
  • Practical Design of HF- VHF – Antennas!
    ANTENTOP 01 2003 # 002 ANTENTOP is FREE e-magazine devoted to ANTENnas Theory, Operation, and Practice Edited by hams for hams In the Issue: Thanks to our authors: Practical design of HF- VHF – Prof. Natalia K.Nikolova Antennas! John S. Belrose, VE2CV James P. Rybak Antennas Theory! Leonid Kryzhanovsky Alexey EW1LN Sergey A. Kovalev, USONE Propagation Mysteries! John Doty Robert Brown, NM7M History Early Radio! Michael Higgins, EI 0 CL Dick Rollema, PAOSE And More…. Peter Dodd, G3LDO And others….. EDITORIAL: Well, ANTENTOP # 001 come in! ANTENTOP is just authors’ opinions in the world of amateur radio. I do not correct and re-edit your articles, the articles are printed “as is”. A little note, I am not a native English, so, of course, there are some sentence and grammatical mistakes there… Please, be indulgent! (continued on next page) 73! Igor Grigorov, RK3ZK ex: UA3-117-386, UA3ZNW, UA3ZNW/UA1N, UZ3ZK op: UK3ZAM, UK5LAP, EN1NWB, EN5QRP, EN100GM Copyright: Here at ANTENTOP we just Contact us: Just email me or wanted to follow traditions of FREE flow of drop a letter. information in our great radio hobby around the world. A whole issue of Mailing address: ANTENTOP may be photocopied, printed, pasted onto websites. We don't want to Box 68, 308015, Belgorod, Russia control this process. It comes from all of Email: [email protected] us, and thus it belongs to all of us. This doesn't mean that there are no copyrights. NB: Please, use only plain text and mark email subject as: There is! Any work is copyrighted by the igor_ant.
    [Show full text]
  • THE DIRECTOR with REFERENCE to The
    SETTORE SELEZIONE E CONTRATTI UFFICIO RICERCATORI A TEMPO DETERMINATO THE DIRECTOR WITH REFERENCE TO the rules referred to in Article 14 of the present call for application ORDERS Art. 1 – Purpose A procedure of comparative evaluation by qualifications and public discussion is called for the recruitment of 1 researcher with a fixed-term employment contract full-time for the three-year - pursuant to art. 24 paragraph 3 letter a) (junior) of Law no. 240/2010 - Sector competition reference 02/A1 - Experimental Physics of Fundamental Interactions, Scientific sector FIS/01 - Experimental Physics. The job is activated for the needs of research and study of the Department of Physics and Astronomy "Augusto Righi" - DIFA of the Alma Mater Studiorum - Università di Bologna. Serving primarily at the Department Physics and Astronomy "Augusto Righi" - DIFA, in Bologna. The contract shall last three years. An annual gross total amount equal to € 35.733,00. The annual increase in this amount will be calculated according to the existing procedure for non-contracted personnel. Art. 2 – Activities to be performed The contract includes 350 hours of supplementary teaching and assistance to students, for each academic year covered by the contract. The contract shall schedule 60 hours of teaching on annual basis. Concerning the provisions of art. 10 regarding fixed term researchers, issued by Rectoral Decree no. 344 of 29/03/2011 and amendments, the researcher’s activities must be linked to the development of the project entitled: “High-precision measurements of CP violation and the CKM matrix parameters with the LHCb-upgrade data, at the CERN Large Hadron Collider”, co-financed by the Istituto Nazionale di Fisica Nucleare - INFN.
    [Show full text]
  • Magnets in Particle Physics
    MAGNETS IN PARTICLE PHYSICS F. Bonaudi CERN, Geneva, Switzerland Abstract This review talk introduces a week of specialized lectures on all aspects of magnet design and construction. The programme includes theory, materials, measurements, alignment and some particular applications: it is therefore a very complete coverage of the field and will certainly shed a lot of new light on the subject. Rather than entering into any of these specialized areas, the present lecture will try to present a broad survey of the applications of magnets to particle physics research, and will include a section on the historical developments that led to our present understanding of magnetic phenomena. 1 . ACCELERATORS, DETECTORS AND (ELECTRO)MAGNETS In modern times it is hardly conceivable to design a particle accelerator without resorting to the use of magnets. By "magnets" we almost exclusively mean electromagnets, although permanent magnets have had applications too. In the past these were mainly for vacuum pumps and gauges of various sorts, or for sweeping magnets. It is very encouraging to see that in the last ten years or so permanent magnets have started to be used for focussing (quadrupole) magnetic devices. In fact, one session of this Accelerator School deals with permanent magnets. Particle detectors very often incorporate an analyzing magnet in order to measure the momentum of charged secondary particles by track curvature. The most recent applications in colliding beam experiments have all adopted a solenoidal field geometry coaxial with the (mean) beam direction. It should be recalled that particle "observation" nowadays is done exclusively by electronic means, therefore the "tracking" information is provided by many small sensitive elements (wires, pads, pixels, fibres etc.) and the reconstruction computer programs make a tit to a continuous curve (circle or helix).
    [Show full text]
  • Claudio Pellegrini By: David Zierler
    Interviewee: Claudio Pellegrini By: David Zierler Place: Videoconference Date: April 2nd, 2020 ZIERLER: Okay, it is April 2nd, 2020. This is David Zierler, oral historian for the American Institute of Physics. It is my great pleasure to be here today with Dr. Claudio Pellegrini. Dr. Pellegrini, thank you so much for being with me today. PELLEGRINI: Oh, it's my pleasure. Thank you for inviting me. ZIERLER: Would you please tell us your title and your current affiliation? PELLEGRINI: I am a distinguished professor of physics emeritus at UCLA. I retired from UCLA some years ago. Now, I'm working at the SLAC National Accelerator Laboratory. My main area of research is the development of the x-ray free-electron lasers, which has been built here following a proposal that I made in 1992. ZIERLER: So let's start right at the beginning. Tell us about your childhood and your birthplace in Italy. PELLEGRINI: I was born in Rome in 1935. I spent the war years, when I was a kid, 5 to 10 years old, in a mountain area, east of Rome. My family decided to move out of Rome when the war started, and we went to live in a small village, Villa Santa Maria, up in the mountains in Abruzzo. We went back to Rome at the end of the war, so I did my elementary schools in this little place. And then-- ZIERLER: So you went out of Rome because of the war? PELLEGRINI: Yes, because of the war. ZIERLER: It was dangerous? It was dangerous to be in Rome during the war? PELLEGRINI: Well, Rome was bombed by the Allied and the Nazis, in 1943 and 1944, and thousands of civilians were killed.
    [Show full text]
  • Wireless World Without Wires
    BROAD SHEET 25th April to 1st October 2006 communicates the work of the Museum of the History of Science, Oxford. It is posted on the Museum’s website, sold in the shop, and distributed to members of the mailing list, see www.mhs.ox.ac.uk. £1.00 T e l e g r a p h y that the universe was filled with a distance had been extended to over Wireless World Without Wires. homogeneous, continuous, elastic eight miles. The system was now -Last night, at medium which transmitted heat, to be put in operation officially n 2004 the Marconi Collection was presented to the University M y d d l e t o n - h a l l , light, electricity, and other forms between Sark and the other Channel of Oxford by the Marconi Corporation. This large and of energy from Islands, and in a short Upper-street, Islington, Mr. Marconi unrivalled archive of objects and documents records the Mr. W.H. Preece one point of space time a telegraph office I work of Guglielmo Marconi and the wireless telegraph to another. This had produced would be opened there “ delivered a lecture on company he founded. The documents are kept in the medium was ether, an instrument and messages would be “Telegraphy without Wires.” The Bodleian Library and the objects in the Museum of proceeds of the lecture are to be not air; and the which he had received and transmitted the History of Science. This exhibition of material devoted to the funds of the Islington discovery of its no hesitation without the aid of any real existence was communicating wires.
    [Show full text]
  • History of Communications Media
    History of Communications Media Class 6 [email protected] What We Will Cover Today • Radio – Origins – The Emergence of Broadcasting – The Rise of the Networks – Programming – The Impact of Television – FM • Phonograph – Origins – Timeline – The Impact of the Phonograph Origins of Radio • James Clerk Maxwell’s theory had predicted the existence of electromagnetic waves that traveled through space at the speed of light – Predicted that these waves could be generated by electrical oscillations – Predicted that they could be detected • Heinrich Hertz in 1886 devised an experiment to detect such waves. Origins of Radio - 2 • Hertz’ experiments showed that the waves: – Conformed to Maxwell’s theory – Had many of the same properties as light except that the wave lengths were much longer than those of light – several meters as opposed to fractions of a millimeter. Origins of Radio - 3 • Edouard Branly & Oliver Lodge perfected a coherer • Alexander Popov used a coherer attached to a vertical wire to detect thunderstorms in advance • William Crookes published an article on electricity which noted the possibility of using “electrical rays” for “transmitting and receiving intelligence” Origins of Radio - 4 • Guglielmo Marconi had attended lectures on Maxwell’s theory and read an account of Hertz’s experiments – Read Crookes article – Attended Augusto Righi’s lectures at Bologna University on Maxwell’s theory and Hertz’s experiments – Read Oliver Lodge’s article on Hertz’s experiments and Branly’s coherer What Marconi Accomplished - 1 • Realized that
    [Show full text]
  • THE DIRECTOR with REFERENCE to the Rules Referred to In
    SETTORE SELEZIONE E CONTRATTI UFFICIO RICERCATORI A TEMPO DETERMINATO THE DIRECTOR WITH REFERENCE TO the rules referred to in Article 14 of the present call for application ORDERS Art. 1 – Purpose A procedure of comparative evaluation by qualifications and public discussion is called for the recruitment of 1 researcher with a fixed-term employment contract full-time for the three-year - pursuant to art. 24 paragraph 3 letter a) (junior) of Law no. 240/2010 -. Sector competition reference 02/B1 - Experimental Physics of Matter, Scientific sector FIS/03 - Physics of Matter. The job is activated for the needs of research and study of the Department of Physics and Astronomy "Augusto Righi" - DIFA of the Alma Mater Studiorum - Università di Bologna. Serving primarily at the Department Physics and Astronomy "Augusto Righi" - DIFA, in Bologna. The contract shall last three years. An annual gross total amount equal to € 35.733,00. The annual increase in this amount will be calculated according to the existing procedure for non-contracted personnel. Art. 2 – Activities to be performed The contract includes 350 hours of supplementary teaching and assistance to students, for each academic year covered by the contract. The contract shall schedule 60 hours of teaching on annual basis. Concerning the provisions of art. 10 regarding fixed term researchers, issued by Rectoral Decree no. 344 of 29/03/2011 and amendments, the researcher’s activities must be linked to the development of the project entitled: “Structure and growth of advanced functional materials”. He/she will conduct research in the field of experimental condensed matter physics.
    [Show full text]
  • A Microhistory of Microwave Technology
    Cambridge University Press 978-0-521-83526-8 - Planar Microwave Engineering: A Practical Guide to Theory, Measurement, and Circuits Thomas H. Lee Excerpt More information CHAPTER ONE A MICROHISTORY OF MICROWAVE TECHNOLOGY 1.1 INTRODUCTION Many histories of microwave technology begin with James Clerk Maxwell and his equations, and for excellent reasons. In 1873, Maxwell published A Treatise on Elec- tricity and Magnetism, the culmination of his decade-long effort to unify the two phenomena. By arbitrarily adding an extra term (the “displacement current”) to the set of equations that described all previously known electromagnetic behavior, he went beyond the known and predicted the existence of electromagnetic waves that travel at the speed of light. In turn, this prediction inevitably led to the insight that light itself must be an electromagnetic phenomenon. Electrical engineering students, perhaps benumbed by divergence, gradient, and curl, often fail to appreciate just how revolutionary this insight was.1 Maxwell did not introduce the displacement cur- rent to resolve any outstanding conundrums. In particular, he was not motivated by a need to fix a conspicuously incomplete continuity equation for current (contrary to the standard story presented in many textbooks). Instead he was apparently in- spired more by an aesthetic sense that nature simply should provide for the existence of electromagnetic waves. In any event the word genius, though much overused to- day, certainly applies to Maxwell, particularly given that it shares origins with genie. What he accomplished was magical and arguably ranks as the most important intel- lectual achievement of the 19th century.2 Maxwell – genius and genie – died in 1879, much too young at age 48.
    [Show full text]
  • Satellites Around Milky Way Analogs: Tension in the Number and Fraction
    Draft version July 21, 2021 Typeset using LATEX twocolumn style in AASTeX62 Satellites Around Milky Way Analogs: Tension in the Number and Fraction of Quiescent Satellites Seen in Observations Versus Simulations Ananthan Karunakaran,1 Kristine Spekkens,2, 1 Kyle A. Oman,3 Christine M. Simpson,4, 5 Azadeh Fattahi,3 David J. Sand,6 Paul Bennet,7 Denija Crnojevic´,8 Carlos S. Frenk,3 Facundo A. Gomez´ ,9, 10 Robert J. J. Grand,11 Michael G. Jones,6 Federico Marinacci,12 Burc¸_ınMutlu-Pakd_ıl,13, 5 Julio F. Navarro,14 and Dennis Zaritsky6 1Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, ON K7L 3N6, Canada 2Department of Physics and Space Science, Royal Military College of Canada P.O. Box 17000, Station Forces Kingston, ON K7K 7B4, Canada 3Institute for Computational Cosmology, Department of Physics, University of Durham, South Road, Durham DH1 3LE, UK 4Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA 5Department of Astronomy and Astrophysics, University of Chicago, Chicago IL 60637, USA 6Steward Observatory, University of Arizona, 933 North Cherry Avenue, Rm. N204, Tucson, AZ 85721-0065, USA 7Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 8University of Tampa, 401 West Kennedy Boulevard, Tampa, FL 33606, USA 9Instituto de Investigaci´onMultidisciplinar en Ciencia y Tecnolog´ıa,Universidad de La Serena, Ra´ulBitr´an1305, La Serena, Chile 10Departamento de Astronom´ıa,Universidad de La Serena, Av. Juan Cisternas 1200 Norte, La Serena, Chile 11Max-Planck-Institut f¨urAstrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany 12Department of Physics & Astronomy \Augusto Righi", University of Bologna, via Gobetti 93/2, I-40129 Bologna, Italy 13Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA 14Department of Physics and Astronomy, University of Victoria, P.O.
    [Show full text]
  • Guglielmo Marconi ­ Wikipedia, the Free Encyclopedia Guglielmo Marconi from Wikipedia, the Free Encyclopedia
    10/5/2016 Guglielmo Marconi ­ Wikipedia, the free encyclopedia Guglielmo Marconi From Wikipedia, the free encyclopedia Guglielmo Marconi, 1st Marquis of Marconi (Italian: [ɡuʎ ˈʎɛlmo marˈkoːni]; 25 April 1874 – 20 July 1937) was an Italian Guglielmo Marconi inventor and electrical engineer known for his pioneering work on long­distance radio transmission[1] and for his development of Marconi's law and a radio telegraph system. He is often credited as the inventor of radio,[2] and he shared the 1909 Nobel Prize in Physics with Karl Ferdinand Braun "in recognition of their contributions to the development of wireless telegraphy".[3][4][5] Marconi was an entrepreneur, businessman, and founder of The Wireless Telegraph & Signal Company in the United Kingdom in 1897 (which became the Marconi Company). He succeeded in making a commercial success of radio by innovating and building on the work of previous experimenters and physicists.[6][7] In 1929, the King of Italy ennobled Marconi as a Marchese (marquis). Born Guglielmo Giovanni Maria Marconi Contents 25 April 1874 Palazzo Marescalchi, Bologna, 1 Biography Italy 1.1 Early years 1.2 Radio work Died 20 July 1937 (aged 63) 1.2.1 Developing radio telegraphy Rome, Italy 1.2.2 Transmission breakthrough Residence Italy 1.2.3 The British become interested 1.2.4 Transatlantic transmissions Nationality Italian 1.2.5 Titanic Alma mater University of Bologna 1.2.6 Continuing work 1.3 Later years Academic Augusto Righi 2 Personal life advisors 3 Legacy and honours Known for Radio 3.1 Honours and awards
    [Show full text]
  • Federigo Enriques (1871—1946) and History of Science in Italy in the Pre-War Years
    \ ORGANON 22/23:1986/1987 META-HISTORY OF SCIENCE AT THE BERKELEY CONGRESS Salvo D'Agostino (Italy) FEDERIGO ENRIQUES (1871—1946) AND HISTORY OF SCIENCE IN ITALY IN THE PRE-WAR YEARS A panoramic view of Italian culture and society in the prewar years is a pre-requisite for an appraisal of Federigo Enriques' life and work. The Italian cultural scenery from 1900 to the thirties has been recently analysed from different angles,1 and various reasons have been found for that sort of backwardness which seemed to characterize this scenery in comparison with the then other leading European countries. It is my opinion that, concerning Italian science and culture in that period, one of the key aspects of the Italian panorama was the absence of interdisciplinary cross-fertilization between sciences and technology, on one side, and science and philosophy, on the other. It is known2 that this double cross-fertilization had played a fruitful role primarily in Germany at the turn of the century, promoting researches through financial support and stimulating fresh approaches to scientific problems. In fact this aspect did not pass unnoticed among the more distinguished representatives of Italian science: Vita Volterra (1860—1940), one of the major Italian contributors to mathematical physics in the pre-Fascist period, intended to react to the situation, founding in 1907 the Societa Italiana per il Progresso della Scienza, with the aims both to improve collaboration among specialists and to encourage diffusion of science at large. Like Poincare, Volterra was not favourably inclined, until 1922, towards Einstein's Relativity, considered by him "a simple formal variation of Lorentz's theory".
    [Show full text]