New and Old Results in Resultant Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Invertibility Condition of the Fisher Information Matrix of a VARMAX Process and the Tensor Sylvester Matrix
Invertibility Condition of the Fisher Information Matrix of a VARMAX Process and the Tensor Sylvester Matrix André Klein University of Amsterdam Guy Mélard ECARES, Université libre de Bruxelles April 2020 ECARES working paper 2020-11 ECARES ULB - CP 114/04 50, F.D. Roosevelt Ave., B-1050 Brussels BELGIUM www.ecares.org Invertibility Condition of the Fisher Information Matrix of a VARMAX Process and the Tensor Sylvester Matrix Andr´eKlein∗ Guy M´elard† Abstract In this paper the invertibility condition of the asymptotic Fisher information matrix of a controlled vector autoregressive moving average stationary process, VARMAX, is dis- played in a theorem. It is shown that the Fisher information matrix of a VARMAX process becomes invertible if the VARMAX matrix polynomials have no common eigenvalue. Con- trarily to what was mentioned previously in a VARMA framework, the reciprocal property is untrue. We make use of tensor Sylvester matrices since checking equality of the eigen- values of matrix polynomials is most easily done in that way. A tensor Sylvester matrix is a block Sylvester matrix with blocks obtained by Kronecker products of the polynomial coefficients by an identity matrix, on the left for one polynomial and on the right for the other one. The results are illustrated by numerical computations. MSC Classification: 15A23, 15A24, 60G10, 62B10. Keywords: Tensor Sylvester matrix; Matrix polynomial; Common eigenvalues; Fisher in- formation matrix; Stationary VARMAX process. Declaration of interest: none ∗University of Amsterdam, The Netherlands, Rothschild Blv. 123 Apt.7, 6527123 Tel-Aviv, Israel (e-mail: [email protected]). †Universit´elibre de Bruxelles, Solvay Brussels School of Economics and Management, ECARES, avenue Franklin Roosevelt 50 CP 114/04, B-1050 Brussels, Belgium (e-mail: [email protected]). -
Beam Modes of Lasers with Misaligned Complex Optical Elements
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 1995 Beam Modes of Lasers with Misaligned Complex Optical Elements Anthony A. Tovar Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Electrical and Computer Engineering Commons Let us know how access to this document benefits ou.y Recommended Citation Tovar, Anthony A., "Beam Modes of Lasers with Misaligned Complex Optical Elements" (1995). Dissertations and Theses. Paper 1363. https://doi.org/10.15760/etd.1362 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. DISSERTATION APPROVAL The abstract and dissertation of Anthony Alan Tovar for the Doctor of Philosophy in Electrical and Computer Engineering were presented April 21, 1995 and accepted by the dissertation committee and the doctoral program. Carl G. Bachhuber Vincent C. Williams, Representative of the Office of Graduate Studies DOCTORAL PROGRAM APPROVAL: Rolf Schaumann, Chair, Department of Electrical Engineering ************************************************************************ ACCEPTED FOR PORTLAND STATE UNIVERSITY BY THE LIBRARY ABSTRACT An abstract of the dissertation of Anthony Alan Tovar for the Doctor of Philosophy in Electrical and Computer Engineering presented April 21, 1995. Title: Beam Modes of Lasers with Misaligned Complex Optical Elements A recurring theme in my research is that mathematical matrix methods may be used in a wide variety of physics and engineering applications. Transfer matrix tech niques are conceptually and mathematically simple, and they encourage a systems approach. -
Generalized Sylvester Theorems for Periodic Applications in Matrix Optics
Portland State University PDXScholar Electrical and Computer Engineering Faculty Publications and Presentations Electrical and Computer Engineering 3-1-1995 Generalized Sylvester theorems for periodic applications in matrix optics Lee W. Casperson Portland State University Anthony A. Tovar Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac Part of the Electrical and Computer Engineering Commons Let us know how access to this document benefits ou.y Citation Details Anthony A. Tovar and W. Casperson, "Generalized Sylvester theorems for periodic applications in matrix optics," J. Opt. Soc. Am. A 12, 578-590 (1995). This Article is brought to you for free and open access. It has been accepted for inclusion in Electrical and Computer Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. 578 J. Opt. Soc. Am. AIVol. 12, No. 3/March 1995 A. A. Tovar and L. W. Casper Son Generalized Sylvester theorems for periodic applications in matrix optics Anthony A. Toyar and Lee W. Casperson Department of Electrical Engineering,pirtland State University, Portland, Oregon 97207-0751 i i' Received June 9, 1994; revised manuscripjfeceived September 19, 1994; accepted September 20, 1994 Sylvester's theorem is often applied to problems involving light propagation through periodic optical systems represented by unimodular 2 X 2 transfer matrices. We extend this theorem to apply to broader classes of optics-related matrices. These matrices may be 2 X 2 or take on an important augmented 3 X 3 form. The results, which are summarized in tabular form, are useful for the analysis and the synthesis of a variety of optical systems, such as those that contain periodic distributed-feedback lasers, lossy birefringent filters, periodic pulse compressors, and misaligned lenses and mirrors. -
Homogeneous Polynomial Solutions to Constant Coefficient Pde’S
HOMOGENEOUS POLYNOMIAL SOLUTIONS TO CONSTANT COEFFICIENT PDE'S Bruce Reznick University of Illinois 1409 W. Green St. Urbana, IL 61801 [email protected] October 21, 1994 1. Introduction Suppose p is a homogeneous polynomial over a field K. Let p(D) be the differen- @ tial operator defined by replacing each occurence of xj in p by , defined formally @xj 2 in case K is not a subset of C. (The classical example is p(x1; · · · ; xn) = j xj , for which p(D) is the Laplacian r2.) In this paper we solve the equation p(DP)q = 0 for homogeneous polynomials q over K, under the restriction that K be an algebraically closed field of characteristic 0. (This restriction is mild, considering that the \natu- ral" field is C.) Our Main Theorem and its proof are the natural extensions of work by Sylvester, Clifford, Rosanes, Gundelfinger, Cartan, Maass and Helgason. The novelties in the presentation are the generalization of the base field and the removal of some restrictions on p. The proofs require only undergraduate mathematics and Hilbert's Nullstellensatz. A fringe benefit of the proof of the Main Theorem is an Expansion Theorem for homogeneous polynomials over R and C. This theorem is 2 2 2 trivial for linear forms, goes back at least to Gauss for p = x1 + x2 + x3, and has also been studied by Maass and Helgason. Main Theorem (See Theorem 4.1). Let K be an algebraically closed field of mj characteristic 0. Suppose p 2 K[x1; · · · ; xn] is homogeneous and p = j pj for distinct non-constant irreducible factors pj 2 K[x1; · · · ; xn]. -
Lesson 21 –Resultants
Lesson 21 –Resultants Elimination theory may be considered the origin of algebraic geometry; its history can be traced back to Newton (for special equations) and to Euler and Bezout. The classical method for computing varieties has been through the use of resultants, the focus of today’s discussion. The alternative of using Groebner bases is more recent, becoming fashionable with the onset of computers. Calculations with Groebner bases may reach their limitations quite quickly, however, so resultants remain useful in elimination theory. The proof of the Extension Theorem provided in the textbook (see pages 164-165) also makes good use of resultants. I. The Resultant Let be a UFD and let be the polynomials . The definition and motivation for the resultant of lies in the following very simple exercise. Exercise 1 Show that two polynomials and in have a nonconstant common divisor in if and only if there exist nonzero polynomials u, v such that where and . The equation can be turned into a numerical criterion for and to have a common factor. Actually, we use the equation instead, because the criterion turns out to be a little cleaner (as there are fewer negative signs). Observe that iff so has a solution iff has a solution . Exercise 2 (to be done outside of class) Given polynomials of positive degree, say , define where the l + m coefficients , ,…, , , ,…, are treated as unknowns. Substitute the formulas for f, g, u and v into the equation and compare coefficients of powers of x to produce the following system of linear equations with unknowns ci, di and coefficients ai, bj, in R. -
The Diamond Method of Factoring a Quadratic Equation
The Diamond Method of Factoring a Quadratic Equation Important: Remember that the first step in any factoring is to look at each term and factor out the greatest common factor. For example: 3x2 + 6x + 12 = 3(x2 + 2x + 4) AND 5x2 + 10x = 5x(x + 2) If the leading coefficient is negative, always factor out the negative. For example: -2x2 - x + 1 = -1(2x2 + x - 1) = -(2x2 + x - 1) Using the Diamond Method: Example 1 2 Factor 2x + 11x + 15 using the Diamond Method. +30 Step 1: Multiply the coefficient of the x2 term (+2) and the constant (+15) and place this product (+30) in the top quarter of a large “X.” Step 2: Place the coefficient of the middle term in the bottom quarter of the +11 “X.” (+11) Step 3: List all factors of the number in the top quarter of the “X.” +30 (+1)(+30) (-1)(-30) (+2)(+15) (-2)(-15) (+3)(+10) (-3)(-10) (+5)(+6) (-5)(-6) +30 Step 4: Identify the two factors whose sum gives the number in the bottom quarter of the “x.” (5 ∙ 6 = 30 and 5 + 6 = 11) and place these factors in +5 +6 the left and right quarters of the “X” (order is not important). +11 Step 5: Break the middle term of the original trinomial into the sum of two terms formed using the right and left quarters of the “X.” That is, write the first term of the original equation, 2x2 , then write 11x as + 5x + 6x (the num bers from the “X”), and finally write the last term of the original equation, +15 , to get the following 4-term polynomial: 2x2 + 11x + 15 = 2x2 + 5x + 6x + 15 Step 6: Factor by Grouping: Group the first two terms together and the last two terms together. -
Solving Cubic Polynomials
Solving Cubic Polynomials 1.1 The general solution to the quadratic equation There are four steps to finding the zeroes of a quadratic polynomial. 1. First divide by the leading term, making the polynomial monic. a 2. Then, given x2 + a x + a , substitute x = y − 1 to obtain an equation without the linear term. 1 0 2 (This is the \depressed" equation.) 3. Solve then for y as a square root. (Remember to use both signs of the square root.) a 4. Once this is done, recover x using the fact that x = y − 1 . 2 For example, let's solve 2x2 + 7x − 15 = 0: First, we divide both sides by 2 to create an equation with leading term equal to one: 7 15 x2 + x − = 0: 2 2 a 7 Then replace x by x = y − 1 = y − to obtain: 2 4 169 y2 = 16 Solve for y: 13 13 y = or − 4 4 Then, solving back for x, we have 3 x = or − 5: 2 This method is equivalent to \completing the square" and is the steps taken in developing the much- memorized quadratic formula. For example, if the original equation is our \high school quadratic" ax2 + bx + c = 0 then the first step creates the equation b c x2 + x + = 0: a a b We then write x = y − and obtain, after simplifying, 2a b2 − 4ac y2 − = 0 4a2 so that p b2 − 4ac y = ± 2a and so p b b2 − 4ac x = − ± : 2a 2a 1 The solutions to this quadratic depend heavily on the value of b2 − 4ac. -
Algebra Polynomial(Lecture-I)
Algebra Polynomial(Lecture-I) Dr. Amal Kumar Adak Department of Mathematics, G.D.College, Begusarai March 27, 2020 Algebra Dr. Amal Kumar Adak Definition Function: Any mathematical expression involving a quantity (say x) which can take different values, is called a function of that quantity. The quantity (x) is called the variable and the function of it is denoted by f (x) ; F (x) etc. Example:f (x) = x2 + 5x + 6 + x6 + x3 + 4x5. Algebra Dr. Amal Kumar Adak Polynomial Definition Polynomial: A polynomial in x over a real or complex field is an expression of the form n n−1 n−3 p (x) = a0x + a1x + a2x + ::: + an,where a0; a1;a2; :::; an are constants (free from x) may be real or complex and n is a positive integer. Example: (i)5x4 + 4x3 + 6x + 1,is a polynomial where a0 = 5; a1 = 4; a2 = 0; a3 = 6; a4 = 1a0 = 4; a1 = 4; 2 1 3 3 2 1 (ii)x + x + x + 2 is not a polynomial, since 3 ; 3 are not integers. (iii)x4 + x3 cos (x) + x2 + x + 1 is not a polynomial for the presence of the term cos (x) Algebra Dr. Amal Kumar Adak Definition Zero Polynomial: A polynomial in which all the coefficients a0; a1; a2; :::; an are zero is called a zero polynomial. Definition Complete and Incomplete polynomials: A polynomial with non-zero coefficients is called a complete polynomial. Other-wise it is incomplete. Example of a complete polynomial:x5 + 2x4 + 3x3 + 7x2 + 9x + 1. Example of an incomplete polynomial: x5 + 3x3 + 7x2 + 9x + 1. -
Algorithmic Factorization of Polynomials Over Number Fields
Rose-Hulman Institute of Technology Rose-Hulman Scholar Mathematical Sciences Technical Reports (MSTR) Mathematics 5-18-2017 Algorithmic Factorization of Polynomials over Number Fields Christian Schulz Rose-Hulman Institute of Technology Follow this and additional works at: https://scholar.rose-hulman.edu/math_mstr Part of the Number Theory Commons, and the Theory and Algorithms Commons Recommended Citation Schulz, Christian, "Algorithmic Factorization of Polynomials over Number Fields" (2017). Mathematical Sciences Technical Reports (MSTR). 163. https://scholar.rose-hulman.edu/math_mstr/163 This Dissertation is brought to you for free and open access by the Mathematics at Rose-Hulman Scholar. It has been accepted for inclusion in Mathematical Sciences Technical Reports (MSTR) by an authorized administrator of Rose-Hulman Scholar. For more information, please contact [email protected]. Algorithmic Factorization of Polynomials over Number Fields Christian Schulz May 18, 2017 Abstract The problem of exact polynomial factorization, in other words expressing a poly- nomial as a product of irreducible polynomials over some field, has applications in algebraic number theory. Although some algorithms for factorization over algebraic number fields are known, few are taught such general algorithms, as their use is mainly as part of the code of various computer algebra systems. This thesis provides a summary of one such algorithm, which the author has also fully implemented at https://github.com/Whirligig231/number-field-factorization, along with an analysis of the runtime of this algorithm. Let k be the product of the degrees of the adjoined elements used to form the algebraic number field in question, let s be the sum of the squares of these degrees, and let d be the degree of the polynomial to be factored; then the runtime of this algorithm is found to be O(d4sk2 + 2dd3). -
Some Properties of the Discriminant Matrices of a Linear Associative Algebra*
570 R. F. RINEHART [August, SOME PROPERTIES OF THE DISCRIMINANT MATRICES OF A LINEAR ASSOCIATIVE ALGEBRA* BY R. F. RINEHART 1. Introduction. Let A be a linear associative algebra over an algebraic field. Let d, e2, • • • , en be a basis for A and let £»•/*., (hjik = l,2, • • • , n), be the constants of multiplication corre sponding to this basis. The first and second discriminant mat rices of A, relative to this basis, are defined by Ti(A) = \\h(eres[ CrsiCij i, j=l T2(A) = \\h{eres / ,J CrsiC j II i,j=l where ti(eres) and fa{erea) are the first and second traces, respec tively, of eres. The first forms in terms of the constants of multi plication arise from the isomorphism between the first and sec ond matrices of the elements of A and the elements themselves. The second forms result from direct calculation of the traces of R(er)R(es) and S(er)S(es), R{ei) and S(ei) denoting, respectively, the first and second matrices of ei. The last forms of the dis criminant matrices show that each is symmetric. E. Noetherf and C. C. MacDuffeeJ discovered some of the interesting properties of these matrices, and shed new light on the particular case of the discriminant matrix of an algebraic equation. It is the purpose of this paper to develop additional properties of these matrices, and to interpret them in some fa miliar instances. Let A be subjected to a transformation of basis, of matrix M, 7 J rH%j€j 1,2, *0). -
Arxiv:2004.03341V1
RESULTANTS OVER PRINCIPAL ARTINIAN RINGS CLAUS FIEKER, TOMMY HOFMANN, AND CARLO SIRCANA Abstract. The resultant of two univariate polynomials is an invariant of great impor- tance in commutative algebra and vastly used in computer algebra systems. Here we present an algorithm to compute it over Artinian principal rings with a modified version of the Euclidean algorithm. Using the same strategy, we show how the reduced resultant and a pair of B´ezout coefficient can be computed. Particular attention is devoted to the special case of Z/nZ, where we perform a detailed analysis of the asymptotic cost of the algorithm. Finally, we illustrate how the algorithms can be exploited to improve ideal arithmetic in number fields and polynomial arithmetic over p-adic fields. 1. Introduction The computation of the resultant of two univariate polynomials is an important task in computer algebra and it is used for various purposes in algebraic number theory and commutative algebra. It is well-known that, over an effective field F, the resultant of two polynomials of degree at most d can be computed in O(M(d) log d) ([vzGG03, Section 11.2]), where M(d) is the number of operations required for the multiplication of poly- nomials of degree at most d. Whenever the coefficient ring is not a field (or an integral domain), the method to compute the resultant is given directly by the definition, via the determinant of the Sylvester matrix of the polynomials; thus the problem of determining the resultant reduces to a problem of linear algebra, which has a worse complexity. -
Elements of Chapter 9: Nonlinear Systems Examples
Elements of Chapter 9: Nonlinear Systems To solve x0 = Ax, we use the ansatz that x(t) = eλtv. We found that λ is an eigenvalue of A, and v an associated eigenvector. We can also summarize the geometric behavior of the solutions by looking at a plot- However, there is an easier way to classify the stability of the origin (as an equilibrium), To find the eigenvalues, we compute the characteristic equation: p Tr(A) ± ∆ λ2 − Tr(A)λ + det(A) = 0 λ = 2 which depends on the discriminant ∆: • ∆ > 0: Real λ1; λ2. • ∆ < 0: Complex λ = a + ib • ∆ = 0: One eigenvalue. The type of solution depends on ∆, and in particular, where ∆ = 0: ∆ = 0 ) 0 = (Tr(A))2 − 4det(A) This is a parabola in the (Tr(A); det(A)) coordinate system, inside the parabola is where ∆ < 0 (complex roots), and outside the parabola is where ∆ > 0. We can then locate the position of our particular trace and determinant using the Poincar´eDiagram and it will tell us what the stability will be. Examples Given the system where x0 = Ax for each matrix A below, classify the origin using the Poincar´eDiagram: 1 −4 1. 4 −7 SOLUTION: Compute the trace, determinant and discriminant: Tr(A) = −6 Det(A) = −7 + 16 = 9 ∆ = 36 − 4 · 9 = 0 Therefore, we have a \degenerate sink" at the origin. 1 2 2. −5 −1 SOLUTION: Compute the trace, determinant and discriminant: Tr(A) = 0 Det(A) = −1 + 10 = 9 ∆ = 02 − 4 · 9 = −36 The origin is a center. 1 3. Given the system x0 = Ax where the matrix A depends on α, describe how the equilibrium solution changes depending on α (use the Poincar´e Diagram): 2 −5 (a) α −2 SOLUTION: The trace is 0, so that puts us on the \det(A)" axis.