55 55

1 5.U ni o n n Carriage Carriage and and Wagon Wagon Co mpan y , , South South Africa , , www . ucw . co . za za

14 . Indian Indian Railway , , www . irieen . com com

1 3. Japanese Japanese Railway , , www . rtri . or.jp or.jp

12 . Railway Railway Gazette Gazette International , , www . railwaygazette . com com · -.. -..

11.International 11.International Railway Railway Journal , , www.railjouranal.com www.railjouranal.com

1 1 0. 0. Sri Lanka Railway , , www. www. scienceland.lk / railway railway

1999 / 2000. 2000.

9. 9. Lecture Lecture notes notes of of M . Eng!PG Eng!PG Diploma Diploma in in Electrical Electrical Engineering Engineering

8 . . U ppal ppal S.L. , , 1990 , , Electrical Electrical Power ., ., Khanna Khanna Publicaions , , Delhi , , . .

. .. ..

Paper Paper for for Railway Railway Electrification Electrification of of Colombo Suburban Suburban Area Area . .

7. 7. RITES RITES ( Rail Rail India India Technical Technical and and Economic Economic Service) , , 1992 , , Technical Technical

6 . . Sri Sri Lanka Lanka Railway , , 2001 , , Table Table Time Force Force Form Form ln ln April2001. April2001.

Delhi , , India. India.

5 . . Agor Agor R . , , 1990 , , Railway Railway Track Track Engineering, Engineering, Khanna Khanna Publicaions , ,

Delhi , , India. India.

4 . . Garg Garg R . K ., ., 1998 , , Electric Electric Power Power Utilization, Utilization, Khanna Khanna Publicaions , ,

Technology , , S. S. Chand Chand Company Company & & Ltd , , New New Delhi , , IJdia . .

3. 3. Theraja Theraja B.L. : : Theraja Theraja A . K ., ., 1998 , , A A Textbook Textbook of of Electrical Electrical

Railway Railway Engineering , , Chapter Chapter 33 , , Electrical Electrical Energy Energy Utilization. Utilization.

2. 2. American American Railway Railway Engineering Engineering Association , , 1993 , , Manual Manual for for

Delhi , , India . .

1. 1. Partab Partab H . , , 1995 , , Modern Modern Electrical Electrical Traction , , Dhanpat Dhanpat Rai Rai Sons , , & &

11.0 11.0 REFERENCES REFERENCES

CHAPTER CHAPTER 11 11 9~

SITXITNNV

v-XIQNtlddV

5 7 7

-

Al. l l Table Table

-

4 1 . 8 8 Kalutara Kalutara South South - 1480 1480 1525 1525 2450 2450 -

39.9 39.9 Kalutara Kalutara North North 25 25 210 210 200 200 30 30 50 50 350 350

36. 1 1 Train Train Halt Halt No . I I 10 10 160 160 150 150 15 15 25 25 275 275

32.5 32.5 Wadduwa Wadduwa 45 45 480 480 450 450 50 50 90 90 875 875

29 29 5 5 Pinwatta Pinwatta 25 25 210 210 200 200 225 225 60 60 375 375

26 26 2 2 Panadura Panadura 3 50 50 4150 4150 4500 4500 400 400 725 725 8 700 700

22 22 6 6 Egoda Egoda U y ana ana 50 50 425 425 400 400 50 50 125 125 900 900

20 20

7 7

Koralawella Koralawella 475 475 400 400 75 75 90 90 9 5 0 0 . .. .. 4 0 0

18.9 18.9 Moratuwa 475 475 42 0 0 0 4350 4350 500 500 1200 1200 9025 9025

17 17 3 3 Lunawa Lunawa 75 75 45(}. 45(}. 475 475 75 75 150 150 9 50 50

15.9 15.9 An An guiana guiana 50 50 475 475 500 500 50 50 120 120 925 925

1 4.0 4.0 Ratmalana 275 275 525 525 600 600 325 325 525 525 1225 1225

1 2. 2 2 Mount Mount Lavinia Lavinia 140 140 470 470 450 450 150 150 350 350 950 950

1 0.0 0.0 Dehiwala 250 250

590 590 500 500 200 200 700 700 1375 1375

I I

07. 2 2 Wellawatta Wellawatta 310 310 410 410 400 400 325 325 850 850 950 950

05. 1 1 Bambalapitiya 2320 2320 75 75 80 80 2300 2300 4500 4500 150 150

03. 1 1 Kollupitiya 2450 2450 50 50 50 50 2500 2500 4750 4750 125 125

0 1.7 1.7 Kompannavidiya Kompannavidiya 2590 2590 50 50 40 40 2400 2400 5285 5285 100 100

00. 0 0 Colombo Colombo Fort - - 5405 5405 - 5600 5600 10955 10955

Defi Defi Arr Arr Oep Oep Arr Arr

Arr Arr Oep Oep

-

6 . 30am- 9 9 30am 30am

4 . . OOpm- 7 . . OOpm OOpm

km km Station Station Daily Daily

-

Peak Peak hours hours

tr affic affic flow flow in in Colombo Colombo Fort Fort - Kalutara Kalutara South South suburban suburban service. service.

Ave rage rage daily daily (Ohr - 24hr) 24hr) one one direction direction total total and and peak peak hours hours rail rail passenger passenger

COLLECTE D D DATA DATA

ANNEX ANNEX 1 1

58 58

Tab l e A e l .2 .2

l l

I I

165o 165o

- 73 73 8 8 Polgahawela Polgahawela

4500 4500 1550 1550 - -

I I 69 69 8 8 Walakumbura Walakumbura 10 10 50 50 350 350 10 10 150 150 175 175

65.7 65.7 575 575 Alawwa Alawwa 100 100 200 200 1200 1200 100 100 575 575

Bujjomuwa Bujjomuwa 25 25 75 75 375 375 25 25 175 175 175 175 619 619 1--

10 10 150 150 59.9 59.9 150 150 Y Y aththalgoda aththalgoda 10 10 50 50 325 325

850 850 56.2 56.2 850 850 Ambepussa Ambepussa 1 50 50 370 370 1 750 750 1 75 75

130 130 Botale Botale 50 50 100 100 300 300 50 50 125 125 54.4 54.4

350 350 50 50 175 175 52. 1 1 18 Wilwatta Wilwatta 0 0 50 50 100 100

950 950 50.3 50.3 900 900 Mir i gama gama 150 150 375 375 2100 2100 150 150

50 50 Wijaya Wijaya Rjadahana Rjadahana 50 50 100 100 550 550 275 275 49.1 49.1 275 275

60 60 225 225 225 225 46.2 46.2 Ganegoda Ganegoda 60 60 125 125 475 475

50 50 200 200 43.9 43.9 200 200 Pallewela Pallewela 50 50 100 100 425 425

Keenawala Keenawala 50 50 400 400 50 50 175 175 175 175 416 416 100 100

39 39 3 3 Wadurawa Wadurawa 50 50 125 125 375 375 60 60 180 180 175 175

2150 2250 2250 2150 37 37 5 5 Veyangoda Veyangoda 475 475 950 950 4500 4500 425 425

- 40 40 Heen-pattigoda Heen-pattigoda 80 80 850 850 415 425 425 415 35.7 35.7 40 40

Magalegoda Magalegoda 900 900 60 60 450 450 34 34 6 6 425 425 60 60 125 125

Bemmulla Bemmulla 900 900 75 75 31 31 9 9 400 400 75 75 170 170 42~ 42~

29 29 9 9 Daraluwa Daraluwa 50 50 100 100 850 850 50 50 375 375 450 450

27.5 27.5 2725 2725 Gampaha Gampaha 450 450 925 925 5850 5850 475 475 2750 2750

80 80 Yagoda Yagoda 80 80 170 170 900 900 450 450 24.3 24.3 410 410

850 850 22.5 22.5 875 875 Ganemulla 170 170 360 360 1700 1700 170 170

350 350 325 325 Bulugahagoda Bulugahagoda 150 150 700 700 75 75 20.7 20.7 75 75

800 800 60 60 375 375 375 375 19.1 19.1 Batuwatta 60 60 120 120

380 380 18 . 1 1 350 350 Walpola Walpola 70 70 150 150 825 825 70 70

Rag Rag am am a a 1350 1350 2550 2550 7200 7200 1200 1200 3550 3550 15 . 5 5 3750 3750

70 70 550 550 14 .3 .3 525 525 Horape Horape 70 70 150 150 1100 1100

Enderamulla Enderamulla 70 70 150 150 975 975 70 70 475 475 11.7 11.7 450 450

80 80 10.0 10.0 425 425 Hunupitiya Hunupitiya 80 80 175 175 900 900 450 450

I I so so 50 50 375 375 08.7 08.7 350 350 Wanawasala Wanawasala 100 100 775 775

06.9 06.9 Kelaniya 1550 1550 175 175 750 750 800 800 175 175 370 370

03 03 6 6 60 60 Dematagoda 100 100 3700 3700 50 50 3250 3250 8100 8100

Mara Mara dana dana 10300 10300 375 375 5135 5135 175 175 01 01 9 9 200 200 5750 5750

- - 00 00 0 0 Colombo Colombo 8200 8200 Fort Fort 18160 18160 - 8200 8200

Dep Dep Dep Dep Arr Arr Dep Dep Arr Arr Arr Arr

6 . 30am- 9 . 30am 30am 4. 4. OOpm-7. OOpm-7. OOpm OOpm

Station Station Daily Daily km km

Peak Peak hours hours

traffic traffic flow flow in in Co l ombo ombo Fort - Polgahawela Polgahawela s uburban uburban service. service.

Average Average daily daily (O hr- 24hr) 24hr) o n e e direction direction total total and and peak peak hours hours rail rail passenger passenger

ANNEX ANNEX Contd Contd ...... 1 1

59 59

--

Tab l e e Al.3 Al.3

I I

2t5o 2t5o

2100 2100 4300 4300

-

- - - 950 950 26 26 5 5 1000 1000 Homagama 1875 1875

! !

22 22 5 5 Malapalla Malapalla 10 10 175 175 175 175 10 10 25 25 350 350

75 75 21 21 3 3 850 850 Kottawa 80 80 150 150 1725 1725 82~ 82~

19 19 0 0 Pannipitiya 50 50 275 275 275 275 70 70 100 100 625 625

Maharagama 125 125 1250 1250 16.4 16.4 1350 1350 1 50 50 225 225 2575 2575

80 80 15 . 2 2 Nawi nn a a 60 60 175 175 375 375 175 175 175 175

Udahamulla Udahamulla 80 80 200 200 13.4 13.4 200 200 80 80 175 175 400 400

11 . 0 0 Nugegoda 475 475 500 500 3675 3675 425 425 1750 1750 1825 1825

09.3 09.3 Kirillapone Kirillapone 475 475 70 70 225 225 200 200 70 70 150 150

50 50 200 200 07.5 07.5 175 175 Narahenpita 50 50 100 100 375 375

50 50 150 150 05.4 05.4 1 70 70 Cotta Cotta Road Road 50 50 100 100 350 350

03.8 03.8 Basline Basline R oad oad 1250 1250 150 150 150 150 1300 1300 2700 2700 300 300

2550 2550 01.9 01.9 50 50 50 50 Maradana 2700 2700 5225 5225 125 125

- 3660 3660 00.0 00.0 - Colombo Colombo Fort Fort 7900 7900 - /3650 /3650

Dep Dep Dep Dep Arr Arr Dep Dep Arr Arr Arr Arr

-

6 . 30am- 9 . 30am 30am 4. 4. OOpm-7. OOpm-7. OOpm OOpm km km Station Station Daily Daily

Peak Peak hours hours

traffic traffic flow flow in in Co lomb o o Fort- Homagama Homagama s uburban uburban service. service.

Average Average dail y y (O hr- 24 hr ) ) one one direct i o n n total total and and peak peak h o ur s s rail rail passenger passenger

ANNEX ANNEX Contd Contd ...... 1 1

60 60

--

Table Table Al.4 Al.4

3250 3250 3070 3070 6050 6050

- - 38 . 9 9 Negombo Negombo 1450 1450 1500 1500 - 3025 3025

35 . 3 3 Kurana Kurana 10 10 250 250 275 275 10 10 100 100 500 500

32.4 32.4 Katunayake 350 350 1 50 50 200 200 200 200 17 5 5 400 400

Colombo Colombo Airport Airport 500 500 100 100 100 100 100 100 1 00 00 500 500

450 450 I I P P Zone Zone 425 425 950 950 925 925 .. .. 400 400 400 400

30 . 1 1 Liyanagemulla Liyanagemulla 975 975 125 125 450 450 475 475 15 0 0 325 325

I I

62,? 62,? 28 . 1 1 600 600 Seeduwa Seeduwa 1 75 75 350 350 1350 1350 1 50 50 I I

60 60 150 150 26 . 5 5 150 150 Alawathupitiya Alawathupitiya 60 60 150 150 375 375

25 . 2 2 Kudahakapola Kudahakapola 70 70 175 175 200 200 50 50

150 150 400 400 ~ ~

375 375 23 . 9 9 400 400 Tudella Tudella 100 100 225 225 725 725 100 100

I I

22.2 22.2 Jaela Jaela 1 75 75 875 875 925 925 150 150 275 275 1025 1025

Kapuwatt e e 50 50 200 200 20 . 6 6 200 200 50 50 1 00 00 420 420

18 . 8 8 Kandana 50 50 380 380 50 50 1 75 75 175 175 100 100

50 50 17 . 1 1 150 150 Pe ralande ralande 50 50 325 325 1 50 50 100 100

15.5 15.5 120 0 0 Rag Rag am am 1000 1000 a a 1950 1950 2450 2450 925 925 11 00 00

14.3 14.3 Horape Horape 50 50 150 150 25 25 75 75 75 75 25 25

Enderamulla Enderamulla 25 25 50 50 11.7 11.7 50 50 25 25 50 50 125 125

I I 10 . 0 0 Hunupiti ya ya 25 25 80 80 80 80 25 25 50 50 170 170

25 25 70 70 08 . 7 7 70 70 Wanawasala Wanawasala 25 25 50 50 160 160

06 . 9 9 Kelaniya Kelaniya 50 50 275 275 100 100 125 125 125 125 200 200

03 . 6 6 1550 1550 50 50 50 50 Demata 1600 1600 goda goda 3050 3050 100 100

3035 3035 25 25 25 25 01.9 01.9 Maradana Maradana 3000 3000 5950 5950 50 50

- 00 . 0 0 Colombo Colombo Fort Fort 3200 3200 - 3250 3250 - 5830 5830

-

0~ 0~ Arr Arr Dep Dep Arr Arr Dep Dep

Arr Arr

t--

6 . 30a m- 9 . 30am 30am 4 . . OOpm-7. OOpm-7. OOpm OOpm

km km Station Station Dail y y

Peak Peak hours hours

traffic traffic flow flow in in Colombo Colombo Fort- Negombo Negombo s uburban uburban service. service.

Ave ra ge ge daily daily (Ohr 24hr) 24hr) - one one direction direction total total and and peak peak hours hours rail rail passenger passenger

ANNEX ANNEX Contd Contd 1 1 ......

61 61

Tab l e e Al.6 Al.6

Jaela Jaela 5000 5000

Katunayaka Katunayaka 4000 4000

Negombo Negombo 6000 6000

--

Raga Raga rna rna 5000 5000

Gampaha Gampaha 4000 4000

Veyangoda Veyangoda 4000 4000

P o l gahawela gahawela 2000 2000

Nugegada Nugegada 5000 5000

Kottawa Kottawa 6000 6000

Homagama Homagama 2000 2000

Moratuwa Moratuwa 6000 6000

Panadura Panadura 5000 5000

Kalutara Kalutara 4000 4000

City City Passengers Passengers

-

traffic traffic flow flow in in selected selected suburban suburban area. area......

Average Average peak peak hours hours (6.00arn-9.00am (6.00arn-9.00am or or 4.30pm - 6.30 pm ) ) road road passenger passenger

Tab l e A e 1 . 5 5

- 38.9 38.9 Negombo Negombo - 3250 3250 3070 3070 - 6050 6050

26.5 26.5 Homagama Homagama - - 2100 2100 2150 2150 4300 4300 f-

- 41.8 41.8 - Kalutara Kalutara South South 4500 4500 4750 4750 - 9650 9650

73.8 73.8 Polgahawela Polgahawela - - 2000 2000 2250 2250 - 7500 7500

Arr Arr Dep Dep Arr Arr Arr Arr Dep Dep Dep Dep

6 6 30am- 9 9 30am 30am 4 . 00pm-7.00pm 00pm-7.00pm km km Station Station

Daily Daily -

Peak Peak hours hours

suburban suburban e l ectric ectric train train service. service.

traffic traffic flow flow in in connected connected Long -Di stant stant trains trains at at starting starting point s s of of proposed proposed

Average Average daily daily (O hr-24hr ) ) one one dir ection ection total total and and peak peak hour s s rail rail passenger passenger

ANNEX ANNEX 1 1 Contd Contd ......

6 2 2

char acteris t ics ics of of th e e t rac t io n n motors. motors.

po ti o n n AB AB of of the the s p eed/ t i m c e u rve rve d e p e n ds ds p rim a ril o y n n th e e t or qu e / s p ee d d

ex a c t l y y ba l ances ances t h a t t du e e t o o r es i s t a n ce ce t o o th t e r a in in m o t io n . . Th s e h a p e e of of t h e e

He nce , , acce l e r a ti o n n gra duall y y d ec r eases eases t i ll ll t o r q u e e d eve l o p e d d by by m o t ors ors

t hi s s period , , th e e m o t o r r c urr e nt nt an t d o r q u e e d ecre a se se as as tr a in in s p ee d d in c r eases. eases.

1 1 o ut ut at at poin t t t an d d full full s up p l y y vo lt age age h as as bee n n a pph e d t d o o the the m o t ors . . Dur i n g g

T hi s s acce l e r a ti o n n c omm ences ences a ft e r r th s e t a riin g g r es i s t a nc e e ha s s beeR beeR a ll ll c ut ­

2 (b) . . A cceleration cceleration on on speed speed curve curve (tt (tt to to t ) )

a lt e rna ti ve l y y call e d d ' rheo s t a tic tic acce l e r a ti o n ' ' o r r acce l e r a ti o n n while while n o t c hin g. g.

c fTort) fTort) is is maintained maintained n ear l c y on s t a nt nt w hi c h h p r o du ces ces c o n s tant tant ac ce l e r a ti o n n

m o tors tors i s s gr aduall y y cut cut o ut ut so so th a t t the the m o t o r r c urr e nt nt ( and and h e nc e, e, tr ac ti ve ve

i s s also also c It It all e n d o tchin g -up -up o r r s t a rtin g g p e ri o d S . t art in g g re s i s t a nc e e of of th e e

(a). (a). C onstant onstant 1 acceleration acceleration period period (to (to to to t ) )

· • •

F i g ur e e A2. 1 1 .. ..

t o o t 2 2 tr tr t 3 3 t s s t~ t~ T im e e

S peed peed

.I .I

i s s s how n n i n n Fi g ur e e A2. 1 . . m ay ay b e e di It It v id ed ed in to to th e e fo ll ow in g g fi ve ve part s: s:

T y pica l l s p eed/ time time curv e e f o r r e l ec tri c c tr a in o s p e r a tin o g n n pa ss en ge r r serv i ces ces

T YPICAL YPICAL I. I. SPEED SPEED I I TIME TIME CURVE CURVE ( I , J ) )

ANNE X 2 2 X

63 63

Figure Figure A2 .2 .2

0 0 D D time time

-

Speed Speed

. . . .

· ·

A 2 2

s t o p s s compared compared with with city city serv i ce . .

co mparatively mparatively longer longer costing costing period period because because of of longer longer distance distance between between

ave ra g e e speed speed between between stops . . The r e e is is no no free free running running period period but but there there is is

acce leration leration and and retardation retardation are are high high in in order order to to achieve achieve moderately moderately high high

Fig ure ure A2 is is . 2 2 representative representative of of tiburban tiburban s s erv i ce ce where where relative relative value value of of

2. 2. SPEE D D TIME TIME < U > > CURVE CURVE I I FOR FOR SUBURBAN SUBURBAN SERVICE SERVICE

a ll o wable wable retardation retardation respectively . .

ma y y be be noted noted that that coasting coasting and and brak in g g are are governed governed by by train train resistance resistance and and

5 A t t point point 14 , , brakes brakes are are app li ed ed and and the the train train is is brought brought to to rest rest at at point point t . i t t

(e). (e). Braking Braking (t4 (t4 tot s ) )

e n e q ='ry ='ry consump ti on on of of the the train. train.

wo uld uld otherwise otherwise be be wasted wasted during during braking. braking. Hence Hence it it helps helps to to reduce reduce the the

oy oy d es irable irable because because it it utilizes utilizes some some of of the the kinetic kinetic ene r gy gy the the train , , which which

C D ). ). During During this this period , , retardation retardation remains remains practically practically constant. constant. Coasting Coasting is is

m o mentum , , the the speed speed gradually gradually falling falling due due to to friction , , windage windage etc. etc. (portion (portion

3 3 Po wer wer to to the the motors motors is is cut cut off off at at po int int t so so that that the the train train runs runs under under it s s

(d). (d). Coas ting ting (h (h to to t.t) t.t)

l eve l l tracks. tracks.

portion portion BC BC in in Figure Figure A2.1 A2.1 and and is is a a constant - speed speed period, period, which which occurs occurs on on

2 Th e e train train continues continues nm nm to to at at the the speed speed reached reached at at point point It It t is is represented represented by by . .

2 2 3 (c). (c). Free -running -running period period (t to to t ) )

ANNEX ANNEX Contd Contd ...... 2 2

64 64

J J 7200 7200 Ym Ym

T T =[ D-Y ( 1

/ 3600 3600 a.+l 111 i -t B)l B)l t) t) ( t t ......

- s s Equation Equation A2.1 A2.1 2

F igure igure A2.3 A2.3

t r r

t 2 2

t 3 3 t t ...... Time Time

D D

-. -. i E E

Speed Speed

Y m m A A B B

.. ..

T T Total Total time. time. - s s

D D

Di tance tance s between between two two stops. stops. - kip kip

p p

Retardatio n n du ri ng ng braking braking per i od. od. - km / h /s /s

a. a.

Ac celeration celeration during during starting starting period . . - kmlh/s kmlh/s

Vm Vm

Maximum Maximum speed . . - km / h h

Relat i o n s hip hip between between principal principal qu a ntitie s s in in Trapez o idal idal shape shape

pe ri o ds . .

rep laced laced by by the the extens i ons ons of of init i a l l co n sta n t t acceleratio n n a n d d coast i ng ng

2 2 Quad rilateral rilateral shape shape OA C of of fi g ure ure A2.2 A2.2 w h ere ere the the samltwo samltwo D D periods periods are are

(b). (b). Q u a drilat e ral ral s hap e e

const ant ant s peed peed period . .

coasti ng ng periods periods of of the the ach 1 a l l s peed/time peed/time curve curve have have been been rep l aced aced by by a a

1 1 Trapezo idal idal shape shape OA C D D of of figu r e e A2.2 A2.2 where where speed speed curve curve running running and and

(a). (a). Trapez oid a s l hap e e

The The s imp l ified ified Speed Speed / Time Time curve curve ca n h n ave ave e ith e r r of of the the two two shapes: shapes:

Simp lifi e d d Speed Speed /Time /Time curve curve for for s uburban uburban s ervice ervice

ANNEX ANNEX 2 2 C ontd ontd . . . . .

65 65

F r r tra in ). ). Hence Hence M M r r = =

If If i s s specific specific resistance resistance of of the the train train (resistance (resistance r r offered offered per per unit unit mass mass of of the the

tt s s weight. weight. The The wind wind friction friction varies varies d i rectl y y as as the the square square of of the the train train s peed . .

Mechan i cal cal r esistance esistance is is almost almost independent independent of of tra i n n speed speed but but depends depends on on

resis tance tance consists consists of of friction friction between between whee l s s and and rai l l and and flange flange friction friction etc . .

comprises comprises friction friction at at journal , , axles, axles, gu i des des and and buffe r s s etc. etc. The The externa l l

-- made made up up of of interna l l and and external external resis t ances . . T h e e int e rn a l l res i stance stance

mechanical mechanical resistance resistance and and wind wind resistance. resistance. Mechanica l l res i stance stance itself itself is is

Train Train resista nc e e comprises comprises a ll ll t h ose ose f orces orces w hi c i h ts ts motion. motion. consists consists It It of of

F F f orce orce required required for for overcome overcome tr a in in re s i s tance tance r-

Fa= Fa= aMe aMe - 277.8 277.8 N N Equat i on on A3 . 1 1

If If M e e is is in in tonne tonne and and i n n km/h/s km/h/s a a

Mea Mea Fe Fe direction. direction. = = Hence Hence

acceleration acceleration at at t h e e sa m e e t ime ime as as the the who l e e train train is is acce l erated erated in in the the linear linear

8-15%) 8-15%) than than is is stationary stationary mass . . These These parts parts have have to to be be given given angu l ar ar

armatures armatures and and gearing gearing Me Me etc , , its its effecJive effecJive (acce l erating) erating) mass mass i s s more more (about (about

Fa = Ma. Ma. then then Since Since a a train train has has rotating rotating parts parts l ike ike wheels , , axles , , motor motor

If If M M is is the the dead dead (stationary) (stationary) a a mass mass of of the the train train and and its its l inear inear acceleratio n n

Fa Fa - fo r c e e required required for for line a r r acc e leration leration

Ft- Fa+ Fa+ Fr Fr + Fe - F g g -for -for desce n d i ng ng gradien t t

Ft - F a+ a+ Fr Fr + Fe+ Fe+ Fg Fg - for for ascending ascending gra di e nt nt

If If grad i e n ts ts are are invo l ve d , ,

l l

1 = F a+ a+ Fr Fr F + (1evel) (1evel) Fe Fe

F F force force required required for for overcome overcome the the effec t t of of gravity gravity g -

F F force force req u ire d d for for overcome overcome curve curve resistance resistance c c -

Fr - force force r equ ir ed ed fo r r ove r come come train train r esistance esistance

Fa- force force r equ ir ed ed for for linear linear accelera t io n n

and and

The The i tract ve ve effo rt rt required required 1 1 fo r r tra i n n propu l s i on on o n n a a l evel evel track track is is F (leve l ) )

of of the the d ri vi n g g w h eels eels for for movi n g g the the un it it i t self self and and i ts ts train train (trai l ing ing load). load).

1 The The tractive tractive effort effort (F i t s h e e force force deve l oped oped by by the the tract i on on unit unit at at t h e e ri m m ) )

TRAC TIVE TIVE EFFORT EFFORT FOR FOR PROPULSION PROPULSION OF OF A A TRAIN TRAIN CI.J) CI.J)

ANNEX ANNEX 3 3

66 66

-. -. R R - Minimum Minimum radius radius of of track track in in meter s s

R R

- kg / t t c c :- 700 700 Equation Equation A3.5 A3.5

F c= M c c -N -N Equation Equation A3. A3. 4 4

If If M M in in is is tonne tonne and and c is is in in Newton Newton p e r r tonne tonne train train ma ss ss (N / t) t)

curve curve resistance resistance c c F e- of of M M train. train. Hence Hence I S S

C urve urve resistance resistance comprises comprises force force wh~h wh~h is is du e e to to c c curvature curvature of of rail rail track. track. If If

......

Fe- force force required required for for overcome overcome curve curve resistance resistance

ve locity locity of of train train V - V in in km/h km/h

number number N - N of of axle axle per per train train

Sect ion ion A - A area area of of car car in in m

2 2

e e - Ax le le l oa d d in in tonne tonne

/ / Speci fic fic train train re sis tance tance r r -

e e eN eN

+ + + + 0 . 65 65 13.15 13.15 r- 0.002796 0.002796 + + 0.004525A 0.004525A V V V k - g/ t t Equation Equation A3. A3. 3 3

2 2

de s s che min min de de France) France) rail way. way.

A cco rdin g g to to Davis 's 's i s s Formula Formula which which u se d d by by S.N.C.F S.N.C.F ( ( Societe Societe National National

Fr- M M r r -N -N Equation Equation A3 A3 .2 .2

If If M M i s s in in tonne tonne and and is is in in newton newton per per tonne tonne r r train train mass mass (N/t) (N/t)

ANNEX ANNEX Contd Contd ...... 3 3

67 67

F t- 277.8 277.8 + + M M E cJ.u at i M M on on A3. A3. 98 98 7 7 + + MG MG + + N N - aMe aMe r r c c

Tota l l Trac ti ve ve e ff o rt rt (Ft) (Ft)

F g g 98 98 MG MG = = E qu a t io - n n N N A3. A3. 6 6

If If M M is is in in tonne tonne

100 100

Substitut in g g t h e e va l ue ue of of si n n 9, 9, H ence ence Mg Mg F G G g g = =

e e G G - 00 00 1 1 sin sin · o o

0

......

Mg Mg F si g n n - 9 9

"-

F i gure gure A3.1 A3.1

Mg Mg s in in 9 9

I I

F g g

distance distance of of 100 100 m m and and is is ca ll ed ed pe r ce n tage tage gradie nt nt G). G). (% (%

In In railway railway pract i ce, ce, gradient gradient i s s ex pr essed essed as as the the ri se se ( in in m eters) eters) a a t ac k k

Fg - force force required required for for overcome overcome the the effect effect of of gravity gravity

AN N E X 3 3 X Contd Contd ......

6 8 8

2 f) y y

T T E1. D D = = - N-m N-m Equation Equation A4 . 1 1

dl dl D D

J J

( (

1 1

[ ~J ~J ~~ J J

TJT TJT 2TJ Y[ Y[

= = J J ~J ~J 11 11 f F l l F t- [ [ = = ~ ~ ll ll 2T ( d2 d2

-- T ractive ractive effort effort transferred transferred to to the the driving driving wheel wheel

T = = F J. dt / 2 2 F1 F1 2T i dt dt or or = =

11 = = efficiency efficiency of of power power transmission transmission from from the the motor motor to to driving driving axle axle

o - diameter diameter of of the the driving driving wheel wheel

2 d diameter diameter of of the the gear gear wheel wheel -

1 d diameter diameter of of the the pinion pinion -

y= y= g ear ear ratio ratio

Ft Ft tractive tractive effort effort at at the the wheel wheel

1 1 tractive tractive effort effort F F at at the the pinion pinion

T - t orque orque exerted exerted by by the the motor motor

• •

A4 . 1 1 Figure Figure

...... '~+ '~+

track track

F2 F2

......

I I

~ ~

, . .

D D

--- gear gear wheel wheel ,_ ,_ r- d2 d2 , , +- 1 1

-- -·-+ -·-+ l r r

\ \ \ \

--- ...... ~ ~ \ \

_ driving driving wheel wheel ~ ~ I I , ,

, , , ,

,.,."'"" ,.,."'"" ......

~ ~

--

Fl Fl

motor motor arma!~fre arma!~fre

dl dl

-;- ' '

'~ · · ' '

, ,..... ,.....

motor motor pinion pinion

tran s ferred ferred to to the the wheel wheel through through the the gear. gear.

w h e el el keyed keyed to to the the axle axle of of the the driving driving wheel. wheel. In In this this way, way, motor motor torque torque is is

annature annature of of the the driving driving motor motor has has a a pinion pinion which which meshes meshes with with the the gear gear

Driving Driving mechanism mechanism in in an an electric electric vehic l e e is is shown shown in in figure figure A4.1. A4.1. The The

MECHAN I SI\I l l O F F T RAI N N MOVEMENT MOVEMENT ) ) ( t ,

3

ANNEX ANNEX 4 4

69 69

of of dri v in g g axles . .

ax l e e load . . A s s such such adhe s i v e e can can o nl y y be be increa s ed ed by by increasing increasing the the number number

w h e el s s also also has has to to be be increa s ed . . Ra il wa y s y tandards tandards provide provide certain certain maximum maximum

p o wer wer capac i ty ty of of the the traction traction motor motor i s s not not enough , , the the weight weight of of the the drivin g g

T h e refore , , to to increase increase the the tractive tractive effort effort of of a a locomotive , , increas in g g the the

-.. -..

1 1 - N N 9800 9800 F x M M Equation Equation A5. A5. 1 1 ~a ~a = =

Ft Ft 1 1 000x9.8 J..L a a xM xM M M Newton Newton i f f i s s tonne tonne = =

w w ft ft Jl a a W = = a a J..la J..la = = J..l a a = = x Mg Mg X X

maximum maximum tractive tractive effort effort possible possible without without whee l l slip . . = =

f t- tractive tractive effort effort to to slip slip the the wheel wheel or or

Coe fficient fficient of of adhesive adhesive (Jl a) a) - ~ ~ F tf tf W W

......

d rivin g g whee l s s to to slip slip

a n y y increase increase in in motor motor torque torque doe s s not not increase increase the the tractive tractive effort effort but but causes causes

in c rea s ing ing the the motor motor torque , , but but only only upto upto certa in in point. point. Beyond Beyond this this point, point,

A ccording ccording to to equation equation A4 A4 (Annex (Annex 4) 4) tractive tractive effort effort .1 .1 can can be be increased increased by by

weight weight to to be be carried carried on on the the driving driving w h ee l s . .

their their s urfaces urfaces in in contact. contact. The The adhes i ve ve weight weight of of a a train train is is equal equal to to the the total total

A dhesive dhesive between between two two bodies bodies is is due due to to interlocking interlocking of of the the irregularities irregularities of of

I I Coefficie nt nt of of adhesive adhesive (~a) (~a)

x x - fraction fraction (0 . 6 6 to to 0 . 9) 9)

Wa=x W W W W - dead dead weight weight

A dhesive dhesive weight weight is is given given by by the the total total weight weight carried carried on on the the driving driving wheels wheels

Adhesive Adhesive weight weight (W (W a ) )

MAX IMUM IMUM TRACTIVE TRACTIVE EFFORT EFFORT (Ftm) (Ftm) ( l ,J) ,J)

ANNEX ANNEX 5 5

70 70

1 1 0 . 2 7 78 78 MrD Wh Wh

1 r r D * 1000) / 3600 3600 - (M (M Wh Wh

0 , *1000 *1000 Er- F r r J o ule s s

Fr - r r M M ( r r = s pecific pecific train train r es i s tanc e + + curve curve resistance) resistance)

D 1 1 Er - F r r

-.. -..

E nergy nergy output output of of driving driving axles axles to to overcome overcome friction friction (Er)· (Er)·

1 1 27.2 5 5 MGD = = Wh Wh

1 9.81 9.81 *1000 *1000 MGD /3 600 600 = = Wh Wh

E g- 9 . 81 81 MG*1000D1 MG*1000D1 joules joules or or watt-sec . .

v alue alue is is equal equal to to area area OABE OABE

1 1 0 When When is is the the di s tance tance over over wh i ch ch p owe r r remains remains on on and and it' s s maximum maximum

Eg = = F g g D,. D,. X X

.. ..

E nergy nergy output output of of driving driving axles axles to to overcome overcome gradient gradient (E g) g)

......

Me Me 0.01072 0.01072 V m = = Wh Wh

2 2

Ea - 277. 8M ea(l 000 000 V m 17200 17200 a) / 3600 3600 Wh Wh

2

Ea- Fax Fax Distance Distance OAD OAD

Accor ding ding to to trapezoidal trapezoidal speed speed time time curve curve of of figure figure A2.3 A2.3 (Annex (Annex 2) 2)

E nergy nergy output output of of driving driving axles axles to to accelerate accelerate the the train train (Ea{ (Ea{

To To overcome overcome 3. 3. resistance resistance train including including curve curve re s istance istance

2 . . To To overco m e e gradient gradient

To To accelerate accelerate I I . . the the train train

Total Total ene r gy gy outp ut ut of of drivin g g axles axles i s s s pent pent as as follows: follows:

motor, motor, get get specific specific energy energy consumption . .

whee l s. s. When When this this is is divided divided by by overall overall efficiency efficiency of of transmission transmission gear gear and and

meter meter length length of of the the run. run. First First find find out out s pecific pecific energy energy output output of of driving driving

is is the the energy energy It It consumed consumed in in watt watt hours hours per per tonne tonne mass mass of of the the train train per per kilo kilo

SPEC IFIC IFIC ENERGY ENERGY CONSUMPTION CONSUMPTION (l , J) J)

ANNEX ANNEX 6 6

71 71

--

Equation Equation A6. A6. · 1 1

D11 D11

E E = = ------s pc pc --

J J

M e)IM e)IM [c o.Ol072V

+ + m + + 27.25 27.25 D 1 1 GD, GD, 0.2778 0.2778 r r - Wh / t- km km

2

Overall Overall efficiency efficiency of of tran s mi ss i o n n gear gear and and motor motor

= = E E spc spc

......

Specific Specific energy energy output output

Specific Specific energy energy consumption consumption (Espc) (Espc)

j j

= ~0.

01072Y m

M,) / M M ± ± E/ E/ (MD) (MD) 27.25 27.25 0.2778 0.2778 GD, GD, D .J D D - r r Wh / t-km t-km t t

2

Spec ific ific energy energy output output I I E E (MD) (MD) = =

Me+ Me+ + + E - 0.0 1072V m 27.25 27.25 MGD , , 0.2778 0.2778 MrD , , - Wh Wh

2

Tota l l energy energy output output of of driving driving axles axles (E) (E)

ANNEX ANNEX 6 6 Contd Contd ......

72 72

J J

Net Net energy energy recovery = = '1 [[0.0 1 072 072 1 M,(V M,(V V,') / M] M] 0.2778 0.2778 rd rd - - Wh / t t

2

Wh Wh 0.2778 0.2778 rMd rMd = =

Energy Energy spen t = = rM rM (1000 (1000 d) d) joules joules

--

11 11 braki n g g and and is is system system efficiency. efficiency.

If If r r (Ne wton) wton) is is the the train train resistance d d , , (km) (km) is is the the di s tance tance travelled travelled during during

0.01072 0.01072 M (V e e I -V/) -V/) Energy Energy recovery recovery Wh Wh = =

2

0.01072 0.01072 MeV/ MeV/ Wh Wh = =

2 2 = Me Me Kine ti c e c ner gy gy at at V V /12 /12 joules joules

M e Y I I = = 0.0 1 072 072 Wh Wh

2 2

41 41

1 1 1

V Kinet MeV i c e c ner 12 12 gy gy at at joule s s = =

2

......

2 2 V V when when it it is is If If effective effective km/h. km/h. Me Me . . m ass ass of of tr a in in i s s

1 1 nerati Rege ve ve brakin g g i s s applied applied when when V V tr a in in velocity velocity i s s km / h h and and ceases ceases

brak in g, g, efficiency efficiency of of the the sys tem tem and and train train resistance. resistance.

regenera tive tive braking braking depend s s initial initial and and final final velocities velocities of of the the train train during during

Energy Energy recuperated recuperated between between any any two two point s s on on a a level level track track durin g g

mainte nance nance cost cost for for brakin g g sys tem tem o f f loc o motive s. s.

consu mption , , reducin g g wear wear of of brake brake s h oes oes and and wheel wheel ;tyres ;tyres and and l ower ower

reduce reduce s peed peed up up to to c erta in in le ve l . . Main Main advantages advantages are are reducin g g energy energy

n Rege era ti ve ve braking braking cannot cannot be be u sed sed for for s toppin g g a a m o tor tor but but can can be be u se d t d o o

Regenerative Regenerative brakin g g i s s the the m ost ost efficient efficient method method of of braking. braking.

produced produced on on account account of of ge nerat o r r action action offers offers the the barkin g g torqu e. e.

train. train. E lectrical lectrical energy energy is is f e d d back back t o o the the s uppl y. y. The The magnetic magnetic dra g g

made made to to run run as as a a generator generator b y y utili z ing ing the the kinetic kinetic energy energy of of the the moving moving

In In regenerative regenerative braking , , motor motor i s s not not di sco nnected nnected from from the the supply, supply, but but it it

REGENERATIVE REGENERATIVE BRAKING BRAKING < • ) )

1 3

ANNEX ANNEX 7 7

73 73

--

E quation quation A A 7.2 7.2

J J

~0 ~0 d (~7.2SG -

1 01072 01072 Me(V -V,') '1 '1 / M] M] + + 0.;778 0.;778 = = -Whit -Whit r) r)

2

2. 2. Descending Descending gradient gradient

J J

~0.01072 ~0.01072

M e( V , -V /) IM] IM] 0.2778 0.2778 rd rd -Wh '1 '1 i t t = = Equat i on on A 7 7 A .I .I

2

I I

Leve l l track track I I . .

Net Net energy energy returned returned to to the the line line

Wh Wh 27.25 27.25 MGd MGd = =

Energy Energy provided = = 98 . 1 1 MG MG ( 1000 1000 d) d) joule s s

If If G G i s s descending descending gradient gradient over over the the sa me me di s tance tance of of d d km. km.

ANNEX ANNEX 7 7 Contd Contd ......

74 74

T- Lateral Lateral shift shift of of track track within within civil civil engineer ' s s tolerance - 1.0 " " maximum . .

E - Lateral Lateral allowance allowance for for super super elevation elevation where where applicable applicable (Tab l e e A8 . 5) . .

X- Pantograph Pantograph width width of of live live of of l ive ive parts parts

and and A8.4) A8.4)

Lateral Lateral clearance clearance P A - of of pantograph pantograph to to side side of of bridge bridge abutment-(Table abutment-(Table A8 . 3 3

A A subscript - Altitude Altitude compensation compensation factor factor for for above above 3000 3000 ft ft e l eva t ion ion chart chart

S S -Locomotive -Locomotive and and Multiple Multiple Unit Unit car car sway sway (Tab l e e A8.1 A8.1 and and A8.2) A8.2)

W W 2S 2S + + 2P 2P A A + + X X + E E + + + 2T 2T = =

(b) (b) Lat er a l l s tructu re re o p e nin g ( g W ) )

dimensions. dimensions. .. ..

2" 2" to to 1 " " tolerance tolerance for for catenary catenary irregularit i es es added added to to bot h h the the CA CA and and PA PA

......

L- Uplift Uplift of of catenary catenary under under panto!:,rraph panto!:,rraph pressure pressure and and operating operating condition condition . .

under under passing passing (operating) (operating) co n dition dition (Table (Table A8.3 A8.3 and and A8.4) A8.4)

P P Catenary Catenary messenger messenger wire wire to to bottom bottom of of bridge bridge abutment abutment or or overpass overpass A -

C A - Trolley Trolley wire wire to to top top of of l oad oad u nder nder stat i c c con di tion tion (Table (Table A8.3 A8.3 and and A8.4) A8.4)

( Table Table A A 7 7 .3) .3)

A A subscript subscript - Altitude Altitude compensat i on on factor factor for for above above 3000 3000 ft ft e l evation evation

;I ;I

Y- Maximum Maximum height height of of l oad oad plus plus car. car.

y y H - + + + + L L + + 2 "+ "+ D D CA CA PA PA + +

(a) (a) Ver ti c al al s tru c tur e e op e nin H ( g ) )

horizontal horizontal structure structure opening opening for for various various vo l tages. tages.

Two Two basic basic form u las las have have been been deve l oped oped to to determine determine the the vertica l l and and

OPENINGS OPENINGS ( ) )

2

BAS I C C FORM U L A A OF OF VE R T I C AL AL AND AND LATERAL LATERAL STR UC T U R E E

ANNEX ANNEX 8 8

75 75

Table Table A8 .3 .3

1. 20 20 8000-9000 8000-9000

1.16 1.16 7000-8000 7000-8000

6000-7000 6000-7000 1.12 1.12

1.08 1.08 5000-6000 5000-6000

-- 1.05 1.05 4000-5000 4000-5000

1.02 1.02 3000-4000 3000-4000

1.00 1.00 0-3000 0-3000

Altitude Altitude in in feet feet Multiply Multiply factor factor

Altitude Altitude Compensation Compensation (A) (A)

Table Table A8.2 A8.2

----·-·-·-·- 21.07 24.35 24.35 21.07 12 T T . ota 22 22 l l (S) (S) 10.21 10.21 inches inches I I

0 . 6 6 00 00 . . Pantograph Pantograph 1.88 1.88 sway sway 3.00 3.00 4.12 4.12

2.55 2.55 1.42 1.42 56.5" 56.5" gage gage 1.93 1.93 2.24 2.24

.. . .

. . Rails Rails 0.5 " " difference difference in in hei g ht ht at at . .

0.00.. 0.00.. Bolster Bolster swing swing 0.00 0.00 0.00 0.00 0.00 0.00 4 4

11.95 11.95 13 .83 .83 3 3 5 . 17 17 8 . 80 80 Car Car body body roll roll

0.00 0.00 0.00 0.00 0.00 0.00 0 . 00 00 Side Side bearing bearing 2 2 tilt tilt

2 . 00 00 Late ral ral 2.00 2.00 2.00 2.00 2 . 00 00

----

-

antograp h h height height above above rail rail 25'00" 25'00" 14 14 '00" '00" 19'00" 19'00" 22'00" 22'00" p p

2. 2. Multiple Multiple Unit Unit Cars Cars

Table Table A8.1 A8.1

I I Total Total (S) (S) inches inches I I 12.61 12.61 15 .0 .0 6.22 6.22 I I 10 .2 1 1

,: ,: . 3.00 3.00 0.00 0.00 6. 6. PantograQh PantograQh 1.88 1.88 sway sway 4 . 12 12

1.93 1.93 2.24 2.24 2 . 55 55 1.42 1.42 56.5" 56.5" gage gage

5. 5. Rails Rails 0.5" 0.5" difference difference in in height height at at

0.00 0.00 0.00 0.00 0.00 0.00 4. 4. Bolster Bolster 0.00 0.00 swing swing

3.83 3.83 5.17 5.17 2.72 2.72 3. 3. Springs Springs 1 " " difference difference 4.50 4.50 in in hei g ht ht

1.08 1.08 1.57 1.57 1.87 1.87 2.17 2.17 2. 2. Side Side bearing bearing tilt tilt

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 I . . Lateral Lateral

22'00" 22'00" 25'00" 25'00" 14 '00" '00" Pantogra 19'00" 19'00" ph ph height height above above rail rail

1 . . Loco motives motives

Basis Basis for for lateral lateral displacements displacements (S) (S)

ANNEX ANNEX 8 8 Contd Contd ......

76 76

T abl e A e 8 . 5 5

I I 2 4 . 2 1 o o 2 8 .030 .030 6 6 3 1. 860 860 1 7 . 8 3 0 0 I I

26 . 550 550 2 0 . 0 2 0 0 23.3 60 60 5 5 1 4 . 8 60 60

18 . 680 680 21. 2 4 4 11.880 11.880 1 6 .410 .410 4 4

14 . 0 1 0 0 3 3 1 5 . 9 3 0 0 8 . 9 1 0 0 1 2 . 1 00 00

8 . 070 070 9 . 340 340 2 2 5 . 940 940 1 0.~0 0.~0

1 1 5.309 5.309 2 . 973 973 4 . 035 035 4 . 672 672

1 9 ' 00 " " 22 ' 00" 00" In c 25'00" 25'00" h es es 14 14 ' 00 " "

I I Lateral Lateral d i s p l acement at at acement hi S u g h h p p above above e r r e l evation evation r ai l l

ce n t r e e to to compen s ate ate

Al l ow ance ance for for s upper upper e l evati o n n ma y y b e e dec r ea s ed ed if if track track i s s moved moved o ff ff

No t A e pplie s s if if centre centre lin e e of of track track i s s l o cat e d d at at c e ntre ntre of of tunnel tunnel o r r br i d g e . .

Allow ance ance at at pant o graph graph wire wire c o nta<;.t nta<;.t

' '

S upper upper E le v ation ation A llowan ce ce (E) (E)

Table Table A8.4 A8.4

21.00 21.00 1 2 . 50.0 50.0 00 00 kV kV 1 6.00 6.00 AC AC 1 6 . 00 00

8.00 8.00 8 . 00 00 6 . 00 00 10 . 50 50 25.0 25.0 kV kV AC AC

3 . 00 00 5 . 00 00 5 . 00 00 7.00 7.00 1 2.5 2.5 kV kV AC AC

6.00 6.00 3 . 00 00 5.00 5.00 4 . 00 00 3 . 0 0 kV kV DC DC

5.00 5.00 6 . 00 00 3.00 3.00 1.5 1.5 kV kV D C C 4 . 00 00

c c

c c

p p p p I{ I{

Minimum Minimum Nonn a l l Sy s tem tem volta g e e

( C )- Static Static e l ectrical ectrical clearance clearance in in inche s s

( P) P) - E lectrical lectrical passing passing c l earance earance i n i n n che s s

C l e arance arance at at tunnel s s and and bridges bridges to to ground ground s tructures tructures

Air Air C l e arance s s (P) (P) (C ) )

C ontd ontd .. . . ANNEX ANNEX 8 8 LL

S'illilll:)Id'GNV SWVliDVIG

/

H-XIGN3ddV 8L

z·s ~n~~d l!UO ::)(dmnw ~PP::)13

111 ~Jn~~d l~un ;,)tdmnw f::)S::)!a \C)

-...)

r.

General

Arrangement

Seating

of

Four

Arrangement

Car

Figure

Nonnal

of

8.3

Norma

Electric

l

E.M.

~1ultiple

U

.

Unit

Contd

... ~

0 00

No

1

END

2.

6. 4. 8.

9.

3. 5.

7.

1.

I

O.Conductors

Traction

Side Traction

Air Air Saloon Trailer

Brake

Drivers

Supply Co

Opening

Resistors

n

Bogies

Compartment

ditioners

EMC

Bogies

Equipment

Louvers

Compartments

Door

:

~

H

VIEW

General

:

ON

Arrangement

ARROW

ET

·~

A

of

'

Four

Car

B-

Figure

SrDE

Nonnal

VIEW

8.3

Electric

ON

:

ARROW

Multiple

EP

B

U

~

nit

'

·

Contd

15

18.H 19.Auxiliary

12.Gents

14.lligh 13

16.Passcnger !?.Pantograph

11.

...

.Electrical

.

Pneumatics

Unisex

.

Y.

Equipment

Voltage

Toilet

Toi

Equipment

Cupboard

Side

let

:

Compartment

Compartment

l-

,

ntrancc

EM

Steps

~

No

2

END 00

~

~ ~

DRIVING

f

L:j

MOTOR

u

c

General

-

CAR

u

Arrangement

No

10:

I

ofrour

'

Car

Figure

Norma

8

EJ

.

l

3

Electric

IC'

0

\i!ATC::t

~f"'TF

EJ

R

Multi

pl

e

U

nit

'-i..

L:j

TRAILE

Contd

u

1'

1•

...

c

R

SL\IUt

ET

'i.f~TI

CAR

A

• .

EJ

10!

L:j

D

._....

A •

Cl - - Cl EJ ~ LJ EJ LJ 10 LJ r:::J r:::J ~

i 00 N

10 !:iE:\TEJt 15 SEAlFJ\

EP

10 St.:Ail.:.R 1( ',;F... T F.R

POWER CAR .,.DR1V!NG MOTOR CAR No 2

f

General Arrangement of four Car Normal Electric Multiple Unit

Figure B.3 00

w

,

General

Arrangement

2

nd

Class

of

Seating

Four

Car

Arrangement

Figure

Special

8.4

Electric

of

Special

Multiple

E.M

.

U

U.

nit

Contd

...

00 00

~ ~

No No

1 1

END END

8. 8.

9. 9.

6

3. 3.

4

2. 2.

7. 7.

5. 5.

I I

1. 1.

O.Conductors O.Conductors

. .

. .

Brake Brake Traction Traction

Saloon Saloon

Ori,

Trailer Trailer Side Side

Traction Traction Air Air

Air Air

·

er

Supply Supply

Conditioners Conditioners

Opening Opening

TI

s s

Re

U

JU) JU)

Bogie

Compartment Compartment

Bogies Bogies

Equipment Equipment

s

( (

V.SS V.SS

i

s

tors tors

Louvers Louvers

Compartments Compartments

s s

Door Door

f f

VIEW VIEW

General General

ON ON

Arrangement Arrangement

THIRD THIRD

ARROW ARROW

ClASS ClASS

A A

of of

Four Four

\ \

Car Car

I I

8

Figure Figure

-

Special Special

SIDE SIDE

VIEW VIEW

B.4 B.4

Electric Electric

ON ON

ARROW ARROW

Multiple Multiple

B B

Unit Unit

.

, ,

. .

Contd Contd

17 17

ll.Unisex ll.Unisex

19.Auxiliary 19.Auxiliary

18.11. 18.11.

15.Pneumatics 15.Pneumatics

14.1ligh 14.1ligh

l6.Passenger l6.Passenger

L L

L2.Gents L2.Gents

.. ..

3 3

.

.Electrical .Electrical

Pantograph Pantograph

V. V.

1:-

Voltage Voltage

.

quipment quipment

Toilet Toilet

Toilet Toilet

Equipment Equipment

Cupboard Cupboard

Side Side

Compartment Compartment

Compartment Compartment

Entrance Entrance

Steps Steps

No No

2 2 END END ~

00

Vl

~

S!i

DRlVI:-.lG

,

THIRD

MOTOR

J~

)tJ\H:..K

General

CLASS

CAR

Arrangement

?\o

I

of

10 •

Four

'>t•\

l

r.R

,

Car

Figure

Special

8.4

Electric

Ill

11

'SlAilR

~l.AT£R

Multiple

U

nit

- u

TRAILER

Contd

lHlRD

Lj

IS

15

...

1::1

:,.L\IIM

'(.\Hit

CLASS

CAR

:

Lj

Lj

D

.._

A 0\ 00

SO'

~

LJ

LJLJLJLJLJLJLJLJ

~

POWER

CAR

General

Arrangement

of

Four

Figure

Car

B.4

Special

Ll

LJLJLJLJLJLJLJLJ

Electric

Multiple

·

~_DRIVING

Unit

MOTOR

~LJLJLJLJLJLJLJ

CAR

No

2

0 00

-...l

f

Mast

25

kV

&lll11l

PanlLil

50

Hz

Vlue

Simp

l

e

Feed

Figure

Catenary

8

.

5

System

Contd

...

00 00

00 00

OHE OHE

Rail Rail

I I

I-A I-A

I I

I I

I I

I I

I I '-A '-A

O.li.E. O.li.E.

2.5m 2.5m

BOOSTER BOOSTER

VU:W VU:W

I I

WITHOUT WITHOUT

:1 :1

2.6 2.6

100 100

I I

I I

I I

I I

I I

1.3 1.3

.,; .,;

-o -o

E E

AT AT OF OF

kVA kVA

PL

CO, CO,

TRANSFORMER TRANSFORMER

TRACK TRACK

SLCT

AI'E AI'E

RETURN RETURN

1.) 1.)

TACT TACT

l

ON ON

2

.

6 6

I I

I I

I I

I I

I I

25kV 25kV I I

I I

A-A A-A

CONDUCTOR CONDUCTOR

50Hz 50Hz

SIMPLE SIMPLE

' '

" "

Figure Figure

FEED FEED

8.5 8.5

0.905m 0.905m

CATENARY CATENARY

"' "'

-

c: c:

~

Dimension Dimension

1 1

O.II.E. O.II.E.

1 1

.. ..

:urn :urn

VrEW VrEW

1 1

I I

REI REI

WITH WITH

SYSTEM SYSTEM

in in

1.,; 1.,;

I I

I I I~ I~

I I

UR.:-.1 UR.:-.1

AT AT

km km

~ ~

OF OF

2.6 2.6

RElUR.~ RElUR.~

CO:-.ITACTI CO:-.ITACTI

PLA~E PLA~E

SFCTION SFCTION

TRAC

CONDUC

' '

K K

CONDUCTOR CONDUCTOR

B-B B-B

I I

I I

I I

I I

I I

I I

t

OR OR

\ \

2.6 2.6

l-s l-s

I I

I I

I I

~-B ~-B

-

CONDUCTOR CONDUCTOR

RETURN RETURN

SliPER SliPER

2.6 2.6 MAST MAST 68

9"8 ~J!ilil-{

Arnli~UOJO sodA..L -

.u o•~

T T

1MVN"U'f;) l.'f".:-"'t't!J.

l.J Ot I ------06

L g:;,m5!.:I ··plUO) lN::IWdlfl03 OV3I-ni3A0 OLL)Vlli

• l6

L'8 ;}Jn2!.1

··plUO:) 1.N3:Wcllil03 OV3IDI3AO NOI.L:::>W.L